
Application of Fusion-Fission to the multi-way

graph partitioning problem

Charles-Edmond Bichot

Laboratoire d’Optimisation Globale, École Nationale de l’Aviation Civile/Direction
des Services de la Navigation Aérienne, 7 av. Edouard Belin, 31055 Toulouse, France,

bichot@recherche.enac.fr,
WWW home page: http://www.recherche.enac.fr/~bichot

Abstract. This paper presents an application of the Fusion-Fission method
to the multi-way graph partitioning problem. The Fusion-Fission method
was first designed to solve the normalized cut partitioning problem. Its
application to the multi-way graph partitioning problem is very recent,
thus the Fusion-Fission algorithm has not yet been optimized. Then,
the Fusion-Fission algorithm is slower than the state-of-the-art graph
partitioning packages. The Fusion-Fission algorithm is compared with
JOSTLE, METIS, CHACO and PARTY for four partition’s cardinal
numbers: 2, 4, 8 and 16, and three partition balance tolerances: 1.00,
1.01 and 1.03. Results show that up to two thirds of time are the parti-
tions returned by Fusion-Fission of greater quality than those returned
by state-of-the-art graph partitioning packages.

1 Introduction

For ten years, the state-of-the-art method to solve the multi-way graph partition-
ing problem is the multilevel method. The multilevel method often used a graph
growing algorithm for the partitioning task and a Kernighan-Lin type refinement
algorithm. This method has been introduced in [HL95b,KK95,AHK97]. It is a
very efficient process which is very fast too. It consists in reducing the number
of vertices of the graph, which is sometimes very high (more than 100,000 ver-
tices), by coarsening them. Then, a partition of the coarsenest graph (less than
100 vertices) is built, generally with a graph growing algorithm [KK98a]. After
that, the vertices of the partition are successively un-coarsened and the partition
refined with a Kernighan-Lin algorithm [KL70,FM82] or a helpful set algorithm
[DMP95].

Graph partitioning has many applications. The most famous of them are par-
allel computing, VLSI design and engineering computation. Thus, graph parti-
tioning is an important combinatorial optimization problem. Because of its great
number of applications, there are different graph partitioning problems. The aim
of this paper is to study the most classical of them, the multi-way graph partition-
ing problem, also called k-way graph-partitioning problem [KK98c]. The other
graph partitioning problems, such as the Normalized-Cut partitioning problem

[SM00,DGK04] or the Ratio-Cut partitioning problems [DGK07], are not pre-
sented in this paper.

This paper presents an application of the Fusion-Fission method to the multi-
way graph partitioning problem. The Fusion-Fission method was first created to
solve the Normalized-Cut graph partitioning problem [Bic06,Bic07]. Because the
multi-way graph partitioning problem and the normalized-cut graph partitioning
problems are strongly related, it is interesting to evaluate the efficiency of the
same method to both problems, as it has been done for the multilevel method
[DGK07].

The work presented in this paper is the first adaptation of Fusion-Fission
to the multi-way graph partitioning problem. Thus, all components of Fusion-
Fission presented in [Bic07] do no appear in this preliminary adaptation. How-
ever, partitions found by this adaptation are quite good regarding partitions
returned by state-of-the-art graph partitioning packages.

2 Graph partitioning

The multi-way graph partitioning problem consists in finding a partition of the
vertices of a graph into parts of the same size, while minimizing the number
of edges between parts. It is well-known that the multi-way graph partitioning
problem is NP-complete.

The difficulty of the task is to keep the sizes of the parts equal while mini-
mizing the edge-cut. The value which represents the difference between the sizes
of the parts is named the balance of the partition. Because a small difference
between the sizes of the parts may lead to a lower edge-cut [ST97], lots of results
are presented with partitions not perfectly balanced.

Definition 1 (Partition of the vertices of a graph). Let G = (V, E) be an

undirected graph, with V its set of vertices and E its set of edges. A partition of

the graph into k parts is a set Pk = {V1, . . . , Vk} of sub-sets of V such that:

– No element of Pk is empty.

– The union of the elements of Pk is equal to V.

– The intersection of any two elements of Pk is empty.

The number of parts k of the partition Pk is named the cardinal number of the

partition.

Assume that the graph G is weighted. For each vertex vi ∈ V , let w(vi)
be its weight. For each edge (vi, vj) ∈ E, let w(vi, vj) be its weight. Then, the
weight of a set of vertices V ′ ⊆ V is the sum of the weight of the vertices of V ′:
w(V ′) =

∑
v∈V ′ w(v).

Definition 2 (Balance of a partition). Let Pk = {V1, . . . , Vk} be a partition

of a graph G = (V, E) into k parts. The average weight of a part is: Waverage =

w(V)
k

. The balance of a partition is defined as the maximum weight of all parts

divided by the average weight of a part:

balance(Pk) =
maxVi∈Pk

w(Vi)

Waverage

=
k

w(V)
max
Vi∈Pk

w(Vi) .

The objective function to minimize is the cut function. It is defined as the
sum of the weight of the edges between the parts. More formally, let V1 and V2

be two elements of Pk:

cut(V1, V2) =
∑

u∈V1,v∈V2

w(u, v) .

Then, the cut objective function is defined as:

cut(Pk) =
∑

Vi,Vj∈Pk,i<j

cut(Vi, Vj) .

The partition which has the lowest cut value is the solution of the multi-
way graph partitioning problem. However, because of the size of the graph to
partition (several thousands of vertices), and because of the combinatorial nature
of the problem, the partition with the lowest cut value can not be found. Thus,
combinatorial optimization methods are used to solve this problem.

3 The Fusion-Fission adaptation to multi-way graph

partitioning

Because principles of Fusion-Fission are described in [Bic07], this paper presents
only succinctly this method. Fusion-Fission principles are based on nuclear force
between nucleons. This force is responsible for binding of protons and neutrons
into atomic nuclei. In the nature, the fifty-six particles of an iron nucleus are
more tightly bound together than in any other element. Thus, the Fusion-Fission
optimization process consists in splitting and merging atoms to create atoms of
maximum binding energy. Nucleons of big atoms are merged into atoms with
few nucleons.

An analogy with graph partitioning is easy. Let the nucleons be the vertices of
the graph and the atoms the parts of the partition. The binding energy between
two nucleons is the edge weight between the corresponding vertices. According
to the Fusion-Fission process, parts of the partition are successively merged and
split. Then, the cardinal number of the partition changes during the process.
Resulting atoms of the Fusion-Fission process should be atoms of the same size.
Which means that the final partition is perfectly balanced.

To be as close as possible to the process described before, the Fusion-Fission
application to multi-way graph partitioning is an iteration process which works
as follows: at each step of the process, a new partition P t+1

l′ is created based on
the preceding partition P t

l . The fission process consists in splitting each part of

the partition P t+1
l′ into l parts. Because of its efficiency, the multilevel method

has been chosen for the splitting. The fusion process consists in merging the
l′ ∗ l parts into a partition P ′ of l′ parts. The merging can be viewed as graph
partitioning problem where the vertices of the graph are the l′ ∗ l parts. Thus, a
multilevel method has been chosen for the merging too. Then, the partition P ′

is refined using a Kernighan-Lin type algorithm (KL). The resulting partition
is the partition P t+1

l′ . The initial partition, P 0
k , is provided by the multilevel

method.
The algorithm 1 presents the Fusion-Fission application to multi-way graph

partitioning. The number of part of the new partition, l′, changes at each it-
eration. We decided to force it to follow a binomial distribution centered in k.
Then, a list of numbers which follow this binomial distribution is constructed
at the beginning of the Fusion-Fission algorithm. Then, each iteration starts by
selecting a new number of part l′ in this list.

The multilevel method and the Kernighan-Lin type algorithm (KL in the
algorithm 1) used are those of the pMETIS software and are both described in
[KK98a]. The pMETIS software does not refer to the parallel implementation
of METIS, but pMETIS is the name given of the recursive bisection software
implemented in the serial METIS package.

The particularity of the Fusion-Fission algorithm is to find several partitions
of different cardinal numbers. Moreover, for each partition found during the algo-
rithm’s iteration, refinement is a four-step process. The partition is first refined
for a balance of 1.00, then for a balance of 1.01, and after, for balances of 1.03
and 1.05. This four-step refinement process greatly decrease the computation
time of the algorithm. Since the algorithm code is not optimized as much as the
multilevel softwares, its computation time is less relevant than partition quality.

4 Comparison with state-of-the-art graph partitioning

packages

4.1 Benchmarks graphs

The performance of the Fusion-Fission adaptation to multi-way graph partition-
ing is evaluated on a wide range of tests graphs arising in different application
domains. These tests graphs have been chosen among classical benchmarks in
the literature of graph partitioning. Some of these benchmarks have been tested
in some recent papers [BGOM03,SWC04,KcR04,DGK07]. These graphs are both
vertex and edge unweighted. The characteristics of these graphs are described in
table 1.

All of these benchmarks graphs can be downloaded at the University of
Greenwich graph partitioning archive (May 2007):
http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition/

All the experiments in this paper were performed on an Intel Pentium IV 3.0
GHz processor with 1 Go of memory, running a GNU/Linux Debian operating
system.

Algorithm 1 Fusion-Fission

procedure FusionFission(G = (V, E), k, n, pMETIS, KL)
l← k

P ← pMETIS(G,k)
P 0

k ← P = {P1, . . . , Pk}
for t = 1 to n do

choose a new number of parts l′

P t
l = {P1, . . . , Pl}

for j = 1 to l do

V ′

l′ ← pMETIS(Pj, l
′)

V ′ ← V ′ ∪ V ′

l′

end for

make a graph G′ based on the set of parts V ′

P t+1

l′
← pMETIS(G′, l′)

P ′ ← KL(P)
if l′ = k and cut(P ′) < cut(P) then

P ← P ′

end if

end for

return P

end procedure

Table 1. Benchmark graphs characteristics.

Size Degree
Graph name |V | |E| min max avg Description (source)

add20 2395 7462 1 123 6.23 20-bit adder (Motorola)
data 2851 15093 3 17 10.59
3elt 4720 13722 3 9 5.81 2D nodal graph (NASA/RIACS)
uk 4824 6837 1 3 2.83 2D dual graph
add32 4960 9462 1 31 3.82 32-bit adder (Motorola)
bcsstk33 8738 291583 19 140 66.74 3D stiffness matrix (Boeing)
whitaker3 9800 28989 3 8 5.92 2D nodal graph (NASA/RIACS)
crack 10240 30380 3 9 5.93 2D nodal graph
wing nodal 10937 75488 5 28 13.80 3D nodal graph
fe 4elt2 11143 32818 3 12 5.89
vibrobox 12328 165250 8 120 26.81 Sparse matrix
bcsstk29 13992 302748 4 70 43.27 3D stiffness matrix (Boeing)
4elt 15606 45878 3 10 5.88 2D nodal graph (NASA/RIACS)
fe sphere 16386 49152 4 6 6.00
cti 16840 48232 3 6 5.73 3D semi-structured matrix
memplus 17758 54196 1 573 6.10 Memory circuit (Motorola)
cs4 22499 43858 2 4 3.90 3D dual graph
bcsstk30 28924 1007284 3 218 69.65 3D stiffness matrix (Boeing)
bcsstk31 35588 572914 1 188 32.20 3D stiffness matrix (Boeing)
bcsstk32 44609 985046 1 215 44.16 3D stiffness matrix (Boeing)
t60k 60005 89440 2 3 2.98 2D dual graph
wing 62032 121544 2 4 3.92 3D dual graph
brack2 62631 366559 3 32 11.71 3D nodal graph (NASA/RIACS)

4.2 Some graph partitioning packages

The quality of the partitions produced by the Fusion-Fission algorithm is com-
pared with those generated on the same computer by several public domain
graph partitioning softwares:

– The CHACO software [HL95a]. This software includes multilevel and spec-
tral algorithms. Because it is more efficient than the spectral algorithm, only
the multilevel algorithm of CHACO, described in [HL95b], is compared with
Fusion-Fission.

– The JOSTLE software [Wal02]. It is based on a multilevel multi-way parti-
tioning algorithm [WC00].

– The METIS package [KK98b]. This package provides both the pMETIS and
the kMETIS softwares. kMETIS is a direct multi-way partitioning algorithm
[KK98c]. pMETIS uses a recursive bisection algorithm [KK98a].

– The PARTY software [PD98]. This software is is based on a multilevel algo-
rithm and a helpful-sets refinement algorithm [DMP95].

From all of this softwares, two have a balance parameter : JOSTLE and
CHACO (with KL IMBALANCE). The two others found partitions with a vari-
able balance.

4.3 Comparisons between graph partitioning softwares

To be compared with the other algorithms, the Fusion-Fission algorithm has
been limited to 2,000 iterations. Then, its runtime is between one minute and
one hour. This computation time is quite long regarding those of graph partition-
ing packages which is often less than a second. There are some explanations to
this deficiency. The Fusion-Fission algorithm has not been optimized. It makes
four refinement steps instead of one (see section 3). However, the Fusion-Fission
algorithm is not slow in comparison with metaheuristics applied to graph par-
titioning [BGOM03,SWC04] which have a computation time of several hours to
several days.

Tables 2 and 3 present some comparisons between the public graph parti-
tioning packages presented in section 4.2 and the Fusion-Fission algorithm. Four
cardinals numbers have been chosen: k = 2, 4, 8 and 16. CHACO naturally finds
partition perfectly balanced. Its results are compared with those of JOSTLE
and Fusion-Fission for balance = 1.00. pMETIS (labeled pM. in tables 2 and 3)
finds partitions for a balance number of 1.01, thus it is compared with JOSTLE
and Fusion-Fission for this imbalance. kMETIS and PARTY are compared with
JOSTLE and Fusion-Fission for balance = 1.03. When an algorithm do not find
a partition for the given balance, the result is marked not available (N/A in
tables 2 and 3).

In Tables 2 and 3, lines heading “Best” summarize the number of times the
algorithms found the best partition quality over the 23 graphs of this benchmark,
regarding results of the other algorithms for the same balance. Results show that
Fusion-Fission outperforms the other algorithms in all cases except for k = 8 and

k = 16 with a balance of 1.00. In the two last cases, the Fusion-Fission algorithm
does as well as the JOSTLE software. The Fusion-Fission algorithm has not been
constrained to find perfectly balanced partitions even if it tries to do so. Thus,
in a few cases it does not find perfectly balanced partitions. The Fusion-Fission
algorithm is particularly good for the two smallest cardinals numbers, k = 2
and k = 4. It can be noticed that the JOSTLE software does almost as well as
the other softwares, except when it is compared with pMETIS for k = 16 and
balance = 1.03.

5 Conclusion

A new multi-way graph partitioning method has been presented in this paper.
This method named Fusion-Fission is based on a previous work we made to solve
the normalized cut graph partitioning problem [Bic06,Bic07]. The adaptation of
Fusion-Fission to the multi-way graph partitioning problem uses the pMETIS
multilevel algorithm and its Kernighan-Lin refinement algorithm.

This method has been compared with four state-of-the-art graph partitioning
packages: JOSTLE, METIS, CHACO and PARTY. Classical benchmarks have
been used. The partitions searched are of cardinal numbers 2, 4, 8 and 16, with
a balance of 1.00, 1.01 and 1.03. Results show that up to two thirds of time are
the partitions returned by Fusion-Fission of greater quality than those returned
with state-of-the-art graph partitioning packages.

Since Fusion-Fission takes much longer time than state-of-the-art graph par-
titioning packages, it may bee difficult to used it for parallel matrix applications.
However, it can be advantageously be used for fields where run-time is less of a
concern, as VLSI layout or air traffic management problems.

References

[AHK97] Charles J. Alpert, Jen-Hsin Huang, and Andrew B. Kahng. Multilevel
circuit partitioning. In Proceedings of the ACM/IEEE Design Automation
Conference, pages 530–533, 1997.

[BGOM03] R. Baños, C. Gil, J. Ortega, and F.G. Montoya. Multilevel heuristic algo-
rithm for graph partitioning. In Proceedings of the European Workshop on
Evolutionary Computation in Combinatorial Optimization, pages 143–153,
2003.

[Bic06] Charles-Edmond Bichot. A metaheuristic based on fusion and fission for
partitioning problems. In Proceedings of the 20th IEEE International Par-
allel and Distributed Processing Symposium, 2006.

[Bic07] Charles-Edmond Bichot. A new method, the fusion fission, for the relaxed
k-way graph partitioning problem, and comparisons with some multilevel
algorithms. Journal of Mathematical Modeling and Algorithms (JMMA),
6(3):319–344, 2007.

[DGK04] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kullis. Kernel k-means, spec-
tral clustering, and normalized cuts. In Proceedings of the 10th ACM In-
ternational Conference on Knowledge Discovery and Data Mining (KDD),
pages 551–556, 2004.

Table 2. Comparisons between algorithms for cardinals numbers k = 2 and k = 4.

balance = 1.00 balance = 1.01 balance = 1.03
Graph JOSTLE CHACO FF JOSTLE pM. FF JOSTLE kM. PARTY FF

k = 2
add20 734 740 699 729 725 677 721 788 750 666

data 241 279 204 241 218 203 241 244 233 196

3elt 95 92 90 95 108 90 95 129 136 88

uk 33 34 21 28 23 21 25 41 29 19

add32 12 28 11 10 21 10 10 50 23 10

bcsstk33 12621 10224 10175 12616 10205 10175 12409 14655 12071 10069

whitaker3 136 132 127 136 135 126 135 152 132 126

crack 207 209 186 196 187 186 199 278 222 186

wingnodal 1739 1828 1790 1741 1820 1748 1724 2054 1782 1735
fe4elt2 130 130 130 130 130 130 130 143 130 130

vibrobox 11436 10346 11866 11424 12427 11552 11511 18245 11975 11440

bcsstk29 2898 2917 2843 2898 2843 2818 2997 3904 N/A 2818

4elt 151 179 143 151 154 139 157 258 159 138

fesphere 466 422 386 466 440 386 468 568 386 384

cti 347 410 334 342 334 318 342 688 366 318

memplus 6141 6861 5816 6096 6337 5816 6047 6519 7604 5574

cs4 455 421 414 435 414 414 406 613 418 414
bcsstk30 6456 6447 6407 6599 6458 6345 6599 8297 6696 6275

bcsstk31 4044 4020 2805 4060 3638 2718 4191 4950 N/A 2698

bcsstk32 6764 5507 4782 7027 5672 4747 6888 5527 5520 4747

t60k 108 101 100 107 100 83 98 103 93 78

wing 956 952 950 908 950 908 896 1562 927 908
brack2 754 752 738 751 738 714 715 845 947 691

Best 2 2 21 5 2 21 5 0 1 20

k = 4
add20 1238 1357 1292 1229 1292 1211 1255 1387 1281 1202

data 448 433 459 447 480 430 425 505 511 420

3elt 212 219 212 210 231 210 201 265 243 208
uk 69 63 61 67 67 55 67 85 62 51

add32 45 79 36 40 42 33 41 107 62 33

bcsstk33 22130 26191 23066 22293 23131 22652 21590 25493 22445 21853
whitaker3 417 398 406 403 406 397 406 575 399 396

crack 442 479 382 431 382 378 413 589 476 371

wingnodal 4073 3992 3720 4048 4000 3659 4048 4832 N/A 3659

fe4elt2 396 356 359 375 359 351 368 1780 437 351

vibrobox 21761 21087 20282 22156 21471 19940 21844 36206 N/A 19825

bcsstk29 9833 8831 8826 9122 8826 8692 9122 10851 N/A 8523

4elt 498 405 378 485 406 351 434 425 364 342

fesphere 825 868 844 818 872 825 806 1103 819 818
cti 1355 1016 1049 1357 1113 1029 1329 2294 1089 976

memplus 10696 11532 10596 10550 10559 10436 10470 10640 11406 10182

cs4 1194 1132 1154 1177 1154 1102 1162 1599 N/A 1089

bcsstk30 25825 17013 17443 25865 17685 16816 25438 24151 N/A 16767

bcsstk31 10190 10184 8201 10066 8770 7812 10134 15279 N/A 7812

bcsstk32 14890 14946 12205 14887 12205 11340 14887 16215 13333 9924

t60k 240 290 255 229 255 255 242 279 272 227

wing 1922 2161 1937 1840 2086 1937 1824 3454 N/A 1900
brack2 3222 3356 3705 3144 3250 3109 2999 4129 N/A 2935

Best 6 6 12 5 0 19 4 0 0 19

Table 3. Comparisons between algorithms for cardinals numbers k = 8 and k = 16.

balance = 1.00 balance = 1.01 balance = 1.03
Graph JOSTLE CHACO FF JOSTLE pMETIS FF JOSTLE kMETIS PARTY FF

k = 8
add20 1853 1881 1907 1894 1907 1907 1836 2130 2018 1907
data 798 763 842 800 842 758 756 N/A 791 714

3elt 462 393 388 433 388 364 418 527 432 356

uk 114 130 101 104 101 101 106 168 148 101

add32 120 139 N/A 105 81 81 106 351 N/A 72

bcsstk33 36106 41951 40070 36269 40070 35579 35961 44681 39071 34919

whitaker3 716 712 719 710 719 692 706 1047 759 687

crack 809 806 773 779 773 721 751 1047 808 721

wingnodal 6070 6152 6070 6033 6070 6070 5965 8335 6284 5976
fe4elt2 713 651 654 688 654 646 681 801 707 641

vibrobox 30103 33410 28696 31032 28177 26162 30247 43334 N/A 25796

bcsstk29 17391 16887 17534 16742 16555 15181 17234 24525 N/A 15043

4elt 674 701 635 612 635 604 656 827 722 583

fesphere 1351 1337 1330 1280 1330 1302 1274 1643 1277 1294
cti 2257 1886 N/A 2158 2110 2076 2086 3888 2482 2005

memplus 12866 13956 13110 12684 13110 13110 12540 N/A 13119 13110
cs4 1703 1808 1746 1673 1746 1746 1588 2733 1721 1746
bcsstk30 39271 35647 N/A 38746 36357 36357 38228 41052 48539 35668

bcsstk31 15360 17553 16012 17094 16012 14754 19849 20647 N/A 14754

bcsstk32 29281 25810 23601 26655 23601 23601 25343 39817 N/A 23601

t60k 556 593 561 532 561 561 530 1309 581 561
wing 3028 3221 3205 2918 3205 3205 2911 5748 N/A 3205
brack2 8007 8061 7844 8037 7844 7844 7757 10171 N/A 7844
Best 9 6 9 7 5 16 8 0 0 15

k = 16
add20 2555 2269 2504 2532 2504 2504 2565 N/A 2510 2504

data 1299 1279 1309 1299 1370 1278 1263 4857 1475 1224

3elt 645 641 665 621 665 607 603 969 754 598

uk 211 211 N/A 190 189 189 180 384 220 189
add32 269 217 128 239 128 128 180 N/A N/A 128

bcsstk33 59884 61800 59791 61505 59791 58694 57553 123044 61630 58183
whitaker3 1172 1241 1237 1138 1237 1180 1147 1436 1277 1165
crack 1245 1277 1255 1212 1255 1197 1191 2296 1263 1187

wingnodal 9083 9327 9290 9091 9290 8962 8947 10097 9006 8890

fe4elt2 1194 1095 1152 1146 1152 1083 1140 1500 1236 1076

vibrobox 35447 42634 37441 36233 37441 36398 34521 N/A N/A 35809
bcsstk29 28294 26239 N/A 28062 28151 26422 28338 147143 N/A 25417

4elt 1081 1099 1056 1034 1056 1048 1012 5077 1282 1015
fesphere 1918 2061 2030 1759 2030 1952 1741 2495 N/A 1943
cti 3402 3122 3181 3345 3181 3181 3262 4760 N/A 3181

memplus 14510 15654 N/A 15085 14942 14942 13958 15804 14831 14942
cs4 2518 2550 2538 2519 2538 2538 2477 3614 2488 2538
bcsstk30 87824 79046 N/A 87472 77293 77293 81764 93834 N/A 76791

bcsstk31 27897 29364 27180 27954 27180 27180 27388 189562 N/A 27180

bcsstk32 46954 46266 43371 48162 43371 43371 48395 50660 N/A 43371

t60k 977 1027 N/A 969 998 998 984 1347 1097 998
wing 4761 4806 4666 4623 4666 4666 4681 7712 N/A 4666

brack2 13318 13117 12655 13337 12655 12655 13164 150514 N/A 12655

Best 9 7 8 7 9 16 9 0 0 14

[DGK07] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts
without eigenvectors: A multilevel approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2007. To appear.

[DMP95] R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve graph
bisections. In Proceedings of the DIMACS Workshop on Interconnection
Networks and Mapping and Scheduling Parallel Computations, pages 57–
73, 1995.

[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proceedings of 19th ACM/IEEE Design Automation
Conference, pages 175–181, 1982.

[HL95a] Bruce Hendrickson and Robert Leland. The Chaco User’s Guide. Sandia
National Laboratories, 2.0 edition, 1995.

[HL95b] Bruce Hendrickson and Robert W. Leland. A multilevel algorithm for par-
titioning graphs. In Proceedings of Supercomputing, 1995.

[KcR04] Peter Korošec, Jurij Šilc, and Borut Robič. Solving the mesh-partitioning
problem with an ant-colony algorithm. Parallel Computing, 30(5-6):785–
801, 2004.

[KK95] George Karypis and Vipin Kumar. Analysis of multilevel graph partition-
ing. In Proceedings of Supercomputing, 1995.

[KK98a] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal of Scientific Computing,
20(1):359–392, 1998.

[KK98b] George Karypis and Vipin Kumar. Metis : A Software Package for Par-
titioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices. University of Minnesota, 4.0 edi-
tion, sep 1998.

[KK98c] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed Computing, 48(1):96–
129, 1998.

[KL70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. Bell System Technical Journal, 49(2):291–307, 1970.

[PD98] Robert Preis and Ralf Diekmann. The Party Partitioning Library, User
Guide. University of Paderborn, 1.99 edition, oct 1998.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):888–905, 2000.

[ST97] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection?
SIAM Journal on Scientific Computing, 18(5):1436–1445, 1997.

[SWC04] Alan J. Soper, Chris Walshaw, and M. Cross. A combined evolutionary
search and multilevel optimisation approach to graph-partitioning. Journal
of Global Optimization, 29:225–241, 2004.

[Wal02] Chris Walshaw. The serial JOSTLE library user guide. University of Green-
wich, 3.0 edition, jul 2002.

[WC00] Chris Walshaw and M. Cross. Mesh partitioning: A multilevel balancing
and refinement algorithm. SIAM Journal on Scientific Computing, 22:63–
80, 2000.

