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Abstract— In this paper, a new meta-method based on the
physical nuclear process is presented. This meta-method called
Fusion-Fission is applied to the two different class of graph
partitioning problems. This paper presents results found by
this method in comparison with results of classical methods for
an air traffic management problem, an image segmentation
problem and applied to classical benchmarks. All of these
applications of the Fusion-Fission method are successful and
the results found by this method outperform state-of-the-art
graph partitioning packages both on classical benchmarks and
on the air traffic management problem.

I. INTRODUCTION

THIS paper presents a meta-method called Fusion-
Fission in reference to the nuclear process on which

it is based. This method is particularly adapted to the graph
partitioning problem. The Fusion-Fission method is a meta-
method in the meaning that it is a method which has been
build to explore the space of solution in a hopefully efficient
way with the help of an heuristic, ie this method can go out of
some local minima to continue its search. In regard to these
features, this method can also be named a metaheuristic.
However, at this time, this method has not been applied to
other computational problems than graph partitioning.

The published writing show that there is almost two class
of graph partitioning problems. The first one is the ”con-
straint” graph partitioning problem. This class of problem
is those of high performance computing [16], [21], [1],
[12], [15], [28]. The second class is the ”relaxed” graph
partitioning problem and is used in image segmentation [22],
[20], [18], [23], [10], [27], [17], [2], document clustering [6],
[29], [8], [30], air traffic management [3], [4] and many other
subjects.

The Fusion-Fission method was initially designed for the
”relaxed” graph partitioning class of problems and applied
to an air traffic management problem in [3], [4]. This paper
presents the last upgrades of this application of Fusion-
Fission to solve this problem and introduces two new appli-
cations of this method: the first one to image segmentation,
the second to high performance computing (ie. constraint
graph partitioning). In both cases, the application of Fusion-
Fission was successful. The quality of the Fusion-Fission
algorithm for the relaxed class of problems is illustrated by
an image segmentation application and by comparisons with
state-of-the-art graph partitioning algorithms on an air traffic
management problem. And the quality of the Fusion-Fission
algorithm for the constrained class of problems is illustrated
by classical benchmarks. Regarding the state-of-the-art graph
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la Navigation Aérienne, 7 av. Edouard Belin, Toulouse, France; email:
bichot@recherche.enac.fr

partitioning algorithms, the results found by the two Fusion-
Fission algorithms are very good. All of the results presented
in this paper were found using a Debian GNU/Linux Intel
Pentium 3GHz workstation.

The remainder of this paper is organized as follows.
Section II describes the Fusion-Fission meta-method, its
origin and how it works. Then the Fusion-Fission meta-
method is applied to the relaxed graph partitioning problem
in section III. In this section, after a short presentation of the
relaxed graph partitioning problem (III-A) and the Fusion-
Fission application (III-B), the efficiency of the algorithm
is illustrated by two examples, the first is an air traffic
management problem (III-C) and the second is an image
segmentation problem (III-D). In section IV, the Fusion-
Fission meta-method is applied to the constrained graph
partitioning problem. In this section, the constrained graph
partitioning problem is explained (III-A), then the Fusion-
Fission application on this problem is presented (IV-B) and
finally, some comparisons are made with state-of-the-art
partitioning packages on classical benchmarks (IV-C).

II. THE FUSION-FISSION META-METHOD

Like many other meta-methods, the Fusion-Fission method
comes from real life. This method is based on the nuclear
process and particularly the nuclear force and the strong
interaction. The nuclear process is a matter reorganization,
which can create energy, as in a fission reactor, or destroy
energy, as in the fusion process. This energy is based on
the nuclear force or residual strong force, which is the force
between two or more nucleons (protons or neutrons).

Let us consider a matter state with only nucleons in
a plasma of very high temperature which urges nucleons
to create nuclei (an atomic nucleus of an atom is a very
small dense region of nucleons, thus it is the atom without
electrons). Because of the nuclear binding energy, after a long
time, all nucleons are binded together to create iron atoms.
Nuclear binding energy is the energy required to disassemble
a nucleus into separate parts, and it is derived from the
strong nuclear force. At the peak of the nuclear binding
energy curve, iron is the most tightly-bound nucleus. The
iron nucleus is made of 56 nucleons in a range of 2 to 235
for the other nuclei. Because the iron nucleus is very stable,
it is more difficult to split it or to join it with another nuclei,
than it is with the other nuclei.

The nuclear process may be viewed as a matter reorgani-
zation in an optimization process which tends to create atoms
with great binding energy. Our idea is to use this process as
an optimization process. This meta-method is described as
follows:



Let us consider the minimization problem P = (S, f, Ω),
where S is the set of candidates solutions, f is the objective
function which assigns to each candidate solution s ∈ S a
cost value f(s), and Ω is a set of constraints. The goal is
to find a globally optimal solution sopt ∈ S which has a
minimum cost, and satisfies the constraint Ω. In the graph
partitioning problem, S is the set of all possible partitions
of a graph G = (V, E) where V is the set of vertices and
E is the set of edges, and Ω is the constraint of the size
of the parts of the partitions which can be accepted. The
classical way to solve this kind of minimization problem is
to iteratively search or construct among the set of candidates
which satisfy the constraints, S ∩ Ω, the candidate which
minimizes f . The Fusion-Fission operates differently.

Let us consider the set of constraints, Ω = {ω1, . . . , ωn}.
The idea is to find a neighborhood of Ω for which the
computation time and complexity to pass from one neighbor
to another is low. A simple way to do that is to construct
the neighborhood of Ω with the neighborhood of one con-
straint ωi. After the neighborhood of Ω, {Ω1, . . . , Ωk} is
found, the Fusion-Fission process goes iteratively from one
minimization problem (S, f, Ωi), i ∈ {1, . . . , k} to another
(S, f, Ωj), j ∈ {1, . . . , k}. Each minimization problem, Pt

(where t is the current step of the iterative algorithm), is
solved by a local optimization algorithm, which starts with
the solution found by the last minimization problem Pt−1

adapted to the new minimization problem Pt. The idea is
that a good solution in (S, f, Ωi) is nearby a good solution
in (S, f, Ωj). The choice of the next minimization problem
Pt+1 is random, but must be more often to the original
minimization problem (S, f, Ω) than another. The set of
candidate solutions S must be as large as possible to accept
solutions in the entire Ω’s neighborhood.

The similarity with the nuclear process is the following:
If we consider a chaotic nuclear organization of the matter,
nuclei are split and merged all the time in a way that the mat-
ter currently changes its properties. One time, the nuclei are
magnesium, the next time hydrogen if they are totally split,
or Ununoctium, which is one of the biggest atom known, if
nucleons are merged together. At the end of the optimization
process, there is only iron nuclei. During the process, if the
matter changes its properties, the nature of constraints, or the
set of constraints, applied to it changes. This particular vision
of a nuclear reorganization which changes the neighborhood
of constraints applied to it, conducted to create the Fusion-
Fission meta-method.

III. APPLICATION TO RELAXED GRAPH PARTITIONING

The Fusion-Fission method was first designed for the
relaxed graph partitioning problem. Its first application is an
air traffic management problem. First, this section presents
the relaxed graph partitioning problem. Then, the Fusion-
Fission method applied to the relaxed graph partitioning
problem is introduced. Then, two problems are presented
to illustrate the Fusion-Fission efficiency, the first is an air
traffic management problem and the second is an image
segmentation problem.

A. The relaxed graph partitioning problem

The general problem of graph partitioning is to partition
the set of vertices V of a graph G = (V, E), where E is the
set of edges, into several vertex subsets or parts, respecting
constraints, while minimizing an objective function. Depend-
ing on goals, constraints are different.

The relaxed graph partitioning problem consists in parti-
tioning a graph into parts of different sizes which must be in a
range of values (the imbalance constraint), while minimizing
the normalized cut (Ncut) objective function.

Let us describe more formally the relaxed graph partition-
ing problem. Let G = (V, E) be an undirected weighted
graph with a set of vertices V = {Vi, i = 1 . . . n} and a set
of edges E. For all vertices vi in V , let w(vi) be its weight.
For all couple of vertices (i, j) in E, let w(i, j) be its weight.

Given a partitioning of the vertex set V into two subsets
V1 and V2, the cut between them is :

cut (V1, V2) =
∑

i∈V1,j∈V2

w(i, j) (1)

The normalized cut objective function introduced in [23]
is defined as follows :

Ncut (πk) =
∑

i

cut (Vi, V − Vi)
cut (Vi, V )

(2)

Minimizing the normalized cut objective function is equiv-
alent for each part to minimize the edge cut between this
part and the others, and to maximize the sum of the edges
weights between vertices of this part.

The imbalance of a partition πk is the ratio between the
maximum size of a part and the average size of a part. The
Imbalance constraint is defined as follows :

max
Vi∈πk

(∑
v∈Vi

w(v)

)
≤ Imbalance ∗

⌈∑
v∈V

w(v)
k

⌉
(3)

where the function f : x → �x� returns the smallest integer
greater than x.

In relaxed graph partitioning problems, Imbalance is
usually between 1.5 and 3.0. This means that, in a partition,
parts can be of very different sizes.

B. Fusion-Fission application

This paper shortly presents the application of the Fusion-
Fission meta-method to the relaxed graph partitioning prob-
lem. For a detailed presentation, see [4] and [5].

The junction between the Fusion-Fission meta-method and
the relaxed graph partitioning problem is easy to understand
if we consider the nuclear process which is at the origin
of the meta-method. The nuclear process involves nuclei
and nucleons. Nuclei are split and merged by the nuclear
process, and nucleons are going from nuclei to nuclei. A
simple junction between the nuclear process and the graph
partitioning problem is to compare nuclei with subsets of
vertices (or parts) and nucleons with vertices.

The physical nuclear optimization process tends to con-
struct iron nuclei by fusion and fission of nuclei. Similarly,



the Fusion-Fission algorithm iteratively creates partitions of
different number of parts, by fusion and fission of parts. This
partitions are converging towards a partition which minimizes
the normalized cut objective function under the imbalance
constraint.

The Fusion-Fission method consists in repeating a pertur-
bation process to a partition of the graph till a stop condition
is reached. The perturbation process starts with a partition
of the graph and successively applies fusion or fission to the
partition.

A nuclear reaction can only be created in a very high tem-
perature plasma. Thus the Fusion-Fission method includes
a “temperature” which is used to control the process. The
temperature is used to stop the perturbation process after a
chosen number of steps.

In the nature, when a fusion or a fission is done, some
nucleons are ejected by the process. These nucleons join
another nuclei, or make other fissions if they have a very high
energy. The number of ejected nucleons is chosen randomly
according to “rules”. Then some “rules” are defined to eject
randomly in a fusion or in a fission some vertices of its part.
These rules are automatically adjusted during the execution
of the algorithm by a self-learning function. A rule is just a
probability function to eject a certain amount of vertices of
the part. Vertices which lowly connected with vertices of the
same part are ejected first.

The process of fusion consists in merging two parts. The
new part is the contraction of the two former parts minus
the random number of vertices “ejected” by the rule. Then,
these vertices are aggregated to the part with which they are
the most connected.

The process of fission is much more complex. First, like
in the fusion process, some vertices can be “ejected” of the
part. After that, the part is split into two parts with the help of
a graph bisection algorithm. The graph bisection algorithm
which has been chosen is an agglomerative method based
on the percolation process [4]. When the part is split, the
vertices ejected are aggregated to a partition with which they
are highly connected, or they can split other parts in a chained
fission reaction.

Comparing with other graph partitioning methods, one
particularity of the Fusion-Fission method is that it finds
partitions with different number of parts in one run. Thus,
in a Fusion-Fission process partitions number of parts are
confined to a range centered on an average number of parts,
k.

C. Air Traffic Management partitioning

The first application of the Fusion-Fission method to
the relaxed graph partitioning problem was an air traffic
management problem. This problem is a reorganization of
the European airspace partition.

Each air traffic controller supervises a limited space,
called an air traffic sector. Controllers have qualifications
to work only on a set of sectors. These sets are called
functional airspace blocks. The problem consists in cutting
the European airspace into blocks.

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

kmetispmetisjostlegraclusscotchSAFF

2.5

2.0

1.5

1.0

Algorithms

ImbalanceNcut

imbalance value and range

Ncut value and range

Fig. 1. Algorithms Ncut’s average and range results of 100 permutations
of the air traffic management graph

Because “it is well known that controller-controller coordi-
nation is easier and more effective inside an air traffic control
unit (a block) than between air traffic control units” [11],
we search to maximize flows of aircraft inside blocks and
minimize flows of aircraft between blocks. The graph vertices
are air traffic sectors and edges are flows of aircraft between
sectors. The air traffic problem is a relaxed multi-way graph
partitioning problem which minimizes the normalized cut
objective function Ncut. The number of parts of the partition
is the number of functional airspace blocks into which we
want to cut the European airspace.

The Fusion-Fission algorithm presented in subsection III-
B is compared with other state-of-the-art graph partitioning
packages: Scotch [19], Graclus [7], Jostle [26], Metis [14],
[15], and with the simulated annealing meta-method applied
to graph partitioning as it was explained in [13].

A graph has been made from a day of traffic in Europe.
This graph is composed of 762 vertices and 3, 165 edges.
The graph is stored using the Chaco input graph format
also used by the other algorithms. Because we do not have
data of hundred of days of traffic, one hundred new files are
computed from the original graph. To create these files, the
order in which the graph is described in the original graph
file (the indices of vertices) is randomly permuted.

The algorithms are compared on figure 1. The left axis
shows average and range Ncut results of one hundred
permutations of the air traffic management graph file. The al-
gorithms are classified from the best average Ncut results to
the worst. The Fusion-Fission algorithm performs better than
the others, followed by the simulated annealing algorithm.
Because multilevel algorithms are always better than other
methods in graph partitioning, it can be surprising that they
return worse results than the meta-methods. Two reasons can
explain it. The first is that only Scotch and Graclus packages
are designed for the relaxed graph partitioning problem, the
second is that the multilevel methods compute in less than a
second when the meta-method are limited to two minutes.

The right axis of figure 1 shows average and range
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Imbalance results. The line y = 2 is the threshold above
while the imbalances of the partitions are considered too
high regarding air traffic constraints. The simulated annealing
algorithm returns partitions with very high imbalances, and
the Jostle package returns partitions of very different im-
balances. Imbalances of the partitions returned by Jostle and
Metis packages show us that these packages are not designed
for the relaxed graph partitioning problem. To conclude, the
Fusion-Fission algorithm returns the best partitioning results
with an imbalance which is tolerable, and the Scotch package
is the best multilevel algorithm regarding partitions results.

Figure 2 presents a comparison between one run of the
Fusion-Fission algorithm for k = 26 with Graclus and Scotch
results for k ∈ {18, . . . , 31}. Each algorithm results are
presented as rate variation between the algorithm’s Ncut
average and the corresponding Ncut average of Graclus.
The partitions found by the Fusion-Fission algorithm are
better than those of Scotch for k ∈ {22, . . . , 28}. And the
partitions found by the Fusion-Fission algorithm outperforms
the partitions found by Graclus for k ∈ {21, . . . , 29}.

D. Image segmentation

Following the work of Jianbo Shi and Jitendra Malik [23],
the Fusion-Fission algorithm is applied to the perceptual
grouping problem in vision. Therefore, the image segmen-
tation problem is treated as a relaxed graph partitioning
problem which minimizes the Ncut objective function.

One of the approach of image segmentation consists in
converting an image into a graph. This conversion must
follow two different steps.

In the first step, an image is converted into a matrix of
intensity. To simplify, only grayscale images are used in
this paper. Grayscale images intended for visual display are
typically stored with 8 bits per sampled pixel, which allows
256 intensities. Thus pixels are only represented as numbers
between 0 and 255 in the intensity matrix.

Fig. 3. Comparisons between the original image (on the left) and the
segmented image (on the right)

During the second step, a graph is constructed with a
number of vertices equal to the number of pixels of the
image. The edges of this graph are created as follows. An
edge between two vertices exists only if the distance between
the two corresponding vertices in the image is not to long.
The weight of the edges are their intensity similarity balanced
with a distance function:

∀(i, j) ∈ E, w(i, j) = exp
−‖X(i)−X(j)‖2

2
σX ∗ exp

−‖I(i)−I(j)‖2
2

σI

where ‖ X(i) − X(j) ‖2 is the Euclidean distance between
the pixels corresponding to i and j, and ‖ I(i) − I(j) ‖2 is
metric between intensity of pixel i and pixel j, normalized
between 0 and 1. σX and σI are weighting parameters.

The number of parts in which an image should be seg-
mented is subjective. This is illustrated by the Berkeley
Segmentation Dataset1. In this database, some people have
segmented image with no constraint on the number of parts.
For each image, the results show a great diversity of the
number of parts found. In this case, the property of the
Fusion-Fission algorithm which is able to partition a graph
into different numbers of parts in one run helps to find
the most appropriate segmentation of the image. This is
an advantage compared to other algorithms, as the spectral
algorithm used by Jianbo Shi and Jitendra Malik.

Figure 3 presents results between the original image and
the segmented image of three images of the Berkeley Seg-
mentation Dataset. The ostrich image is difficult to segment
and the algorithm returns bad partitions for a number of
parts lower than four. However, the Fusion-Fission algorithm
returns good segmentations for the two other images. The
computation time to find these results is less than a minute.

1www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds



IV. APPLICATION TO CONSTRAINED GRAPH

PARTITIONING

Graph partitioning methods are mainly designed to solve
the “constrained” graph partitioning problem. Then, to show
the efficiency of the Fusion-Fission meta-method it is impor-
tant to compare its application on this problem with state-
of-the-art algorithms.

This section first presents the constrained graph partition-
ing problem. Then the Fusion-Fission method is applied to
the constrained graph partitioning problem. After that, tests
and comparisons on classical benchmarks are presented.

A. The constrained graph partitioning problem

As it is explained in subsection III-A, the general graph
partitioning problem is to partition a graph into several
parts, respecting constraints, while minimizing an objective
function. This subsection uses the notations of subsection
III-A.

The classical graph partitioning problem consists in fixing
the number of parts, finding parts with roughly the same
weights, and minimizing the sum of the weight of the edges
connecting vertices of different parts. In this paper, we name
this problem the “constrained” graph partitioning problem
as opposed to the “relaxed” graph partitioning problem. In
the literature, this problem is named the multi-way or k-way
graph partitioning problem. It is widely used in VLSI design
and parallel computing.

Formally, the k-way graph partitioning problem consists in
finding a partition πk = {V1 . . . Vk} of a graph G = (V, E)
into k parts which respects a hard imbalance constraint and
minimizes the Cut objective function:

Cut (πk) =
∑
i<j

cut (Vi, Vj) (4)

where cut (Vi, Vj) is defined in equation 1.
The imbalance value, Imbalance, of a partition is defined

in equation 3. As opposed to the relaxed graph partitioning
problem, in the constrained problem the imbalance of a
partition is hard, i.e. Imbalance ≤ 1.05. It is known that a
classical way to find a better partition regarding the objective
function, is to increase the imbalance [24]. If Imbalance = 1
then the graph is perfectly balanced, i.e. every part has the
same weight. Else, if Imbalance > 1, the Cut objective
function’s value tends to decrease rapidly. Classical bench-
marks are tested with Imbalance ∈ {1.0; 1.01; 1.03; 1.05}.

Formally, the set of constraints Ω of the k-way graph
partitioning problem is:

• The number of parts of the partition must be k.
•
⋃

i Vi = V .
• ∀i 
= j, Vi ∩ Vj = ∅.
• Each part Vi must respect the imbalance of the equation

(3).

B. Fusion-Fission application

Section II presents the Fusion-Fission meta-method as a
minimization problem subject to constraints. With the nota-
tion of the section II, a neighborhood of the set of constraints

Graph name Card(V ) Card(E) description
add20 2395 7462 20-bit adder
data 2851 15093
3elt 4720 13722 2D nodal graph
uk 4824 6837 2D dual graph
add32 4960 9462 32-bit adder
bcsstk33 8738 291583 3D stiffness matrix
whitaker3 9800 28989 2D nodal graph
crack 10240 30380 2D nodal graph
wing nodal 10937 75488 3D nodal graph
fe 4elt2 11143 32818
vibrobox 12328 165250 Sparse matrix
bcsstk29 13992 302748 3D stiffness matrix
4elt 15606 45878 2D nodal graph
fe sphere 16386 49152
cti 16840 48232 3D semi-struct. matrix
memplus 17758 54196 Memory circuit
cs4 22499 43858 3D dual graph
bcsstk30 28924 1007284 3D stiffness matrix
bcsstk31 35588 572914 3D stiffness matrix
bcsstk32 44609 985046 3D stiffness matrix
t60k 60005 89440 2D dual graph
wing 62032 121544 3D dual graph
brack2 62631 366559 3D nodal graph

TABLE I

DESCRIPTION OF THE 23 TEST GRAPHS

Ω has to be found. A neighborhood of Ω can easily be
constructed by creating a neighborhood of the constraint on
the number of parts of the partition, k. This neighborhood
consists in finding partitions with k ∈ {k − l, . . . , k + l},
where l is an integer. This constraint is chosen because
in some problems, k is not fixed. Then the Fusion-Fission
method is able to find partitions for a wide range of parts
number. This is not possible with classical graph partitioning
methods for which each partition must be computed sepa-
rately.

At each iteration of the Fusion-Fission process, a new
partition πt

p of the graph based on the last partition πt−1
q

has to be created. The old partition πt−1
q has q parts and the

new partition πt
p must have p parts. To create a partition of p

parts, starting with a partition of q parts, the algorithm starts
by splitting each of the q parts of πt−1

q into p parts. The
pMetis package [14] is used to make these new partitions.
The pMetis package is the most popular graph partitioning
package, and we use it because of its efficiency and its
rapidity. Then, with the p∗q parts created, a new partition of
p parts is done by collapsing the parts together. The p∗q parts
are viewed as p∗ q vertices of a new graph. Then the pMetis
package is used to partition this graph into p parts. After a
refinement step which uses a Kernighan-Lin algorithm [16],
[9], the new partition πt

p is computed.

C. Tests on classical Benchmarks

The test graphs have been chosen to be a repre-
sentative sample of medium scale real-life problems.
All of these graphs can be downloaded from the
graph partitioning archive of Chris Walshaw [25] at
http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition. Table I
gives a list of the 23 graphs with their number of vertices,
their number of edges, and a short description. Like most



k Software FF better FF equal FF lower

2 Jostle 22 1 0
pMetis 22 1 0

4 Jostle 23 0 0
pMetis 21 0 2

8
Jostle 20 1 2
pMetis 18 4 1

TABLE II

PRESENTS THE NUMBER OF TIMES THE FUSION-FISSION ALGORITHM

RETURNS PARTITIONS WHICH ARE IN AVERAGE OF THE 20 TESTS,

BETTER, EQUAL OR LOWER IN QUALITY THAN THE JOSTLE OR THE

PMETIS ALGORITHMS

of partitions graph benchmarks, all of this graphs are vertex
and edge unweighted.

The Fusion-Fission algorithm presented in subsection IV-
B is restricted to 1, 000 iteration of the main process.
Thus the maximum computation time is obtained for the
partitioning of bcsstk30 into 8 parts with 2 and half hours
of computation. The minimum computation time is obtained
for the partitioning of add20 into 2 parts with one and half
minute of computation.

To assess the quality of the Fusion-Fission algorithm, its
results are compared with the results returned by two most
popular graph partitioning packages: Jostle [26] and pMetis
[14]. Each graph is stored using the Chaco input graph
format also used by pMetis and Jostle. To present relevant
results, the robustness of each algorithm is tested. For each
graph, the algorithms runs 20 times the same graph presented
differently. Indeed, for each graph file, the order in which the
graph is described in the file is randomly changed to create
20 new graph files.

The average and range of the Cut’s partitions results are
presented in figures 4 to 6. Figures 4, 5 and 6 show the
partitions Cut results into respectively 2, 4 and 8 parts
returned by the Fusion-Fission, the Jostle and the pMetis
algorithms. The results are presented as rate variation with
the pMetis average Cut’s partition results. In the figures, the
lines show average Cut’s partition results of each algorithm,
and the vertical bars show the Cut’s partition ranges returned
by each algorithm.

Results presented in figures 4 to 6 show that the Fusion-
Fission algorithm performs better than the two state-of-the-
art partitioning packages. Table II presents a comparison
between the number of times the Fusion-Fission algorithm
returns partitions which are, in average of the 20 tests, better,
equal or lower in quality than the Jostle or the pMetis
algorithms.

Note that differences in quality tend to decrease as the
number of parts increases. This is partially due to two facts.
The first is, when the number of parts is decreasing, the num-
ber of vertices per part is increasing, and then, the margins
for difference between the partitions cut is increasing. Indeed,
there are fewer configurations of partitions for a great number
of parts, than for a small number of parts. The second is due
to the weakness of our algorithm for a greater number of

parts.
It can be noticed that the Fusion-Fission algorithm is the

most robust algorithm. Indeed, in most of the cases, its Cut’s
value range is lower than the lower bound of the Cut’s value
range of the other algorithms. As it was noticed in subsection
III-C, Jostle is the less robust algorithm.

V. CONCLUSION

This paper presents a new meta-method called Fusion-
Fission. This method is based on the physical nuclear pro-
cess. This new meta-method is applied to the relaxed and
the constrained graph partitioning class of problems. The
relaxed graph partitioning class of problems is illustrated by
an air traffic management problem and an image segmen-
tation problem. The constrained graph partitioning class of
problems is illustrated by some tests on classical benchmarks.
In the two cases, Fusion-Fission results are presented in
comparisons with results returned by state-of-the-art graph
partitioning packages. On these applications, the two Fusion-
Fission algorithms outperforms the other algorithms for the
quality of their results, however their computation times are
quite longer. Since the Fusion-Fission meta-method has been
successfully applied to the graph partitioning problem, other
application areas should be investigated in future works to
extend the application range of this method, and maybe to
propose a new metaheuristic.
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