Application of Fusion-Fission to the multi-way graph partitioning problem

Charles-Edmond Bichot
Laboratoire d'Optimisation Globale, École Nationale de l'Aviation Civile/Direction des Services de la Navigation Aérienne, 7 av. Edouard Belin, 31055 Toulouse, France, bichot@recherche.enac.fr, WWW home page: http://www.recherche.enac.fr/~ ${ }^{\text {bichot }}$

Abstract

This paper presents an application of the Fusion-Fission method to the multi-way graph partitioning problem. The Fusion-Fission method was first designed to solve the normalized cut partitioning problem. Its application to the multi-way graph partitioning problem is very recent, thus the Fusion-Fission algorithm has not yet been optimized. Then, the Fusion-Fission algorithm is slower than the state-of-the-art graph partitioning packages. The Fusion-Fission algorithm is compared with JOSTLE, METIS, CHACO and PARTY for four partition's cardinal numbers: $2,4,8$ and 16 , and three partition balance tolerances: 1.00 , 1.01 and 1.03. Results show that up to two thirds of time are the partitions returned by Fusion-Fission of greater quality than those returned by state-of-the-art graph partitioning packages.

1 Introduction

For ten years, the state-of-the-art method to solve the multi-way graph partitioning problem is the multilevel method. The multilevel method often used a graph growing algorithm for the partitioning task and a Kernighan-Lin type refinement algorithm. This method has been introduced in [HL95b,KK95,AHK97]. It is a very efficient process which is very fast too. It consists in reducing the number of vertices of the graph, which is sometimes very high (more than 100,000 vertices), by coarsening them. Then, a partition of the coarsenest graph (less than 100 vertices) is built, generally with a graph growing algorithm [KK98a]. After that, the vertices of the partition are successively un-coarsened and the partition refined with a Kernighan-Lin algorithm [KL70,FM82] or a helpful set algorithm [DMP95].

Graph partitioning has many applications. The most famous of them are parallel computing, VLSI design and engineering computation. Thus, graph partitioning is an important combinatorial optimization problem. Because of its great number of applications, there are different graph partitioning problems. The aim of this paper is to study the most classical of them, the multi-way graph partitioning problem, also called k-way graph-partitioning problem [KK98c]. The other graph partitioning problems, such as the Normalized-Cut partitioning problem
[SM00,DGK04] or the Ratio-Cut partitioning problems [DGK07], are not presented in this paper.

This paper presents an application of the Fusion-Fission method to the multiway graph partitioning problem. The Fusion-Fission method was first created to solve the Normalized-Cut graph partitioning problem [Bic06,Bic07]. Because the multi-way graph partitioning problem and the normalized-cut graph partitioning problems are strongly related, it is interesting to evaluate the efficiency of the same method to both problems, as it has been done for the multilevel method [DGK07].

The work presented in this paper is the first adaptation of Fusion-Fission to the multi-way graph partitioning problem. Thus, all components of FusionFission presented in [Bic07] do no appear in this preliminary adaptation. However, partitions found by this adaptation are quite good regarding partitions returned by state-of-the-art graph partitioning packages.

2 Graph partitioning

The multi-way graph partitioning problem consists in finding a partition of the vertices of a graph into parts of the same size, while minimizing the number of edges between parts. It is well-known that the multi-way graph partitioning problem is NP-complete.

The difficulty of the task is to keep the sizes of the parts equal while minimizing the edge-cut. The value which represents the difference between the sizes of the parts is named the balance of the partition. Because a small difference between the sizes of the parts may lead to a lower edge-cut [ST97], lots of results are presented with partitions not perfectly balanced.

Definition 1 (Partition of the vertices of a graph). Let $G=(V, E)$ be an undirected graph, with V its set of vertices and E its set of edges. A partition of the graph into k parts is a set $P_{k}=\left\{V_{1}, \ldots, V_{k}\right\}$ of sub-sets of V such that:

- No element of P_{k} is empty.
- The union of the elements of P_{k} is equal to V.
- The intersection of any two elements of P_{k} is empty.

The number of parts k of the partition P_{k} is named the cardinal number of the partition.

Assume that the graph G is weighted. For each vertex $v_{i} \in V$, let $w\left(v_{i}\right)$ be its weight. For each edge $\left(v_{i}, v_{j}\right) \in E$, let $w\left(v_{i}, v_{j}\right)$ be its weight. Then, the weight of a set of vertices $V^{\prime} \subseteq V$ is the sum of the weight of the vertices of V^{\prime} : $w\left(V^{\prime}\right)=\sum_{v \in V^{\prime}} w(v)$.

Definition 2 (Balance of a partition). Let $P_{k}=\left\{V_{1}, \ldots, V_{k}\right\}$ be a partition of a graph $G=(V, E)$ into k parts. The average weight of a part is: $W_{\text {average }}=$
$\frac{w(V)}{k}$. The balance of a partition is defined as the maximum weight of all parts divided by the average weight of a part:

$$
\operatorname{balance}\left(P_{k}\right)=\frac{\max _{V_{i} \in P_{k}} w\left(V_{i}\right)}{W_{\text {average }}}=\frac{k}{w(V)} \max _{V_{i} \in P_{k}} w\left(V_{i}\right) .
$$

The objective function to minimize is the cut function. It is defined as the sum of the weight of the edges between the parts. More formally, let V_{1} and V_{2} be two elements of P_{k} :

$$
\operatorname{cut}\left(V_{1}, V_{2}\right)=\sum_{u \in V_{1}, v \in V_{2}} w(u, v)
$$

Then, the cut objective function is defined as:

$$
\operatorname{cut}\left(P_{k}\right)=\sum_{V_{i}, V_{j} \in P_{k}, i<j} \operatorname{cut}\left(V_{i}, V_{j}\right) .
$$

The partition which has the lowest cut value is the solution of the multiway graph partitioning problem. However, because of the size of the graph to partition (several thousands of vertices), and because of the combinatorial nature of the problem, the partition with the lowest cut value can not be found. Thus, combinatorial optimization methods are used to solve this problem.

3 The Fusion-Fission adaptation to multi-way graph partitioning

Because principles of Fusion-Fission are described in [Bic07], this paper presents only succinctly this method. Fusion-Fission principles are based on nuclear force between nucleons. This force is responsible for binding of protons and neutrons into atomic nuclei. In the nature, the fifty-six particles of an iron nucleus are more tightly bound together than in any other element. Thus, the Fusion-Fission optimization process consists in splitting and merging atoms to create atoms of maximum binding energy. Nucleons of big atoms are merged into atoms with few nucleons.

An analogy with graph partitioning is easy. Let the nucleons be the vertices of the graph and the atoms the parts of the partition. The binding energy between two nucleons is the edge weight between the corresponding vertices. According to the Fusion-Fission process, parts of the partition are successively merged and split. Then, the cardinal number of the partition changes during the process. Resulting atoms of the Fusion-Fission process should be atoms of the same size. Which means that the final partition is perfectly balanced.

To be as close as possible to the process described before, the Fusion-Fission application to multi-way graph partitioning is an iteration process which works as follows: at each step of the process, a new partition $P_{l^{\prime}}^{t+1}$ is created based on the preceding partition P_{l}^{t}. The fission process consists in splitting each part of
the partition $P_{l^{\prime}}^{t+1}$ into l parts. Because of its efficiency, the multilevel method has been chosen for the splitting. The fusion process consists in merging the $l^{\prime} * l$ parts into a partition P^{\prime} of l^{\prime} parts. The merging can be viewed as graph partitioning problem where the vertices of the graph are the $l^{\prime} * l$ parts. Thus, a multilevel method has been chosen for the merging too. Then, the partition P^{\prime} is refined using a Kernighan-Lin type algorithm $(K L)$. The resulting partition is the partition $P_{l^{\prime}}^{t+1}$. The initial partition, P_{k}^{0}, is provided by the multilevel method.

The algorithm 1 presents the Fusion-Fission application to multi-way graph partitioning. The number of part of the new partition, l^{\prime}, changes at each iteration. We decided to force it to follow a binomial distribution centered in k. Then, a list of numbers which follow this binomial distribution is constructed at the beginning of the Fusion-Fission algorithm. Then, each iteration starts by selecting a new number of part l^{\prime} in this list.

The multilevel method and the Kernighan-Lin type algorithm ($K L$ in the algorithm 1) used are those of the pMETIS software and are both described in [KK98a]. The pMETIS software does not refer to the parallel implementation of METIS, but pMETIS is the name given of the recursive bisection software implemented in the serial METIS package.

The particularity of the Fusion-Fission algorithm is to find several partitions of different cardinal numbers. Moreover, for each partition found during the algorithm's iteration, refinement is a four-step process. The partition is first refined for a balance of 1.00 , then for a balance of 1.01 , and after, for balances of 1.03 and 1.05. This four-step refinement process greatly decrease the computation time of the algorithm. Since the algorithm code is not optimized as much as the multilevel softwares, its computation time is less relevant than partition quality.

4 Comparison with state-of-the-art graph partitioning packages

4.1 Benchmarks graphs

The performance of the Fusion-Fission adaptation to multi-way graph partitioning is evaluated on a wide range of tests graphs arising in different application domains. These tests graphs have been chosen among classical benchmarks in the literature of graph partitioning. Some of these benchmarks have been tested in some recent papers [BGOM03,SWC04,KcR04,DGK07]. These graphs are both vertex and edge unweighted. The characteristics of these graphs are described in table 1.

All of these benchmarks graphs can be downloaded at the University of Greenwich graph partitioning archive (May 2007): http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

All the experiments in this paper were performed on an Intel Pentium IV 3.0 GHz processor with 1 Go of memory, running a GNU/Linux Debian operating system.

```
Algorithm 1 Fusion-Fission
    procedure FusionFission \((G=(V, E), k, n, p M E T I S, K L)\)
        \(l \leftarrow k\)
        \(P \leftarrow p \operatorname{METIS}(G, k)\)
        \(P_{k}^{0} \leftarrow P=\left\{P_{1}, \ldots, P_{k}\right\}\)
        for \(t=1\) to \(n\) do
            choose a new number of parts \(l^{\prime}\)
            \(P_{l}^{t}=\left\{P_{1}, \ldots, P_{l}\right\}\)
            for \(j=1\) to \(l\) do
                    \(V_{l^{\prime}}^{\prime} \leftarrow p \operatorname{METIS}\left(P_{j}, l^{\prime}\right)\)
                    \(V^{\prime} \leftarrow V^{\prime} \cup V_{l^{\prime}}^{\prime}\)
            end for
            make a graph \(G^{\prime}\) based on the set of parts \(V^{\prime}\)
            \(P_{l^{\prime}}^{t+1} \leftarrow p \operatorname{METIS}\left(G^{\prime}, l^{\prime}\right)\)
            \(P^{\prime} \leftarrow K L(P)\)
            if \(l^{\prime}=k\) and \(\operatorname{cut}\left(P^{\prime}\right)<\operatorname{cut}(P)\) then
                    \(P \leftarrow P^{\prime}\)
            end if
        end for
        return \(P\)
    end procedure
```

Table 1. Benchmark graphs characteristics.

Graph name	Size		Degree		Description (source)
	$\|V\|$	$\|E\|$	min	max avg	
add20	2395	7462	1	$123 \quad 6.23$	20-bit adder (Motorola)
data	2851	15093	3	1710.59	
3elt	4720	13722	3	$9 \quad 5.81$	2D nodal graph (NASA/RIACS)
uk	4824	6837	1	$3 \quad 2.83$	2D dual graph
add32	4960	9462	1	313.82	32-bit adder (Motorola)
bcsstk33	8738	291583	19	14066.74	3D stiffness matrix (Boeing)
whitaker3	9800	28989	3	$8 \quad 5.92$	2D nodal graph (NASA/RIACS)
crack	10240	30380	3	$9 \quad 5.93$	2D nodal graph
wing_nodal	10937	75488	5	2813.80	3D nodal graph
fe_4elt2	11143	32818	3	$12 \quad 5.89$	
vibrobox	12328	165250	8	12026.81	Sparse matrix
bcsstk29	13992	302748	4	7043.27	3D stiffness matrix (Boeing)
4 elt	15606	45878	3	$10 \quad 5.88$	2D nodal graph (NASA/RIACS)
fe_sphere	16386	49152	4	$6 \quad 6.00$	
cti	16840	48232	3	$6 \quad 5.73$	3D semi-structured matrix
memplus	17758	54196	1	$573 \quad 6.10$	Memory circuit (Motorola)
cs4	22499	43858	2	43.90	3D dual graph
bcsstk30	28924	1007284	3	21869.65	3D stiffness matrix (Boeing)
bcsstk31	35588	572914	1	18832.20	3D stiffness matrix (Boeing)
bcsstk32	44609	985046	1	21544.16	3D stiffness matrix (Boeing)
t60k	60005	89440	2	$3 \quad 2.98$	2D dual graph
wing	62032	121544	2	43.92	3D dual graph
brack2	62631	366559	3	3211.71	3D nodal graph (NASA/RIACS)

4.2 Some graph partitioning packages

The quality of the partitions produced by the Fusion-Fission algorithm is compared with those generated on the same computer by several public domain graph partitioning softwares:

- The CHACO software [HL95a]. This software includes multilevel and spectral algorithms. Because it is more efficient than the spectral algorithm, only the multilevel algorithm of CHACO, described in [HL95b], is compared with Fusion-Fission.
- The JOSTLE software [Wal02]. It is based on a multilevel multi-way partitioning algorithm [WC00].
- The METIS package [KK98b]. This package provides both the pMETIS and the kMETIS softwares. kMETIS is a direct multi-way partitioning algorithm [KK98c]. pMETIS uses a recursive bisection algorithm [KK98a].
- The PARTY software [PD98]. This software is is based on a multilevel algorithm and a helpful-sets refinement algorithm [DMP95].

From all of this softwares, two have a balance parameter : JOSTLE and CHACO (with KL_IMBALANCE). The two others found partitions with a variable balance.

4.3 Comparisons between graph partitioning softwares

To be compared with the other algorithms, the Fusion-Fission algorithm has been limited to 2,000 iterations. Then, its runtime is between one minute and one hour. This computation time is quite long regarding those of graph partitioning packages which is often less than a second. There are some explanations to this deficiency. The Fusion-Fission algorithm has not been optimized. It makes four refinement steps instead of one (see section 3). However, the Fusion-Fission algorithm is not slow in comparison with metaheuristics applied to graph partitioning [BGOM03,SWC04] which have a computation time of several hours to several days.

Tables 2 and 3 present some comparisons between the public graph partitioning packages presented in section 4.2 and the Fusion-Fission algorithm. Four cardinals numbers have been chosen: $k=2,4,8$ and 16 . CHACO naturally finds partition perfectly balanced. Its results are compared with those of JOSTLE and Fusion-Fission for balance $=1.00$. pMETIS (labeled pM. in tables 2 and 3) finds partitions for a balance number of 1.01, thus it is compared with JOSTLE and Fusion-Fission for this imbalance. kMETIS and PARTY are compared with JOSTLE and Fusion-Fission for balance $=1.03$. When an algorithm do not find a partition for the given balance, the result is marked not available (N/A in tables 2 and 3).

In Tables 2 and 3, lines heading "Best" summarize the number of times the algorithms found the best partition quality over the 23 graphs of this benchmark, regarding results of the other algorithms for the same balance. Results show that Fusion-Fission outperforms the other algorithms in all cases except for $k=8$ and
$k=16$ with a balance of 1.00 . In the two last cases, the Fusion-Fission algorithm does as well as the JOSTLE software. The Fusion-Fission algorithm has not been constrained to find perfectly balanced partitions even if it tries to do so. Thus, in a few cases it does not find perfectly balanced partitions. The Fusion-Fission algorithm is particularly good for the two smallest cardinals numbers, $k=2$ and $k=4$. It can be noticed that the JOSTLE software does almost as well as the other softwares, except when it is compared with pMETIS for $k=16$ and balance $=1.03$.

5 Conclusion

A new multi-way graph partitioning method has been presented in this paper. This method named Fusion-Fission is based on a previous work we made to solve the normalized cut graph partitioning problem [Bic06,Bic07]. The adaptation of Fusion-Fission to the multi-way graph partitioning problem uses the pMETIS multilevel algorithm and its Kernighan-Lin refinement algorithm.

This method has been compared with four state-of-the-art graph partitioning packages: JOSTLE, METIS, CHACO and PARTY. Classical benchmarks have been used. The partitions searched are of cardinal numbers $2,4,8$ and 16 , with a balance of $1.00,1.01$ and 1.03 . Results show that up to two thirds of time are the partitions returned by Fusion-Fission of greater quality than those returned with state-of-the-art graph partitioning packages.

Since Fusion-Fission takes much longer time than state-of-the-art graph partitioning packages, it may bee difficult to used it for parallel matrix applications. However, it can be advantageously be used for fields where run-time is less of a concern, as VLSI layout or air traffic management problems.

References

[AHK97] Charles J. Alpert, Jen-Hsin Huang, and Andrew B. Kahng. Multilevel circuit partitioning. In Proceedings of the ACM/IEEE Design Automation Conference, pages 530-533, 1997.
[BGOM03] R. Baños, C. Gil, J. Ortega, and F.G. Montoya. Multilevel heuristic algorithm for graph partitioning. In Proceedings of the European Workshop on Evolutionary Computation in Combinatorial Optimization, pages 143-153, 2003.
[Bic06] Charles-Edmond Bichot. A metaheuristic based on fusion and fission for partitioning problems. In Proceedings of the 20th IEEE International Parallel and Distributed Processing Symposium, 2006.
[Bic07] Charles-Edmond Bichot. A new method, the fusion fission, for the relaxed k -way graph partitioning problem, and comparisons with some multilevel algorithms. Journal of Mathematical Modeling and Algorithms (JMMA), 6(3):319-344, 2007.
[DGK04] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kullis. Kernel k-means, spectral clustering, and normalized cuts. In Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages 551-556, 2004.

Table 2. Comparisons between algorithms for cardinals numbers $k=2$ and $k=4$.

Graph	balance $=1.00$			balance $=1.01$			balance $=1.03$			
	JOSTLE	СНАСО	FF	JOSTLE	pM.	FF	JOSTLE	kM.	PARTY	FF
$k=2$										
add20	734	740	699	729	725	677	721	788	750	666
data	241	279	204	241	218	203	241	244	233	196
3 elt	95	92	90	95	108	90	95	129	136	88
uk	33	34	21	28	23	21	25	41	29	19
add32	12	28	11	10	21	10	10	50	23	10
bcsstk33	12621	10224	10175	12616	10205	10175	12409	14655	12071	10069
whitaker3	136	132	127	136	135	126	135	152	132	126
crack	207	209	186	196	187	186	199	278	222	186
wingnodal	1739	1828	1790	1741	1820	1748	1724	2054	1782	1735
fe4elt2	130	130	130	130	130	130	130	143	130	130
vibrobox	11436	10346	11866	11424	12427	11552	11511	18245	11975	11440
bcsstk29	2898	2917	2843	2898	2843	2818	2997	3904	N/A	2818
4 elt	151	179	143	151	154	139	157	258	159	138
fesphere	466	422	386	466	440	386	468	568	386	384
cti	347	410	334	342	334	318	342	688	366	318
memplus	6141	6861	5816	6096	6337	5816	6047	6519	7604	5574
cs4	455	421	414	435	414	414	406	613	418	414
bcsstk30	6456	6447	6407	6599	6458	6345	6599	8297	6696	6275
bcsstk31	4044	4020	2805	4060	3638	2718	4191	4950	N/A	2698
bcsstk32	6764	5507	4782	7027	5672	4747	6888	5527	5520	4747
t60k	108	101	100	107	100	83	98	103	93	78
wing	956	952	950	908	950	908	896	1562	927	908
brack2	754	752	738	751	738	714	715	845	947	691
Best	2	2	21	5	2	21	5	0	1	20
$k=4$										
add20	1238	1357	1292	1229	1292	1211	1255	1387	1281	1202
data	448	433	459	447	480	430	425	505	511	420
3 elt	212	219	212	210	231	210	201	265	243	208
uk	69	63	61	67	67	55	67	85	62	51
add32	45	79	36	40	42	33	41	107	62	33
bcsstk33	22130	26191	23066	22293	23131	22652	21590	25493	22445	21853
whitaker3	417	398	406	403	406	397	406	575	399	396
crack	442	479	382	431	382	378	413	589	476	371
wingnodal	4073	3992	3720	4048	4000	3659	4048	4832	N/A	3659
fe4elt2	396	356	359	375	359	351	368	1780	437	351
vibrobox	21761	21087	20282	22156	21471	19940	21844	36206	N/A	19825
bcsstk29	9833	8831	8826	9122	8826	8692	9122	10851	N/A	8523
4 elt	498	405	378	485	406	351	434	425	364	342
fesphere	825	868	844	818	872	825	806	1103	819	818
cti	1355	1016	1049	1357	1113	1029	1329	2294	1089	976
memplus	10696	11532	10596	10550	10559	10436	10470	10640	11406	10182
cs4	1194	1132	1154	1177	1154	1102	1162	1599	N/A	1089
bcsstk30	25825	17013	17443	25865	17685	16816	25438	24151	N/A	16767
bcsstk31	10190	10184	8201	10066	8770	7812	10134	15279	N/A	7812
bcsstk32	14890	14946	12205	14887	12205	11340	14887	16215	13333	9924
t60k	240	290	255	229	255	255	242	279	272	227
wing	1922	2161	1937	1840	2086	1937	1824	3454	N/A	1900
brack2	3222	3356	3705	3144	3250	3109	2999	4129	N/A	2935
Best	6	6	12	5	0	19	4	0	0	19

Table 3. Comparisons between algorithms for cardinals numbers $k=8$ and $k=16$.

Graph	$\begin{array}{r} \text { balar } \\ \text { JOSTLE } \end{array}$	$\begin{array}{ll}\text { cee }=1.00 & \\ \text { CHACO } & \text { FF }\end{array}$	$\begin{array}{r} \text { balar } \\ \text { JOSTLE } \end{array}$	$\begin{array}{ll} \hline c e=1.01 & \\ \text { METIS } & \text { FF } \\ \hline \end{array}$	JOSTLE	balance $=$	$\begin{aligned} & 1.03 \\ & \text { eARTY } \end{aligned}$	FF
$k=8$								
add20	1853	1881 1907	1894	19071907	1836	2130	2018	1907
data	798	763842	800	842758	756	N/A	791	714
3elt	462	$393 \mathbf{3 8 8}$	433	$388 \mathbf{3 6 4}$	418	527	432	356
uk	114	130101	104	101101	106	168	148	101
add32	120	139 N/A	105	$81 \quad 81$	106	351	N/A	72
bcsstk33	36106	4195140070	36269	4007035579	35961	44681	39071	34919
whitaker3	716	712719	710	$719 \mathbf{6 9 2}$	706	1047	759	687
crack	809	$806 \quad \mathbf{7 7 3}$	779	$773 \mathbf{7 2 1}$	751	1047	808	721
wingnodal	6070	$6152 \mathbf{6 0 7 0}$	6033	60706070	5965	8335	6284	5976
fe4elt2	713	651654	688	654646	681	801	707	641
vibrobox	30103	3341028696	31032	2817726162	30247	43334	N/A	25796
bcsstk29	17391	1688717534	16742	1655515181	17234	24525	N/A	15043
4 elt	674	701635	612	$635 \quad 604$	656	827	722	583
fesphere	1351	13371330	1280	13301302	1274	1643	1277	1294
cti	2257	$1886 \mathrm{~N} / \mathrm{A}$	2158	21102076	2086	3888	2482	2005
memplus	12866	1395613110	12684	1311013110	12540	N/A	13119	13110
cs4	1703	18081746	1673	17461746	1588	2733	1721	1746
bcsstk30	39271	35647 N/A	38746	3635736357	38228	41052	48539	35668
bcsstk31	15360	1755316012	17094	1601214754	19849	20647	N/A	14754
bcsstk32	29281	2581023601	26655	2360123601	25343	39817	N/A	23601
t60k	556	593561	532	561561	530	1309	581	561
wing	3028	32213205	2918	32053205	2911	5748	N/A	3205
brack2	8007	$8061 \quad \mathbf{7 8 4 4}$	8037	$\mathbf{7 8 4 4} \mathbf{7 8 4 4}$	7757	10171	N/A	7844
Best	9	$6 \quad 9$	7	$5 \quad 16$	8	0	0	15
$k=16$								
add20	2555	$2269 \quad \mathbf{2 5 0 4}$	2532	$2504 \quad 2504$	2565	N/A	2510	2504
data	1299	12791309	1299	13701278	1263	4857	1475	1224
3elt	645	641665	621	$665 \quad 607$	603	969	754	598
uk	211	211 N/A	190	189189	180	384	220	189
add32	269	$217 \quad 128$	239	128128	180	N/A	N/A	128
bcsstk33	59884	6180059791	61505	5979158694	57553	123044	61630	58183
whitaker3	1172	$1241 \quad 1237$	1138	12371180	1147	1436	1277	1165
crack	1245	12771255	1212	125511197	1191	2296	1263	1187
wingnodal	9083	$9327 \quad 9290$	9091	929088962	8947	10097	9006	8890
fe4elt2	1194	10951152	1146	11521083	1140	1500	1236	1076
vibrobox	35447	4263437441	36233	3744136398	34521	N/A	N/A	35809
bcsstk29	28294	26239 N/A	28062	2815126422	28338	147143	N/A	25417
4 elt	1081	10991056	1034	10561048	1012	5077	1282	1015
fesphere	1918	20612030	1759	20301952	1741	2495	N/A	1943
cti	3402	31223181	3345	31813181	3262	4760	N/A	3181
memplus	14510	15654 N/A	15085	1494214942	13958	15804	14831	14942
cs4	2518	25502538	2519	$2538 \quad 2538$	2477	3614	2488	2538
bcsstk30	87824	79046 N/A	87472	7729377293	81764	93834	N/A	76791
bcsstk31	27897	2936427180	27954	2718027180	27388	189562	N/A	27180
bcsstk32	46954	4626643371	48162	4337143371	48395	50660	N/A	43371
t60k	977	1027 N/A	969	998998	984	1347	1097	998
wing	4761	$4806 \mathbf{4 6 6 6}$	4623	46664666	4681	7712	N/A	4666
brack2	13318	1311712655	13337	1265512655	13164	150514	N/A	12655
Best	9	78	7	$9 \quad 16$	9	0	0	14

[DGK07] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors: A multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007. To appear.
[DMP95] R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve graph bisections. In Proceedings of the DIMACS Workshop on Interconnection Networks and Mapping and Scheduling Parallel Computations, pages 5773, 1995.
[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions. In Proceedings of 19th ACM/IEEE Design Automation Conference, pages 175-181, 1982.
[HL95a] Bruce Hendrickson and Robert Leland. The Chaco User's Guide. Sandia National Laboratories, 2.0 edition, 1995.
[HL95b] Bruce Hendrickson and Robert W. Leland. A multilevel algorithm for partitioning graphs. In Proceedings of Supercomputing, 1995.
[KcR04] Peter Korošec, Jurij Šilc, and Borut Robič. Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Computing, 30(5-6):785801, 2004.
[KK95] George Karypis and Vipin Kumar. Analysis of multilevel graph partitioning. In Proceedings of Supercomputing, 1995.
[KK98a] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Scientific Computing, 20(1):359-392, 1998.
[KK98b] George Karypis and Vipin Kumar. Metis : A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing FillReducing Orderings of Sparse Matrices. University of Minnesota, 4.0 edition, sep 1998.
[KK98c] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and Distributed Computing, 48(1):96129, 1998.
[KL70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 49(2):291-307, 1970.
[PD98] Robert Preis and Ralf Diekmann. The Party Partitioning Library, User Guide. University of Paderborn, 1.99 edition, oct 1998.
[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.
[ST97] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? SIAM Journal on Scientific Computing, 18(5):1436-1445, 1997.
[SWC04] Alan J. Soper, Chris Walshaw, and M. Cross. A combined evolutionary search and multilevel optimisation approach to graph-partitioning. Journal of Global Optimization, 29:225-241, 2004.
[Wal02] Chris Walshaw. The serial JOSTLE library user guide. University of Greenwich, 3.0 edition, jul 2002.
[WC00] Chris Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and refinement algorithm. SIAM Journal on Scientific Computing, 22:6380, 2000.

