
SoCQ: a Pervasive Environment Management System

Yann Gripay

Université de Lyon, INSA-Lyon,
LIRIS – UMR 5205 CNRS

F-69621 Villeurbanne, France
yann.gripay@liris.cnrs.fr

Frédérique Laforest

Université de Lyon, INSA-Lyon,
LIRIS – UMR 5205 CNRS

F-69621 Villeurbanne, France
frederique.laforest@liris.cnrs.fr

Jean-Marc Petit

Université de Lyon, INSA-Lyon,
LIRIS – UMR 5205 CNRS

F-69621 Villeurbanne, France
jean-marc.petit@liris.cnrs.fr

RESUME
Les systèmes pervasifs donnent un aperçu de ce que seront
les environnements digitaux du futur. SoCQ prend une
perspective orientée données de l’environnement pervasif
par l’intermédiaire d’une vue unifiée des données et ser-
vices disponibles. Il est alors possible de créer des ap-
plications pervasives de manière déclarative en utilisant
des requêtes continues orientées services. Nous traitons
des problématiques suivantes: 1) une représentation ho-
mogène de données et de services de l’environnement,
2) un langage de requêtes sur un environnement per-
vasif, 3) un système de gestion de l’environnement per-
vasif (PEMS). Cette démonstration présente notre pro-
totype en action, permettant à l’utilisateur de visualiser
l’environnement et de définir des applications pervasives.

MOTS CLES : Systèmes pervasifs, requêtes continues,
services.

ABSTRACT
Pervasive systems give an overview of what digital en-
vironments should look like in the future. SoCQ takes
a data-oriented perspective on the pervasive environment
through a unified view of available data and services. Per-
vasive applications can then be created in a declarative
fashion using service-oriented continuous queries. We
tackle the following challenges: 1) a homogeneous repre-
sentation for data sources and services from the pervasive
environment, 2) a query language over pervasive environ-
ments, 3) a Pervasive Environment Management System
(PEMS). This demonstration shows our PEMS prototype
in action, allowing the user to visualize the environment
and define pervasive applications.

CATEGORIES AND SUBJECT DESCRIPTORS: C.2.4
Distributed systems, H.2.4. Systems for database man-
agement.

GENERAL TERMS: Design, Experimentation.

KEYWORDS: Pervasive systems, continuous queries,
services.

MOTIVATION
Our daily computing environment is composed of more
and more heterogeneous computing devices [6], each one
having a specific role. Alongside with personal computers
and other handheld devices, sensors and actuators, be they
physical or logical, are distributed in our environment and
can provide to us useful data, transform raw data into more
informative data, or perform some actions on the environ-
ment [1, 7]. Such an environment is full of functionalities,
but a user may be lost and not able to comprehend and op-
timally use all available data sources and services the en-
vironment can provide. Furthermore, applications are not
easy to develop and maintain because of the heterogeneity
and the dynamicity of the environment. Typically, low-
level technical code using programming languages (Java,
C#...) and network protocols (JMX, UPnP...) has to be
devised to come up with some pervasive applications.

The Service-oriented Continuous Query project, or SoCQ
project 1, is devoted to making the development of per-
vasive applications easier through database principles. It
aims at contributing in the area of Dataspaces [2, 5]
through a unified view of data and service spaces manda-
tory in pervasive environments. We propose an ap-
proach [3, 4] to homogeneously represent such perva-
sive environments through database principles. The ba-
sic idea is to present to application developers a database-
like view of the environment resources, so that they can
visualize this environment as a set of tables and launch
declaratively-defined continuous queries involving avail-
able data sources and services. This approach is built on
an extension of the relational model and use a SQL-like
query language.

We call PEMS, for Pervasive Environment Management
System, a system that manages an environment contain-
ing data relations, data streams and services. Through this
homogeneous relational representation, the different op-
erations of the PEMS (resource discovery, service invoca-

1http://socq.liris.cnrs.fr

http://socq.liris.cnrs.fr

Network

Local Environment
Resource Manager

PEMS Core

PEMS Client

Service

Local Environment
Resource Manager

Service

Service

Query Processor

Extended Table
Manager

Environment
Resource Manager

PEMS GUI

Database

Stream

Stream

Figure 1 : Overview of a PEMS Environment

tions) can be translated into operations on tables (updat-
ing tables, retrieving values of virtual attributes, combin-
ing tables, etc.). Pervasive applications can then be ex-
pressed using declarative one-shot or continuous queries,
and query optimization techniques can be applied to opti-
mize the execution of those applications.

DEMONSTRATION OVERVIEW
In the demo scenario, we monitor temperatures in an of-
fice building: when a temperature exceeds some threshold
in a room, an alert message is sent to the manager of this
room. A photo of the room can be joined to the message.
We simulate an environment containing the following data
sources and services: 1) two data relations: information
about the rooms (manager, temperature threshold. . .), list
of contacts (including contacts for the managers), 2) tem-
perature sensors distributed in several rooms, providing
data streams, 3) cameras in the rooms, providing photo
services, 4) messenger services (mail, instant message,
SMS).

This environment can be represented homogeneously with
relations and streams extended with virtual attributes and
binding patterns [3, 4]. Virtual attributes are attributes that
do not have a value and may be provided a value through a
query, due to binding patterns that indicate their relation-
ship with methods from services. We call such relations
XD-Relations, standing for eXtended Dynamic Relations,
and such environments relational pervasive environments.
For the demo scenario, we can view a DDL representation
of the schema of this environment in Table 1.

With such environments, the use of distributed function-
alities provided by services is declaratively specified in
SQL-like queries by the virtual attributes that need to be
realized, i.e. that need to be provided a value. In order
to realize those attributes, the corresponding binding pat-
terns are invoked for every involved tuples, and results in
different service invocations. We call these queries SoCQ,
for Service-oriented Continuous Queries.

Over this environment, different SoCQ queries can be
launched. The temperature monitoring can be declar-

Table 1 : DDL description of XD-Relations for the en-
vironment of the demo scenario

RELATION surveillance (
area STRING,
manager STRING,
threshold REAL,
alertMessage STRING

);

RELATION employees (
name STRING,
address STRING,
messenger SERVICE,
text STRING VIRTUAL,
sent BOOLEAN VIRTUAL

)
USING BINDING PATTERNS (
sendMessage[messenger] (address, text) : (sent)

);

RELATION cameras (
camera SERVICE,
area STRING,
photo BINARY VIRTUAL

)
USING BINDING PATTERNS (
takePhoto[camera] () : (photo)

);

STREAM temperatures (
area STRING,
temperature REAL

);

Table 2 : A query of the demo scenario
SELECT surveillance.area, surveillance.manager, employees.sent
FROM temperatures [now], employees, surveillance
WHERE surveillance.manager = employees.name
AND surveillance.area = temperatures.area
AND surveillance.threshold < temperatures.temperature
AND employees.text IS surveillance.alertMessage

USING sendMessage

atively defined as a continuous query. The three XD-
Relations are joined (the stream “temperature” must be
windowed) on the manager name and the area, the thresh-
old is checked and the message body is set. The binding
pattern “sendMessage” will be invoked in order to fetch a
value for the initially virtual attribute “sent”. The SQL-
like query in Table 2 is a typical example of a pervasive
application that is defined at the declarative level, without
worrying about low-level technical considerations (pro-
gramming languages, network protocols).

The role of a PEMS is to manage a relational pervasive
environment, with its dynamic data sources and set of ser-
vices, along with the execution of the continuous queries
over this environment. In the following sections, we first
sketch the data model that supports XD-Relations, and the
algebra that enables SoCQ queries. We then detail the
demonstration scenario.

MODELING OF PERVASIVE ENVIRONMENTS
Our model, based on the relational model, is built on the
following notions: prototypes, services and extended re-
lations with virtual attributes and binding patterns [3, 4].
Distributed functionalities can be represented as services
implementing prototypes. For example, a webcam and
an IP camera are two services from the environment that
implement a prototype takePhoto():(photo) that
takes zero input attribute and provides one output attribute
photo; a mail server, an instant messaging server and a
SMS gateway are three services that implement a proto-

type sendMessage(text,address):(sent) that
takes two input attributes text and address and pro-
vides one output attribute sent. Invoking a prototype on
a service realizes the implied actions, like taking a photo
for a camera and sending a message to the given address
for the mail server.

Prototypes can be integrated into data relations schemas
through virtual attributes and binding patterns. Virtual at-
tributes are attributes from the relation schema that do not
have a value at the tuple level. They represent input and
output attributes of prototypes. A binding pattern is asso-
ciated with a relation schema and specifies one non-virtual
attribute from the relation schema that is the service ref-
erence, the prototype and which attributes are linked with
the prototype input and output attributes. For example, the
employees relation in Table 1 is associated with one
binding pattern that uses the prototype sendMessage,
the service reference attribute messenger and that links
the attributes address and text with the prototype in-
put attributes, and the attribute sent with the prototype
output attribute. Output attribute should be virtual at-
tributes, whereas input attributes can also be real (i.e. ,
non-virtual) attributes, like the attribute address in this
example.

We call such relations, X-Relations, standing for eX-
tended Relations. Virtual attributes represent possible in-
teractions with services: when a query needs the virtual
attribute sent, a value is required for the virtual attribute
text due to the binding pattern (the attribute address
being real), and it implies an invocation of the prototype
sendMessage. The required value should be provided
by the query itself. The services on which the prototype is
invoked are defined by the value of the service reference
attribute (here, attribute messenger), at the tuple level.

In the following table, an example of content for the
X-Relation employees is presented. The constants
“mailer” and “jabber” are two service references, the for-
mer for the mail server, the latter for the instant messaging
server. The star (*) symbol reminds that virtual attributes
have no value.

name address messenger text sent
nicolas nicolas@elysee.fr mailer * *
carla carla@elysee.fr mailer * *

francois francois@im.gouv.fr jabber * *

Pervasive environments being dynamic, data sources may
include streaming data. We extend our model to integrate
data sources like data streams. We call XD-Relations,
for eXtended Dynamic Relations, X-Relations that are
time-dependent: XD-Relations can be either finite (rela-
tions where tuples can be inserted and deleted) or infinite
(append-only relations, i.e. data streams). An environment
represented by a set of XD-Relations is defined as a rela-
tional pervasive environment.

SERVICE-ORIENTED CONTINUOUS QUERIES
Queries over relational pervasive environments allow to
define interactions between dynamic data sources and ser-
vices, i.e. pervasive applications. Such queries are defined
to be continuous queries, i.e. queries that are executed
continuously to maintain their results up-to-date, like in
the demo scenario. They are called Service-oriented Con-
tinuous Queries, or SoCQ queries. However, some queries
may be snapshot queries, i.e. queries executed once that
produce their results and do not maintain them, like stan-
dard SQL queries in DBMS.

SoCQ queries are based on the Serena algebra [4] (Service-
enabled relational algebra) that defines query operators
over XD-Relations. Standard relational operators are re-
defined over finite XD-Relations, and new operators are
defined. Realization operators handles the transformation
of virtual attributes either by providing them a value (a
constant or the value of another attribute) or by invok-
ing a binding pattern. Window operators and streaming
operators handles infinite XD-Relations: window opera-
tors transform an infinite XD-Relations into a finite XD-
Relations (e.g. a relation that contains the tuples inserted
during the last 5 minutes into the stream operand), and
streaming operators transform finite XD-Relations into in-
finite XD-Relations (e.g. a stream of the tuple inserted into
the relation operand).

A SQL-like query language has been defined to declara-
tively express SoCQ query. For example, for the demo
scenario, the query in Table 2 involves several opera-
tors: windows (the [now] is a window of size 1 ap-
plied on the stream temperatures), selections, joins,
realizations, streaming. This query produces a stream of
alerts (when a threshold is exceeded) while invoking the
sendMessage prototype when needed (to send message
to area managers).

IMPLEMENTATION OF PEMS
The PEMS core (see Figure 1) is composed of three mod-
ules. A global resource manager handles service discov-
ery and remote invocations, with local resource managers
as distributed proxies for local devices that provide ser-
vices. An extended table manager builds a homogeneous
representation of non-conventional data sources, and the
query processor allows to define, optimize and execute
Service-oriented Continuous Queries.

The PEMS prototype is developed in the Java/OSGi frame-
work 2. Each module of the PEMS is an OSGi bundle and
communicates with each other through the OSGi service
lifecycle management. The chosen network protocol for
service discovery and remote invocations is UPnP 3: the
prototype uses the dedicated standard OSGi bundles for
this protocol.

2http://www.osgi.org
3http://www.upnp.org

http://www.osgi.org
http://www.upnp.org

The PEMS GUI is also developed in the Java/OSGi frame-
work, as an Eclipse RCP Plugin, i.e. the GUI is inte-
grated in the Eclipse platform. It communicates remotely
with the PEMS core through a JMX interface. It enables
to visualize existing XD-Relations and their content, to
add/alter/delete XD-Relations, and to launch/stop SoCQ
queries.

DEMONSTRATION SCENARIO
The demonstration platform is a functional PEMS and
a “pervasive” environment that provides services and
data streams mentioned in this paper. A first PC is
used to host the PEMS and to interact with it through
its GUI. Two other PCs are used to host different ser-
vices and devices: physical or simulated temperature sen-
sors (Thermochronr iButtonr DS1921), webcams (from
Logitechr), instant messaging server (Openfire server
from Jive Softwarer), (gateway to) SMS gateway (com-
mercial service from Clickatell), (gateway to) mail server.
Two handheld devices (1 PDA, 1 SmartPhone) are also
used to host instant messaging client.

A PEMS environment configuration, i.e. data sets and
SoCQ queries, is provided to demonstrate the scenario
mentioned in the paper. This environment configuration
can be modified, resetted and reloaded when needed.

A demo visitor interacts with the platform in three steps:

1. Testing the demo configuration: visualize the environ-
ment through the PEMS GUI and observe the execu-
tion of the demo query while manipulating the sensors
to interact with the environment.

2. Modifying the demo configuration: modify the data
and/or the query and observe the impact on the per-
vasive application.

3. Creating a new configuration: create data and queries
from an empty configuration to create some pervasive
applications.

The goal of the first step is to present the model for rela-
tional pervasive environment and SoCQ queries. We visu-
alize the environment like a database: XD-Relations are
represented like tables, that contain tuples. Alongside the
UML-like graphical representation of their schema, the
source DDL can be viewed. SoCQ queries are represented
in a similar way to tables: the schema of their resulting re-
lation is shown, and the query source can also be viewed.
The demo visitor can manipulate the physical sensors (e.g.
heating the temperature sensors in his hand) and the sim-
ulated sensors (through another GUI) in order to test the
behavior of the pervasive application defined by the SoCQ
query.

The second step consists in modifying the data and/or the
query. By modifying the data, the behavior of the per-
vasive application can be slightly modified, e.g. by low-

ering a temperature threshold or changing the alert mes-
sage. The demo visitor is invited to enter his own contact
information to be able to receive a SMS sent by the query
(through the provided SMS gateway service). By modi-
fying the query, the behavior of the pervasive application
can be totally changed. The demo visitor also has the op-
portunity to pose his own SoCQ queries.

The final step gives the demo visitor a complete freedom
to create a relational pervasive environment from scratch,
i.e. to create XD-Relations, populate them with data, and
test SoCQ queries. He is invited to use all the available
services and data sources to build his own environment
and pervasive applications (e.g. the camera services are
available but not involved in the demo configuration).

DEMONSTRATION CONTRIBUTIONS
This demo allows to demonstrate the following points:
1) a homogeneous database-like view on pervasive envi-
ronments containing dynamic data sources and services is
possible as a set of XD-Relations, through the notions of
virtual attributes and binding patterns; 2) Service-oriented
Continuous Queries (SoCQ queries) over relational per-
vasive environment allow to define pervasive applications
combining data sources and services; and 3) declarative
definitions of SoCQ queries make the definition and the
evolution of pervasive applications easier. Although this
model is presented in the context of pervasive environ-
ments, it can be applied to less dynamic systems that could
benefit from the declarative definition of applications that
combine data sources and distributed functionalities.

BIBLIOGRAPHIE
1. Estrin, D., Culler, D., Pister, K., and Sukhatme, G.

Connecting the Physical World with Pervasive Net-
works. IEEE Pervasive Computing, 1(1):59–69, 2002.

2. Franklin, M., Halevy, A., and Maier, D. From
Databases to Dataspaces: a new Abstraction for In-
formation Management. SIGMOD Rec., 34(4):27–33,
2005.

3. Gripay, Y. Service-oriented Continuous Queries for
Pervasive Systems. In EDBT 2008 PhD Workshop,
2008.

4. Gripay, Y., Laforest, F., and Petit, J.-M. Vers une
algèbre relationnelle étendue aux services. In BDA
2008, pages 1–20, Oct. 2008.

5. Imielinski, T., and Nath, B. Wireless graffiti: data,
data everywhere. In VLDB’2002, pages 9–19, 2002.

6. Weiser, M. The Computer for the 21st Century. Sci-
entific American, 265(3):94–104, September 1991.

7. Zhu, F., Mutka, M., and Ni, L. Service Discovery in
Pervasive Computing Environments. IEEE Pervasive
Computing, 4(4):81–90, 2005.

	RESUME
	ABSTRACT
	MOTIVATION
	DEMONSTRATION OVERVIEW
	MODELING OF PERVASIVE ENVIRONMENTS
	SERVICE-ORIENTED CONTINUOUS QUERIES
	IMPLEMENTATION OF PEMS
	DEMONSTRATION SCENARIO
	DEMONSTRATION CONTRIBUTIONS
	BIBLIOGRAPHIE

