
Coping with Noisy Search Experiences

Pierre-Antoine Champina,b Peter Briggsb

Maurice Coyleb Barry Smythb

a LIRIS, Université de Lyon, CNRS, UMR5205
Université Claude Bernard Lyon 1

F-69622, Villeurbanne, France
http://liris.cnrs.fr

pchampin@liris.cnrs.fr

b CLARITY: Centre for Sensor Web Technologies
School of Computer Science and Informatics

University College Dublin, Ireland
http://www.clarity-centre.org

{first.last}@ucd.ie

Abstract
The so-called social Web has helped to change the
very nature of the Internet by emphasising the role
of our online experiences as new forms of content
and service knowledge. User-generated content, from
blogs and wikis to ratings and comments, all add
an important layer of experiential knowledge to our
online interactions. In this paper we describe an
approach to improving mainstream Web search by
harnessing the search experiences of groups of like-
minded searchers. We focus on the HeyStaks system
(www.heystaks.com) and look in particular at the ex-
periential knowledge that drives its search recommen-
dations. Specifically we describe how this knowledge
can be noisy, and we describe and evaluate a recom-
mendation technique for coping with this noise and
discuss how it may be incorporated into HeyStaks as
a useful feature.

Experience is the name everyone gives to
their mistakes.

—Oscar Wilde

1. INTRODUCTION
The now familiar social Web reflects an important
change in the nature of the Web and its content. The
arrival of blogs in 1999, as a simple way for users to
express their views and opinions, ushered in this new
era of user-generated content (UGC) as many sites
quickly began to offer a whole host of UGC alter-
natives including the ability to leave comments and

write reviews, as well as the ability to rate or vote
on the comments/opinions of others. The result has
been an evolution of the Web from a repository of
information to a repository of experiences, and an in-
creased emphasis on people rather than content. In
combination with social networking services, this has
precipitated the growth of the social Web as a plat-
form for communication, sharing, recommendation,
and collaboration.

Web search has continued to play a vital role in this
evolving online world and there is no doubting the
success of the mainstream Web search engines as a
key information tool for hundreds of millions of users
everyday. Given the importance of Web search it is
no surprise that researchers continue to look for new
ways to improve upon the mainstream search engine.
However, new tools are also needed to gather, har-
ness, reuse and share, in the most efficient and en-
joyable way, the experiences captured by UGC [4,
15]. One particular line of research has focused on
using recommendation technologies in an effort to
make Web search more personal: by learning about
the preferences and interests of individual searchers,
personalized Web search systems can influence search
results in a manner that better suits the individual
searcher [3, 18]. Recently, another complementary re-
search direction has seen researchers explore the col-
laborative potential of Web search by proposing that
the conventional solitary nature of Web search can
be enhanced in many search scenarios by recognis-
ing and supporting the sharing of search experiences
to facilitate synchronous or asynchronous collabora-
tion among searchers [12, 8]. Indeed, the work of [13,
1] has shown that collaborative Web search can lead
to a more personalized search experience by harness-
ing recommendations from the search experiences of
communities of like-minded searchers.

Our recent work has led to the development of a new
system to support collaborative Web search. This
system is called HeyStaks (www.heystaks.com) and it
benefits from providing a collaborative search experi-

http://liris.cnrs.fr
http://www.clarity-centre.org

ence that is fully integrated with mainstream search
engines such as Google. HeyStaks comes in the form
of a browser toolbar and, as users search as normal,
HeyStaks captures their search experiences and pro-
motes results based on their search experiences and
the experiences of friends, colleagues, and other like-
minded searchers. HeyStaks introduces the key con-
cept of a search stak which serves as a repository
for search experiences. Users can create search staks
to represent their search interests and they can share
their staks with others to create pools of search expe-
riences. At search-time, recommendations are gener-
ated from the user’s staks and presented alongside
mainstream search results. In this way, HeyStaks
harnesses the shared experiences of searchers to de-
liver an improved search experience by working with,
rather than competing against, mainstream search
engines. With HeyStaks, users search as normal but
enjoy the benefits of being able to easily share their
search experiences and the advantages of a new form
of search collaboration.

The key contribution of this paper is to focus on an
important challenge faced by HeyStaks and to pro-
pose a recommendation solution to meet this chal-
lenge. The challenge concerns the basic stak selection
task that searchers must perform before they search:
prior to a search, a HeyStaks user must select an
active stak so that their search experiences can be
correctly stored and so that they can receive appro-
priate recommendations. Many users have built this
into their search workflow and HeyStaks does contain
some simple techniques for automatically switching
to the right search stak at search time. However,
many users forget to choose a stak before they search
and, as a result, search experiences are often mis-
filed in an incorrect stak — usually the searcher’s
default “My Searches” stak, which is not shared with
other users. Ultimately this limits the effectiveness of
HeyStaks and contributes significant experience noise
to search staks.

In what follows we will describe the development of a
stak recommendation technique as part of HeyStaks’
stak maintenance features, which allow stak owners
to review and edit stak content. In brief, our stak
recommender is capable of highlighting potentially
mis-filed experiences and offers the user a suggested
target stak that is expected to provide a better fit.
We will describe an evaluation on real-user search
data to demonstrate the effectiveness of this tech-
nique. First however, we will briefly introduce the
HeyStaks system.

2. HEYSTAKS: AN OVERVIEW
HeyStaks adds two important collaboration features
to any mainstream search engine. First, it allows
users to create search staks as a type of folder for
their search experiences at search time. Staks can be
shared with others so that their own searches will also

be added to the stak. Second, HeyStaks uses staks
to generate recommendations that are added to the
underlying search results that come from the main-
stream search engine. These recommendations are
results that stak members have previously found to
be relevant for similar queries and help the searcher to
discover results that friends or colleagues have found
interesting, results that may otherwise be buried deep
within the engine’s result-list.

In designing HeyStaks, our primary goal is to help
improve upon the search experience offered by main-
stream search engines, while at the same time allow-
ing searchers to continue to use their favourite search
engine. As such, a key component of the HeyStaks
architecture is a browser toolbar that permits tight
integration with search engines such as Google, al-
lowing searchers to search as normal while providing
a more collaborative search experience via targeted
recommendations. In this section we will outline the
basic HeyStaks system architecture and summarize
how result recommendations are made during search.
In addition we will make this discussion more con-
crete by briefly summarizing a worked example of
HeyStaks in action.

2.1 System Architecture
As per Fig. 1, HeyStaks takes the form of two ba-
sic components: a client-side browser toolbar and a
back-end server. The toolbar allows users to create
and share staks and provides a range of ancillary ser-
vices, such as the ability to tag or vote for pages.
The toolbar also captures search result click-thrus
and manages the integration of HeyStaks recommen-
dations with the default result-list. The back-end
server manages the individual stak indexes (indexing
individual pages against query/tag terms and pos-
itive/negative votes), the stak database (stak titles,
members, descriptions, status, etc.), the HeyStaks so-
cial networking service and the recommendation en-
gine. In the following sections we will outline the
basic operation of HeyStaks and then focus on some
of the detail behind the recommendation engine.

To make things more concrete, consider the following
example. Steve, Bill and some friends were planning
a European vacation and they knew that during the
course of their research they would use Web search as
their primary source of information about what to do
and where to visit. Steve created a (private) search
stak called“European Vacation 2008”and shared this
with Bill and friends, encouraging them to use this
stak for their vacation-related searches.

Fig. 2 shows Steve selecting this stak as he embarks
on a new search for “Dublin hotels”, and Fig. 3 shows
the results of this search. The usual Google results
are shown, but in addition HeyStaks has made two
promotions. These were promoted because other mem-
bers of the “European Vacation 2008” stak had re-

Figure 1: The HeyStaks system architecture
and outline recommendation model.

cently found these results to be relevant; perhaps
they selected them for similar queries, or voted for
them, or tagged them with related terms. These rec-
ommendations may have been promoted from much
deeper within the Google result-list, or they may not
even be present in Google’s default results. Other rel-
evant results may also be highlighted by HeyStaks,
but left in their default Google position. In this
way Steve and Bill benefit from promotions that are
based on their previous similar searches. In addi-
tion, HeyStaks can recommend results from Steve
and Bill’s other staks, helping them to benefit from
the search knowledge that other groups and commu-
nities have created.

Separately from the toolbar, HeyStaks users also ben-
efit from the HeyStaks search portal, which provides a
social networking service built around people’s search
histories. For example, Fig. 4 shows the portal page
for the “European Vacation 2008” stak. It presents
an activity feed of recent search history and a query
cloud that makes it easy for the user to find out about
what others have been searching for. The search por-
tal also provides users with a wide range of features
such as stak maintenance (e.g., editing, moving, copy-
ing results in staks and between staks), various search
and filtering tools, and a variety of features to manage
their own search profiles and find new search part-
ners.

2.2 Generating Recommendations
In HeyStaks each search stak (S) serves as a profile of
the search activities of the stak members. Each stak
is made up of a set of result pages (S = {p1, ..., pk})
and each page is anonymously associated with a num-
ber of implicit and explicit interest indicators, includ-
ing the total number of times a result has been se-
lected (sel), the query terms (q1, ..., qn) that led to
its selection, the number of times a result has been
tagged (tag), the terms used to tag it (t1, ..., tm), the

The HeyStaks Toolbar

The Stak-List

Tag, Share, Vote Actions
Create, Share, Remove Staks

Figure 2: Selecting a new active stak.

HeyStaks Promotions

Pop-up tag, share, vote icons

Figure 3: Google search results with HeyStaks
promotions.

Stak Term Cloud

Stak Activity Feed

Figure 4: The HeyStaks search portal pro-
vides direct access to staks and past searches.

votes it has received (v+, v−), and the number of peo-
ple it has been shared with (share).

In this way, each page is associated with a set of
term data (query terms and/or tag terms) and a set
of usage data (the selection, tag, share, and vot-
ing counts). The term data is stored as a Lucene
(lucene.apache.org) index, with each page indexed
under its associated query and tag terms, and pro-
vides the basis for retrieving and ranking promotion
candidates. The usage data provides an additional
source of evidence that can be used to filter results
and to generate a final set of recommendations. At
search time, recommendations are produced in a num-
ber of stages: first, relevant results are retrieved and
ranked from the stak index; next, these promotion
candidates are filtered based on the usage evidence
to eliminate noisy recommendations; and, finally, the
remaining results are added to the Google result-list
according to a set of presentation rules.

Briefly, HeyStaks uses a number of different recom-
mendation rules to determine how and where a pro-
motion should be added. Space restrictions prevent
a detailed account of this component but, for exam-
ple, up to 3 primary promotions are added to the
top of the Google result-list and labelled using the
HeyStaks promotion icons. If a remaining promotion
is also in the default Google result-list then this is
labeled in place. If there are still remaining promo-
tions then these are added to the secondary promo-
tion list, which is sorted according to TF*IDF scores.
These recommendations are then added to the Google
result-list as an optional, expandable list of recom-
mendations. The interested reader can refer to [14]
for more details.

3. STAK RECOMMENDATION
With the current version of HeyStaks the focus is
very much on the recommendation of results during
search. However, in this section we will argue the
need for a second type of recommendation – the rec-
ommendation of staks to users at search time – as a
way to help ensure that the right search experiences
are stored in the right staks.

3.1 The Problem of Stak Noise
One problem faced by HeyStaks, and many other sys-
tems relying on users’ experiential knowledge, is that
of reliably collecting that knowledge. Explicitly re-
questing information from the user is often consid-
ered too intrusive, and discourages many users from
using the system in the first place. On the other
hand, implicitly collecting this information is error
prone because in order to interpret users’ actions in
terms of reusable knowledge, the collection process
must be based on some idealized expectation of user
behaviour.

For example, HeyStaks relies on users selecting an

appropriate stak for their search experiences, prior to
selecting, tagging or voting for pages. Those actions
are therefore considered as evidence that the page is
relevant to the stak currently active in the HeyStaks
toolbar, and to the query, in the case of a selection.
The relevance to the query is not guaranteed, though,
since the page may prove less interesting than its ti-
tle suggested. More important for HeyStaks, the rel-
evance to the selected stak is not guaranteed either,
for it is common occurence that users forget to select
a stak those actions. Many pages are then filed by
default in the users “My Searches” stak, or even in an
unrelated stak. The point is that this limits the qual-
ity of search knowledge contained within the staks,
hence the quality of the recommendations made by
the system.

3.2 Coping with Stak Noise
A solution to the above problem would be for HeyStaks
to automatically select, or at least suggest, the ap-
propriate stak when the user starts a query. This is
a recommendation problem – recommending a stak
– but one that is different from the core recommen-
dation focus, namely the recommendation of search
results. We therefore face two challenges: using a
repository of recommendation knowledge (search ex-
periences) for another purpose than the one it was de-
signed for, and using it despite the significant amount
of noise it contains. Should we succeed, the quality
of the collected experiences will increase thanks to
the stak recommendation, which in turn will itself
be improved: the vicious circle will be reversed to a
virtuous circle.

We envision two different uses of the stak recom-
mender system. The first one, the on-line phase, has
already been described above: at query time, in or-
der to ensure that the selected stak corresponds to the
focus of the user’s search. The second use is an off-
line phase: whenever they want, the owner of a stak
can visit a maintenance page, where the system will
present them with a) pages in that stak which could
be moved or copied to one or several other staks,
and b) pages from other staks which could be moved
or copied to this stak. Though the off-line phase is
more intrusive, we believe that stak owners will have
an incentive to improve the quality of their staks,
especially after experiencing the benefit of relevant
recommendations from HeyStaks. In the rest of this
paper, we will focus on the off-line phase.

4. NOISE-ROBUST CLASSIFIER
We consider the off-line stak recommendation prob-
lem as a classification problem: our goal is to train
a classifier to find the “correct” stak for each page
stored in the HeyStaks repository. More precisely,
the recommender system will use this classifier to find
the three most likely staks for each page, and submit
them to the stak owner for validation. The problem
is of course to correctly train that classifier despite

the noise in the available data.

In the following, we will represent the search experi-
ence stored in each stak S as a hit matrix hS where
hS

ij is the number of times that term tj has been re-
lated to page pi, either as a query term or a tag. Since
we use pseudo-terms to represent votes, this matrix
captures in a synthetic way all the term and usage
data used by HeyStaks. Each line hS

i of the hit ma-
trix, the hit vector of page pi, is how that page will
be represented in our classifier.

4.1 Assessing Relevance with Popularity
An immediate approach to assess the relevance of a
page or a term to a particular stak is to consider its
popularity, pop, measured as the total number of hits
accounted for by this page or term in the stak’s hit
matrix hS :

pop(pi)=̇
P

j hS
ij pop(tj)=̇

P
i hS

ij

The rationale is that a page or a term may be added
to a stak once or twice by accident, but if it has been
repeatedly selected for that stak, it is probably rel-
evant to it. The problem with these two measures,
though, is that they are independent of each other.
We would also like to take into account the fact that
a page may benefit from the popularity of the terms
for which it was selected: hence, we propose a sec-
ond measure of popularity, pop2, for pages, defined
as follows:

pop2(pi)=̇
P

j pop(tj)× hS
ij

This is illustrated by Fig. 5, which shows that a page
like p1 with a high number of hits will always be
popular, but a set of pages sharing the same terms
will also be popular, even if each one of them has a
low number of hits (see p2, p3, p4).

Figure 5: Popularity measure pop2 illustrated.

We now want to normalize this popularity measure:
first, by bringing it between 0 and 1, then by cen-

tering the mean popularity to 0.5. This gives us the
normalized popularity np, which is comparable across
staks, regardless of the span or skew of the popularity
distribution. The normalized popularity is computed
as follows:

np(pi)=̇(pop2(pi)
maxj pop2(pj)

)
log 0.5

log meankpop2(pk)

In order to evaluate the validity of our popularity
measure as a predictor of page relevance, we per-
formed a small user evaluation. For each of the 20
staks of our test set, we picked the 15 most popular
pages and the 15 least popular pages. We presented
them to the stak owner in a random order, and asked
them if each page was relevant or not to that stak.

The results of this evaluations are shown in Fig. 6.
We see that pages with a high popularity are al-
most always considered relevant by users. Unpopular
pages, on the other hand, are uncertain: about half
of them are relevant, while the other half are not.
This is not a big surprise since our popularity mea-
sure relies on the number of times a page has been
selected; an unpopular page may be relevant but too
recent to have become popular yet. We can, however,
safely assume that the noisy experience is located in
the unpopular part of our experience repositories.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

n
u
m

b
e

r
o

f
d

o
c
u

m
e

n
ts

popularity

Irelevant
I don't know

Relevant

Figure 6: Poll results.

4.2 A Weighted Stak Classifier
Confident in our popularity measure, we have decided
to use it for training our classifier. The popularity
measure can be used to weight the training instances,
so that the classifier learns more from popular pages
(more likely to be reliable) than from less popular
ones. This weighting is also used to compute the
accuracy of the classifier: indeed, the fact that the
classifier disagrees with the experience repository for
a page with a low weight (i.e. considered unreliable)
should not have the same importance as a disagree-
ment on a highly weighted (hence reliable) page. The

weighted accuracy that we use is then computed by
dividing the sum of the weights of the“correctly”clas-
sified2 pages by the sum of the weights of all the
pages.

Our first training set comprises all pages from the
20 largest shared staks in HeyStaks. Each instance
represents a page pi from a stak S by its hit vector hS

i ,
its class is the stak identifier, and its weight is np(pi).
We use three classifiers: a ZeroR random classifier
(always predicting the more frequent class), a J48
decision tree [11] and a naive bayesian classifier. We
tested those three classifiers with a standard 10-fold
cross-validation. The resulting weighted accuracies
are 17%, 74% and 66% respectively.

These first results were encouraging. However, we
wanted to measure the benefit of weighting the train-
ing instance with our popularity measure. We did
the same test, but with unweighted instances. The
results are only marginally worse: 17%, 73% and 64%
respectively. We then trained the classifiers with
boolean vectors instead of hit vectors (i.e. replac-
ing any non-null number of hits by 1), thus remov-
ing even more information about the popularity (np
is computed using the number of hits). The results
are still very similar (and even slightly better for the
NaiveBayes), as shown on Fig. 7.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

J48 NaiveBayes ZeroR

w
e

ig
h

te
d

 a
c
c
u

ra
c
y

weighted
unweighted

boolean unweighted

Figure 7: The weighted accuracy is only
slightly influenced by the use of popularity in
the training set.

This surprising result may be explained by consider-
ing how the accuracy varies for pages with different
weights. This is shown in Fig. 8, where each point
represents the accuracy of the classifiers (trained with
unweighted boolean vectors) when considering only
their results for pages with a minimum np. We see
that both the J48 and NaiveBayes are better at clas-

2Where “correctly” actually means “in agreement
with the available data”, which is known to be par-
tially inaccurate.

sifying popular pages, and that this is not a bias in
the data, since the random classifier does not share
this property3. We suggest that there is a correlation
between popularity and purely structural similarity,
which may account for the fact that weighting the
instances does not significantly improve the accuracy
– since this is information that the classifiers learn
anyway.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w
e

ig
h

te
d

 a
c
c
u

ra
c
y

minimum normalized popularity

J48
NaiveBayes

ZeroR

Figure 8: J48 and NaiveBayes classifiers are
better at classifying popular pages.

4.3 Stak Kernels
Another interesting thing that Fig. 8 teaches us is
that the evolution of the accuracy is not linear. It first
stagnates until around 0.3, then increases steadily un-
til around 0.6, then stabilizes again. This seems to
indicate that 0.6 is a threshold below which pages
are harder to predict, hence presumably also harder
to learn. Since we already know from our user evalu-
ation that pages above this threshold are highly reli-
able, we might expect to improve the accuracy of the
classifier by training it only with them. We call this
subset of reliable pages in each stak the stak kernel.

We compared the accuracy (computed with 10-fold
cross-validation) of kernel-trained classifiers (using un-
weighted boolean vectors) with some of our previous
classifiers, trained with the whole set of pages. More
precisely, we compared it with the less informed (i.e.
using unweighted boolean vectors) and the most in-
formed one (i.e. using weighted hit vectors). Note
that we considered the accuracy on pages with np
> 0.6, even for the whole-trained classifier, for the
comparison to be fair.

3As a matter of fact, the random classifier performs
worse when considering only popular pages. This in-
dicates that the popular pages are not distributed
within staks like other pages, or conversely, that the
distribution of popularity is not the same in all staks.
This should be investigated as an indicator of stak
“maturity”.

The results are reported in Fig. 9. We see that Naive-
Bayes is significantly better when kernel-trained. The
outcome is not as definitive with J48, where the kernel-
trained classifier is essentially equivalent to the most
informed whole-trained classifier. Our intuition here
is that J48 manages to learn from the unpopular
relevant pages. The loss of those pages, in kernel-
training, is not compensated by the lowering of the
noise. This is not the case for NaiveBayes, how-
ever. Although this difference needs to be investi-
gated, the fact that NaiveBayes outperforms, when
kernel-trained, all of our previous classifiers (includ-
ing J48) makes us confident in the value of kernel
training.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

J48 NaiveBayes ZeroR

w
e

ig
h

te
d

 a
c
c
u

ra
c
y
 f

o
r

n
p

 >
 0

.6

whole-trained, unweighted boolean vectors
whole-trained, weighted hit vectors

kernel-trained, unweighted boolean vectors

Figure 9: Comparing kernel- and whole-
trained classifiers

4.4 Off-line Stak Recommendation
The accuracy of the kernel-trained NaiveBayes classi-
fier makes it the best candidate for implementing the
off-line phase of our stak recommendation system,
as described in Section 3. In this phase, unpopular
pages will be presented to the stak owner along with
the three most likely staks according to the classifier.
It is worth noting that in the cross-validation test,
the correct stak is present in the top three guesses in
97% of the cases, which makes us very confident in
the relevance of this phase for stak owners.

Furthermore, assigning a page to a stak during the
maintenance phase is an explicit indication from the
user that this page is relevant to the stak, unlike the
implicit actions mainly used by HeyStaks to fill its
experience repository. Such pages can then be con-
sidered as part of the stak kernel, regardless of their
popularity – recall that unpopular pages are still rel-
evant in 50% of the cases, according to our user eval-
uation. This may in turn improve the quality of the
classifier, reversing the vicious circle introduced in
Section 3.

5. DISCUSSION
In this paper, we have focused on one kind of noise
that we call mis-interpretation: experience is incor-
rectly filed, mostly because it is implicitly collected
and because the user’s behaviour is not always con-
sistent with the idealized behaviour on which the col-
lection process is based. This problem has long been
studied in the case-based reasoning literature [16, 17],
where experience is also collected in a more or less
implicit way. With case-base maintenance, however,
existing techniques are usually designed to manage
case bases with relatively low amounts of noise and
work best when relying on an objective measure of
when a case can be used to correctly solve some tar-
get problem. The same kind of approach, applied
to recommender systems, is used by [10], using the
predictions of the system itself as a measure of like-
lihood. Hence, it relies on a “pristine” system, not
yet polluted by noisy data. [9], on the other hand,
introduce a notion of trust to cope with noisy data
(associated in this case with untrustworthy users).

Another kind of noise is malicious noise: unscrupu-
lous users try to lure the system into recommending
items for their own benefit [6]. Our notion of popu-
larity is vulnerable to this kind of attack because hits
in HeyStaks are anonymous: the popularity of a page
can not be traced back to the (potentially malicious)
users who selected it. It would seem safer to limit
the influence of an individual user on the popularity
of each page (even more in the standard workflow of
HeyStaks where pages, not staks, are recommended).

A third kind of noise is opinion drift. Over time,
people may change their mind about their experi-
ences [5, 7]. Furthermore, in HeyStaks, once-relevant
pages may become outdated, or be modified in a way
that makes them less relevant. The problem with our
popularity measure is that, once it has become popu-
lar, a page will be considered relevant for ever. This
can easily be changed though, by applying ageing to
our measure: the popularity of a page fades out as
its last selection becomes older.

We have shown that our kernel-trained classifier can
be used to implement the off-line stak recommender
system described in Section 3. The problem in the
case of the online phase, on the other hand, is that we
have to deal with queries rather than full term vec-
tors. A query is similar to a term vector describing a
page, but is a boolean vector (no number of hits, each
term is either present or absent), and much sparser
(vectors describing pages in HeyStaks combine all the
queries used to select the page). By training our clas-
sifier with boolean vectors rather than hit vectors,
we solved the first part of the problem. However,
we need to perform more tests to determine how the
classifier deals with sparsity, a common problem for
recommender systems [2].

6. CONCLUSION
As the Web evolves to accommodate experiences as
well as pure content it will become increasingly im-
portant to develop systems and services that help
users to manage and harness their online experiences
and those of others. In this paper we have focused on
experience management in Web search by describing
a case-study using the HeyStaks social search engine.
HeyStaks is a browser toolbar that works with main-
stream search engines such as Google and that allows
users to create and share repositories of search expe-
riences (search staks) which then act as a source of
search result recommendation.

The main contribution of this work has focused on
the nature of the search experiences that HeyStaks
harnesses. We have argued that these experiences
can be noisy and that this limits the effectiveness of
its search recommendations. As a solution we have
argued the need for a new form of recommender sys-
tem which is designed to recommend search staks in-
stead of search pages and we have argued that such
a recommender can play a key role in supporting
stak maintenance and selection. We have described
a technique for identifying so-called stak kernels, as
the non-noisy essence of stak knowledge – and de-
scribed and evaluated a classification-based approach
to stak recommendation that harnesses these kernels
to make accurate stak recommendations. We are now
considering using one such classifier to implement the
actual recommending system in HeyStaks, in order to
improve its stak selection mechanism.

Acknowledgement
Based on works supported by Science Foundation Ire-
land, Grant No. 07/CE/I1147, the French National
Center for Scientific Research (CNRS), and HeyStaks
Technologies Ltd.

7. REFERENCES
[1] P. Briggs and B. Smyth. Provenance, trust, and

sharing in peer-to-peer case-based web search.
In ECCBR, pages 89–103, 2008.

[2] R. Burke. Hybrid recommender systems:
Survey and experiments. User Modeling and
User-Adapted Interaction, 12(4):331–370, 2002.

[3] P. A. Chirita, W. Nejdl, R. Paiu, and
C. Kohlschütter. Using odp metadata to
personalize search. In SIGIR ’05: Proceedings
of the 28th annual international ACM SIGIR
conference on Research and development in
information retrieval, pages 178–185, New
York, NY, USA, 2005. ACM.

[4] A. Cordier, B. Mascret, and A. Mille.
Extending Case-Based reasoning with traces. In
Grand Challenges for reasoning from
experiences, Workshop at IJCAI’09, July 2009.

[5] I. Koychev and I. Schwab. Adaptation to
drifting user’s interests. In Proceedings of
ECML2000 Workshop: Machine Learning in

New Information Age, pages 39–46, 2000.

[6] S. K. Lam and J. Riedl. Shilling recommender
systems for fun and profit. In Proceedings of the
13th international conference on World Wide
Web, pages 393–402, New York, NY, USA,
2004. ACM.

[7] S. Ma, X. Li, Y. Ding, M. E. Orlowska,
B. Benatallah, F. Casati, D. Georgakopoulos,
C. Bartolini, W. Sadiq, and C. Godart. A
recommender system with Interest-Drifting.
LECTURE NOTES IN COMPUTER
SCIENCE, 4831:633, 2007.

[8] M. R. Morris. A survey of collaborative web
search practices. In CHI, pages 1657–1660,
2008.

[9] J. O’Donovan and B. Smyth. Trust in
recommender systems. In Proceedings of the
10th international conference on Intelligent
user interfaces, pages 167–174, San Diego,
California, USA, 2005. ACM.

[10] M. P. O’Mahony, N. J. Hurley, and G. C.
Silvestre. Detecting noise in recommender
system databases. In Proceedings of the 11th
international conference on Intelligent user
interfaces, pages 109–115, Sydney, Australia,
2006. ACM.

[11] J. R. Quinlan. C4. 5: programs for machine
learning. Morgan Kaufmann, 1993.

[12] M. C. Reddy and P. R. Spence. Collaborative
information seeking: A field study of a
multidisciplinary patient care team. Inf.
Process. Manage., 44(1):242–255, 2008.

[13] B. Smyth. A community-based approach to
personalizing web search. IEEE Computer,
40(8):42–50, 2007.

[14] B. Smyth, P. Briggs, M. Coyle, and
M. O’Mahony. Google? shared! a case-study in
social web search. In Proceedings of the 1st and
17th International Conference on User
Modeling, Adaptation and Personalization
(UMAP ’09), Trento, Italy, 2009. Springer.

[15] B. Smyth and P. Champin. The experience
web: A Case-Based reasoning perspective. In
Grand Challenges for reasoning from
experiences, Workshop at IJCAI’09, July 2009.

[16] B. Smyth and M. T. Keane. Remembering to
forget: A Competence-Preserving case deletion
policy for Case-Based reasoning systems. In
IJCAI, pages 377–383, 1995. Best paper award.

[17] B. Smyth and E. McKenna. Competence
models and the maintenance problem.
Computational Intelligence, 17(2):235–249,
2001.

[18] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and
Z. Chen. Cubesvd: a novel approach to
personalized web search. In WWW ’05:
Proceedings of the 14th international conference
on World Wide Web, pages 382–390, New
York, NY, USA, 2005. ACM Press.

	Introduction
	HeyStaks: an overview
	System Architecture
	Generating Recommendations

	Stak recommendation
	The Problem of Stak Noise
	Coping with Stak Noise

	Noise-Robust Classifier
	Assessing Relevance with Popularity
	A Weighted Stak Classifier
	Stak Kernels
	Off-line Stak Recommendation

	Discussion
	Conclusion
	References

