
An Interactive Algorithm for the Complete
Discovery of Chronicles

Research Report
Damien Cram, Amélie Cordier and Alain Mille

Université de Lyon, CNRS
Université Lyon 1,LIRIS, UMR5205, F-69622, France

April 22, 2009

Abstract

Chronicles are temporal patterns with numerical constraints ex-
tracted from a sequence of events. The representation formalism of
chronicles is very expressive compared to classical sequential patterns
like serial and parallel episodes. Due to this expressiveness, any com-
plete discovery process of chronicles has a very high time complexity.
In this article, we propose an interactive approach and an algorithm
for a complete discovery of chronicles. The algorithm has been de-
signed in order to provide heuristic-search facilities and to allow users
to define their own constraints. The interactive discovery approach
combines these two features thus taking into account the user’s knowl-
edge when exploring the space of candidate chronicles. Thanks to this
approach, the most interesting chronicles from the user’s point of view
are expected to be extracted first and in an acceptable time thus avoid-
ing the user to wait for the complete set of frequent chronicles to be
extracted. 1

1This research is supported by the french National Research Agency (ANR) as a contri-
bution to the project Procogec (see www.procogec.com), in collaboration with members
of the project SharedLife from DFKI (www.dfki.de/sharedlife).

1

1 Introduction

Knowledge discovery from interaction traces requires the ability to find tem-
poral patterns that are relevant to a given research question. This ability
relies both on appropriate mining algorithms and on the user’s initial knowl-
edge about the behavior that is represented by these sequences [1]. Blind
search based on classical mining criteria produces a large number of candi-
date patterns for representing possibly relevant pieces of knowledge. Select-
ing relevant patterns among the results of such a mining remains tedious and
constitutes a strong impediment of the method. This led researchers to favor
non-complete approaches in order to reduce the complexity and to control
better the mining process. New approaches are directed towards the devel-
opment of interactive visualization tools providing users with synthetic and
efficient visualization features and making them able to integrate their own
knowledge on the algorithm in order to guide the discovery process [2]. The
approach described hereafter belongs to this field of research. It is a com-
plete algorithm that provides us with a mean of performing truly exploratory
yet constraint mining, thus avoiding to exclude possibly relevant patterns.
As the complexity of such an algorithm is large, it is necessary to provide
it with the ability to take into account constraints related to the knowledge
of the observer. This paper presents a complete variant of an existing al-
gorithm of discovery of chronicles [3] in temporal sequences of events that
takes into account constraints and that have an anytime behavior. Chron-
icles are temporal patterns over sequences of events like serial and parallel
episodes [4], but with additional numerical temporal constraints on events.
These numerical temporal constraints are needed to represent better typical
situations in interaction traces. For example, two chronicles having the same
events but different temporal constraints can represent the same user task in
interaction traces, but the one whose constraints are shorter could represent
the execution of this task by an expert of the traced system and the one
with large constraints could represent the task executed by a novice. The
complete approach is formalized (cf. sections 2, 3 and 5) and demonstrated
(cf. section 4). The complexity issue is described and the way we tackle
it is discussed (cf. section 6). We illustrate the potential of the approach
by showing how an interface may assist the user in his task in a concrete
application domain: an experimental instrumented kitchen.

2

2 Definitions

2.1 Chronicle

We define a sequence of events as an ordered set, denoted S = 〈(e1, t1) . . . (el, tl)〉.
Each pair (ei, ti) is an event, where ei is an event type and ti and integer
called the event date. Each event type ei is an element of the finite and to-
tally ordered set of event types (E,≤E). The temporal patterns we search for
are chronicles [3]. To define what a chronicle is, we need to first introduce
the concept of temporal constraint. A temporal constraint is a quadruplet
(ε, ε′, I−, I+), denoted ε[I−, I+]ε′, where (ε, ε′) ∈ E2 and I− and I+ are two
integers such that I− ≤ I+. Two events (e1, t1) and (e2, t2) are said to satisfy
the constraint ε[I−, I+]ε′ if e1 = ε and e2 = ε′ and t2 − t1 ∈ [I−, I+], or if
e1 = ε′ and e2 = ε and t2− t1 ∈ [−I+,−I−]. A chronicle is a pair C = (E , T),
such that:

• E = ε1 . . . εn, where ∀i, εi ∈ E and ∀i < j, εi ≤E εj; (n is the size of C)

• T = {τij}1≤i<j≤|E| is a set of temporal constraints on E such that
∀i < j, τij = εi[τ

−
ij , τ

+
ij]εj. (E is the episode of C)

An occurrence of C is a list of events in S, denoted 〈(ε1, t1) . . . (εn, tn)〉},
that satisfies all temporal constraints defined in C, i.e. ∀i < j, tj − ti ∈
[τ−ij , τ

+
ij].

Given E = {A,B,C} and S0 = 〈(A, 1)(C, 2)(B, 4)(A, 5)(C, 5)(B, 6)〉, oc-
currences of the chronicle C1 = (ABC, {A[1, 3]B,A[1, 1]C,B[−2,−1]C}) are
〈(A, 1)(C, 2)(B, 4)〉 and 〈(A, 5)(C, 5)(B, 6)〉 (cf. first part of figure 1).

Figure 1: An event sequence S0 and two chronicles C1 and C2 such that
C1 � C2.

A chronicle C = (E , T) is stricter than a chronicle C ′ = (E ′, T ′), or C ′
is more general than C, if 1) the episode E ′ is a subepisode of E , i.e. if

3

there is an increasing function h, called the inclusion function, such that
E ′ = ε′1 . . . ε

′
n′ = εh(1) . . . εh(n′), and if 2) ∀i < j, [τ−ij , τ

+
ij] � [τ−h(i)h(j), τ

+
h(i)h(j)].

The stricter than relation between two chronicles is denoted �. “�” is a
partial relation of order in the set of all chronicles. For example on figure 1,
C1 � C2. We also define the relation strictly stricter than, denoted “≺”,
defined by C ≺ C ′ ⇔ C � C ′ and C 6= C ′. More accurately, C1 ≺ C2 since
C1 6= C2.

2.2 Frequency of a chronicle

Given an event sequence and a chronicle C, we define the frequency of C in
S as the number of chronicles recognized by the algorithm CRS (Chronicle
Recognition System), the chronicle recognition algorithm presented in [5]
and improved in [6]. C is said to be frequent if its frequency fCRS(C) is
greater than a threshold frequency value fth. It has been proven in [3] that
CRS is monotonic for �. This property is very convenient when discovering
chronicles in a generate-count way like we do in section 3.

2.3 Constraint-database

The definition of the notion of constraint-database, needed in the formula-
tion of the complete discovery problem, requires to define first the notion of
constraint-graph. Given (x, y) ∈ E2, Gxy is said to be a constraint-graph on
(x, y) if Gxy is an acyclic oriented graph such that:

1. each node is a temporal constraint on τ = ε[τ−, τ+]ε′ such that ε = x
and ε′ = y (each node in Gxy is a temporal constraint on (x, y)),

2. for each pair (τ, τ ′) of nodes in Gxy, τ = x[τ−, τ+]y and τ ′ = x[τ
′−, τ

′+]y,
there is an arrow from τ to τ ′ if and only if τ ′ ≺ τ and there exists no
τ ′′ in Gxy such that τ ′ ≺ τ ′′ ≺ τ .

A constraint-database D is a set of constraint-graphs Gεiεj
, where for all

(i, j) (εi, εj) ∈ E2 and εi ≤E εj. By constraining εi ≤E εj we ensure that
given two event types εi and εj there will never be two graphs Gεiεj

and Gεjεi

in D. In order to simplify the mining algorithm presented in section 3, we
also assume that each Gij in D contains exactly one constraint, denoted G>ij
and called the root constraint, such that ∀τ ∈ Gij τ � G>ij . Figure 2 shows
the example of the constraint-database D0.

4

D0 = {((A,B),GAB), ((B,C),GBC), ((A,C),GAC)}
GAB = {A[−1, 5]B,A[−1, 3]B,A[1, 5]B,A[−1, 1]B,A[1, 3]B,A[3, 5]B}
G>AB = A[−1, 5]B
D>0 = {A[−1, 5]B,B[−4, 1]C,A[−3, 4]C}

Figure 2: D0: an example of a constraint-database.

2.4 D-based chronicle and the straight stricter than
relation

The complete discovery problem can be stated on D-chronicles only. A
D-chronicle is a chronicle whose constraints are taken from the contraint-
database D. Formally:

(E , T) is a D-chronicle⇔ ∀τij ∈ T , τij ∈ D

For instance on figure 1, C2 is a D0-chronicle while C1 is not, since A[1, 3]B /∈
GAB (actually, B[−2,−1]C /∈ GBC and A[1, 1]C /∈ GAC also).

Given a constraint-database D, a chronicle C ′ is said to be straight stricter
than C against D when:

1. C et C ′ are D-chronicles,

2. and C ′ ≺ C (C ′ strictly stricter than C),

3. and there is no D-chronicles C ′′ such that C ′ ≺ C ′′ ≺ C (strictly).

For instance on figure 3 all chronicles are D0-chronicles. On that figure
we observe that C7 ≺ C3. However, C7 is not straight stricter than C3 since C4
is a D0-chronicle and C7 ≺ C4 ≺ C3. Nevertheless, C4 is straight stricter than
C3 and C7 is straight stricter than C4.

3 Complete solving algorithm

3.1 Problem statement

The complete discovery of chronicles can be stated as follows:

5

Given an event sequence S, a minimum number of occurrences fth
and the constraint-database D return by algorithm ccdc (alg. 3)
when applied on S and fth, find all minimal frequent D-chronicles
C such that fCRS(C) ≥ fth.

The statement of the complete discovery problem is based on the constraint-
database D that must be given as input. The chronicle discovery problem
cannot be considered as complete as long as the D is not considered as com-
plete neither. The issue of building D in a complete way is discussed in
section 5 together with other types of constraint-databases.

The basic principle of the solving algorithm is to generate candidate D-
chronicles and to count them, in the style of Apriori [7]. Step by step, new
candidates are generated from frequent D-chronicles by taking one frequent
D-chronicle C and computing allD-chronicle C ′ such that C ′ is straight stricter
than C.

3.2 Candidates generation

We can generate all successors of a D-chronicle (E , T) by using the two
following types of operations:

add ε adds the event type ε to E . This operation is a bit more tricky than
it looks since the addition of the event type ε to E = ε1 . . . εn−1 also
implies the addition of all root constraints G>εkε

(1 ≤ k ≤ n−1) to T . If
for any k there is no entry for the pair (εk, ε) in D, then add ε cannot
be applied to (E , T).

str εiεj takes any constraint τij = εi[τ
−
ij , τ

+
ij]εj in T and replaces it with

σij = εi[σ
−
ij , σ

+
ij]εj, where σij is straight stricter than τij in the constraint-

graph Gεiεj
in D. If D doesn’t contain any constraint-graph on the pair

(εi, εj) or if Gεiεj
exists in D but contains no constraint stricter than

τij, then str εiεj cannot be applied to (E , T).

For instance on figure 3, C5 is generated from C3 by applying add B (the
addition of the event type B to C5) and C4 is generated from C3 by applying
add AC (the strengthening of A[−3, 4]C into A[−3, 1]C). In total, there are
|E| operations of type add, and

∑
τij∈T nij operations of type str, where nij

is the number of straight stricter constraints of τij in D.

6

Figure 3: Successor-graph of D0-chronicles for the three first depth levels.
All chronicles of depth 0 and 1 are on the figure; level 2 is given partially.
The set of chronicles whose depth is 0 is D>0 .

From this point, we consider that C is a successor of C ′ if C is straight
stricter than C ′ against D. We also define the relation predecessor as the
inverse relation of successor.

3.3 Algorithm

Algorithm HDA applies this principle. Open chrs is the set of candidate
chronicles whose frequencies in S must be tested and Freq is the set to be
returned. When Open chrs is empty, the algorithm ends (line 23). The itera-
tion 3-23 implements the generation-counting approach explained above, one
candidate chronicle at a time. The process is initiated with all 2-chronicles
that are in D> (lines 1-2).

During an iteration the following process is applied. Any chronicle C in
the waiting candidates list is chosen and removed from Open chrs (line 4).
Instead of directly counting it against S, which costs a lot of time, the fre-
quency of C is first pre-tested (lines 5-8). To do that, we maintain a set
non Freq of chronicles that have been proved not to be frequent. If non Freq

contains a chronicle that is stricter than C, then C can be dropped since C

7

Algorithm 1 HDA: Heuristic Discovery Algorithm

Require: S ; D; fth

Ensure: Freq

1: Freq← ∅
2: Open chrs← D>
3: repeat
4: C ← take first from(Open chrs)
5: if has more general(non Freq,C) then
6: continue {line 3}
7: end if
8: if ¬has stricter(Freq,C) then
9: fCRS(C)←count CRS(C,S)

10: if fCRS(C) ≥ fth then
11: add as minimal(C,Freq)

12: else
13: add as maximal(C,non Freq)
14: continue {line 3}
15: end if
16: end if
17: Succ(C)← generate successors(C)
18: for each C′ ∈ Succ(C) do
19: if is acceptable(C′) then
20: Open chrs← Open chrs ∪ {C′}
21: end if
22: end for
23: until Open chrs = ∅
24: return Freq

would be a fortiori non-frequent, due to the monotonicity of the frequency-
counting algorithm CRS [5, 6]. Similarly, if Freq contains any chronicle C ′
such that C ′ � C, it would prove that C is frequent without having to count
it.

Lines 9 to 15 are executed if C has to be counted. C is counted at line 9 and
if C is counted to be non-frequent, then the method add as maximal updates
non Freq with C if needed, i.e. removes from non Freq any chronicle C ′ such
that C ′ � C and adds C to non Freq if C is maximal in non Freq (line 13).
Similarly, if C is counted to be frequent, then Freq is updated (lines 11).

Lines 17 to 22 are executed if C has been proved to be frequent, whether
or not it has been counted. generate successors applies all applicable
operations of both types to generate all successors of C as explained above.
Then, each successor C ′ is added to the waiting candidates set Open chrs,
if C ′ is an acceptable candidate. Algorithm is acceptable (alg. 2) details
what an acceptable candidate is. A candidate C ′ is said to be acceptable when
C ′ satisfies all monotone user constraints and if C ′ has not been already added
once to Open chrs. The procedure is acceptable is the one that enables
to push user-constraints in the mining process (see section 6). By checking
that C ′ has never been added to Open chrs we ensure that iteration 3-23 of
algorithm HDA will never process twice the same chronicle C and that HDA

will always terminate (cf. section 4.1).

8

Algorithm 2 is acceptable
Require: C′
Ensure: true if C′ is a valid candidate to be added to Open chrs, false otherwise.
1: if C′ doesn’t satisfy monotone user constraints then
2: return false
3: end if
4: if has already been processed(C′) then
5: return false
6: end if
7: return true

4 Properties of the proposed algorithm

4.1 Termination

Let’s denote nmax the size of the biggest chronicle in the set of all frequent
minimal D-chronicles. The method generate successors generates from a
chronicle of size n only chronicles of size at most n+1; since it also applies only
on frequent chronicles, we can be sure that there will never be any candidate
chronicle of size nmax+2 (since it would imply that a chronicle of size nmax+1
is frequent). Consequently, there will be in the set of candidates Open chrs

only chronicles of size at most n + 1. Furthermore, there is a finite number
of D-chronicles of size at most nmax + 1 and algorithm HDA never puts twice
the same chronicle into the candidate set Open chrs (line 19). Therefore HDA

terminates.

4.2 Completeness

4.2.1 Depth of a chronicle

In a temporal constraint-graph G as defined in section 2.3, we can define the
notion of path to τ ∈ G as follows:

{τ0, . . . , τn} is a path to τ in G ⇔


∀i, τi ∈ G
τ0 = G>
τn = τ
∀i, the pair (τi, τi+1) is an arrow of G

Since in a constraint-database D constraint-graphs’ arrows represent straight
stricter than relations only, we can easily prove that for all G ∈ D and for
all τ ∈ G, the lengths of paths to τ in G are equals. Thus, we can define

9

the depth of a temporal constraint τ in a temporal constraint-graph G as the
number of arrows that lead to τ from G>.

For instance:
depth(τ,G) = |any path to τ from G>| − 1 depth(A[1, 3]B,GAB) = 2

depth(A[0, 4]C,GAC) = 1
∀G ∈ D depth(G>,G) = 0

Similarly, we can define the depth of any D-chronicle C = (E , T) against
D as follows: depth(C,D) = (|E| − 2) +

∑
τ∈T depth(τ,Gεε′), where (ε, ε′) is

the pair of event types of each constraint τ (τ = ε[τ−, τ+]ε′). The depth of a
D-chronicle C against D is also the number of operations that must be applied
to any τ in D> such that C � τ before we obtain C. Figure 3 illustrates the
notion of depth. On figure 3, each arrow between two chronicles stands for
the application of an operation. Each arrow can be read as is a predecessor
of.

4.2.2 Proof of completeness

The completeness of algorithm HDA regarding the problem stated in sec-
tion 3.1 can be proved first by demonstrating that the predicate P (n) defined
below is true for each integer n ≥ 1:

P (n): if Cn is a frequent D-chronicle of depth n, then Cn has at
least one predecessor Cn−1 to which the method generate successors

has been applied.

Proof
If C is a frequent chronicle such that depth(C,D) = 1, all its predecessors
C ′ satisfy both depth(C,D) = 0 and “C ′ is frequent” (due to monotonicity).
Furthermore, algorithm HDA is initiated with D>, in other words with all
chronicles of depth 0. Consequently, the first of the predecessors of C that is
taken by take first from (line 4) will satisfy the frequency test (line 10)
and line 17 will be executed. Therefore, generate successors will be called,
which proves P (1).

Assuming that P (n) is true implies P (n + 1) is also true since if C is
a frequent D-chronicle of depth n + 1, then all its predecessors C ′ will be of
depth n and be also frequent, due to monotonicity. Therefore, P (n) applies
for each C ′, which means that generate successors will be applied at least

10

once to one of the predecessors of C ′, which implies that C ′ will be added to
Open chrs. Back to C, this means that each of its predecessors will be added
in Open chrs and will then be processed by the iteration 3-23. Let’s assume
that C ′1 is the first of these predecessors to be processed by iteration 3-23.
As C ′1 is frequent, the method generate successors will be applied to C ′1
(since line 17 to 22 are executed whenever C is frequent, whatever it has been
counted). This proves P (n).�

Therefore, if Cn is a frequent minimal D-chronicle of depth n, we can
be sure that it has been added to Open chrs (line 20) after having been
generated by one of its predecessors Cn−1. This proves that Cn will be taken
by take first from (line 4) in a later loop of iteration 3-23. Cn’s iteration
will not stop at line 6, because there is no chronicle that is both more general
than Cn and non-frequent since Cn is frequent (because fCRS is monotonic).
Lines 9 to 15 will be run since Cn is minimal, which means that there can’t be
any frequent chronicle stricter than Cn in Freq. Therefore, Cn will be counted
as being frequent (line 9) and added to Freq (line 11). As a consequence,
Cn will stay on in Freq as long as no stricter frequent chronicle is added to
Freq, which is impossible since we assumed that Cn is a frequent minimal
chronicle. The frequent minimal D-chronicle Cn is then returned by HDA in
Freq, which proves the completeness.�

4.3 Complexity

Given a set of event types E = ε1 . . . εn of size n, there are in total C2
n =

n× (n− 1)/2 pairs of event types. If we assume that all constraint-graphs in
D are each of size p, then we can make pC

2
n different chronicles based on E ,

just by combining temporal constraints. The total number of ordered event
type sets E of size n is lower than |E|n. Thus, if we denote as N(n) the
total number of chronicles of size n, then we have N(n) = O(|E|n × pC2

n). If
we denote as nmax the size of the biggest chronicle in the set of all frequent
minimal D-chronicles, then algorithm HDA will process at most Nall together =
N(1) + . . .+N(nmax + 1) chronicles:

Nall together = O(|E|nmax × pn2
max)

The time complexity as estimated above looks huge, but it is just an
upper bound of the total number of chronicles that are actually processed

11

(see section 6) when applied to concrete sequences of events. Furthermore,
the “anytime-like” architecture of algorithm HDA, where the set Freq contains
at any time a collection of partial solutions that can be returned to the
user, enables the use of user-constraints pushing technics (through method
is acceptable) and heuristics (through method take first from), which
both play important roles in shortening the actual time before the user is
satisfied with partial solutions that are contained in Freq (see section 6).
Also, the constraint-database can be chosen in such a way that the average
number of constraints p in each contraint-graph is rather small.

5 Building the constraint-database

In this paper we claim that the discovery process is complete, contrary to
the one described in [3] about which we could now say that the authors
decided to keep only one constraint per graph in the constraint-database, for
complexity reasons. The chronicle extraction process described above can be
considered as being complete only if the constraint-database that it is based
on can be considered as complete too, which is not the case when there is
only one temporal constraint per graph in D. We can think of three ways of
building the constraint-database:

1. the “Duong-like” building method we have just seen [3], where each
pair of event types can have only one temporal constraint;

2. the complete constraint-database building; (cf. section 5.1)

3. the constraint-database to build and discover hybrid episodes. (cf. sec-
tion 5.2)

5.1 Building the complete constraint-database

The term “complete constraint-database” refers to a constraint-database in
which every temporal constraint that is frequent in S would be stored. For
instance, if the temporal constraint τ = ε[τ−, τ+]ε′ is frequent in S, then τ
should be contained in D, but constraints ε[τ−, 1 + τ+]ε′, ε[τ−, 2 + τ+]ε′. . . ,
should be present in D too, and so should be ε[τ− − 1, τ+]ε′, ε[τ− − 2, τ+]ε′,
ε[τ− − 8, τ+ + 8]ε′. . . In order not to store the infinite set of temporal con-
straints, the issue of building a complete constraint-database is to store only

12

those who strictly occur in S. τ is said to strictly occur in S when its bounds
cannot be tightened without changing its set of occurrences in S. For in-
stance, if we denote as Oall(C,S) the set of all occurrences of C in S, it
appears that A[−1, 5]B strictly occurs in S0 while A[−1, 4]B and A[0, 5]B do
not, since:

Oall(A[−1, 5]B,S0) = {(A, 1)(B, 4), (A, 1)(B, 6), (A, 5)(B, 4), (A, 5)(B, 6)}
Oall(A[−1, 4]B,S0) = {(A, 1)(B, 4), (A, 5)(B, 4), (A, 5)(B, 6)}

= Oall(A[−1, 3]B,S0)

Oall(A[0, 5]B,S0) = {(A, 1)(B, 4), (A, 1)(B, 6), (A, 5)(B, 6)}
= Oall(A[1, 5]B,S0)

A[0, 5]B and A[1, 5]B are said to be equivalent against S, because they
have the same occurrence-sets. We observe that A[−1, 4]B and A[−1, 3]B
are equivalent too. Therefore the constraint A[−1, 5]B should be contained
in D since we cannot tighten its bounds without changing the occurrence-set.
However constraints A[−1, 4]B and A[0, 5]B should not be present in D since
they both have a stricter constraint with the same occurrence-set. In other
words, the problem of building the complete constraint-database is to keep
in D only the strictest constraint of each class of equivalence.

To do that, we starts with the same strategy as in [3], except that we
keep all frequent temporal constraints for each 2-episode ε1ε2, while [3] only
keeps only one. Algorithm ccdc (alg. 3) details how the complete contraint-
database is built.

Algorithm ccdc works as follows. For each pair of event types (ε, ε′)
in E, the set Oallεε′ of all occurrences in S is processed (line 3). The no-
tation Oallεε′ stands for Oall(ε[−∞,∞]ε′,S). For example in S0, the set of
all event types is E = {A,B,C} and the occurrence-set for the pair (A,B)
is OallAB = {〈(A, 1)(B, 4)〉, 〈(A, 1)(B, 6)〉, 〈(A, 5)(B, 4)〉, 〈(A, 5)(B, 6)〉}. For
each occurrence in OallAB, the gap between A and B is added to a set AAB
(line 4):

AAB = sort({3, 5,−1, 1}) = {−1, 1, 3, 5}

Temporal constraints for the pair (A,B) are all obtained at lines 5-6 by
iteratively sliding windows on AAB, whose widths are fth, fth+1, . . . , |AAB|.

13

Algorithm 3 ccdc: Complete Constraint-Database Construction
Require: S; E; fth

Ensure: D
1: D ← ∅
2: for each (ε, ε′) ∈ E× E do
3: Oall

εε′ ← {〈(ε, t)(ε′, t′)〉|(ε, t) ∈ S and (ε′, t′) ∈ S and (ε, t) 6= (ε′, t′)}
4: Aεε′ ←sort({(t′ − t)|〈(ε, t)(ε′, t′)〉 ∈ Oall

εε′})
5: for k = fth to |Aεε′ | do
6: Kk

εε′ ← {ε[Aεε′ [i],Aεε′ [i+ k− 1]]ε′|0 ≤ i ≤ |Aεε′ | − k+ 1} {Aεε′ [i] refers to the ith element in
Aεε′ .}

7: end for
8: Kεε′ ← Kk

εε′ ∪ Kk+1
εε′ ∪ . . . ∪ K

|Aεε′ |
εε′

9: Transform Kεε′ into the constraint-graph Gεε′

10: D ← D ∪ Gεε′

11: end for
12: return D

For instance with fth = 2: (KiAB denotes the set of constraints that are
obtained by sliding a window of width i on AAB)

window’s width = 2: K2
AB = {A[−1, 1]B,A[1, 3]B,A[3, 5]B}

window’s width = 3: K3
AB = {A[−1, 3]B,A[1, 5]B}

window’s width = 4: K4
AB = {A[−1, 5]B}

By finally making the union of all KkAB (line 8), we obtain the set KAB
of all temporal constraints based on (A,B) that are frequent in S. Line 9
adds arrows to KAB to make the constraint-graph GAB. The algorithm that
makes the constraint-graph Gεε′ from Kεε′ at line 9 is quite simple since

we already know that G>εε′ is the unique element in K|Aεε′ |
εε′ . Then it takes

K|Aεε′ |−1
εε′ and adds an arrow from G>εε′ to each constraint in K|Aεε′ |−1

εε′ . Then,

the algorithm takes K|Aεε′ |−2
εε′ and searches for constraints τ ′ in K|Aεε′ |−2

εε′ that

are stricter than any constraint τ in K|Aεε′ |−1
εε′ and adds an arrow from τ to

τ ′ if so. Then, it takes K|Aεε′ |−3
εε′ and searches for constraints in K|Aεε′ |−3

εε′ that

are stricter than any constraint in K|Aεε′ |−2
εε′ , and so on until Kfth

εε′ . Figure 2
shows the constraint-database we obtain when applying algorithm ccdc on
S0.

The frequency we discussed in that section is not the same frequency as
the one based on the recognition algorithm CRS. Indeed, given a temporal
constraint τ , the set Oall(τ,S) as it has been considered is this section con-
tains all occurrences of τ in S, not only occurrences that are recognized by
CRS. For instance:

14

Oall(A[−1, 5]B,S0) = {(A, 1)(B, 4), (A, 1)(B, 6), (A, 5)(B, 4), (A, 5)(B, 6)}
⇒ fall(A[−1, 5]B) = 4

OCRS(A[−1, 5]B,S0) = {(A, 1)(B, 4), (A, 5)(B, 6)}
⇒ fCRS(A[−1, 5]B) = 2

This is not an issue. Indeed, since fCRS(τ) ≤ fall(τ) for all temporal con-
straints τ , it is possible to apply CRS counting on constraints in D in order to
remove from D those that are not frequent in S before running algorithm HDA

on D. This is a bit annoying, but we have to build D that way with fall and
not with fCRS, since the property “τ � τ ′ ⇒ OCRS(τ,S) ⊆ OCRS(τ ′,S)” is
false, while this property is true with Oall(τ,S). This property is implicitely
used at lines 5-7 when ccdc iteratively computes stricter constraints from
Oallεε′ . ccdc would not be correct if it was executed with OCRS instead of
Oall.

Consequently, if a constraint ε[τ−, τ+]ε′ is fCRS-frequent, it will be con-
tained in D, but some constraints in D might not be fCRS-frequent. A
solution to cope with that problem is to purge D after it has been generated
with ccdc by counting with CRS every constraint in D. However it is not
necessary to purge D since if there is in D any constraint τ that is not fCRS-
frequent, then τ will be counted as non-frequent once by HDA (line 9) and
added to non Freq (line 13), and as a result τ won’t be propagated much in
the mining process.

5.2 Building a constraint-database for hybrid episodes-
discovery

The user might not be interested in the plain ability of expressiveness pro-
vided by chronicles. Indeed, in some cases there might be no worth pre-
cisely defining strong constraints with numerical bounds on event types of
a chronicle. In those cases, the user can still use the framework presented
in this paper by applying algorithm HDA to a simpler constraint-database,
where only temporal orders with no numerical constraints between event
types are stored. This refers to the problem of discovering hybrid episodes
from a sequence of events [4]. Not much research work has focused on this
hybrid episodes-discovery problem, contrary to serial or parallel episodes-

15

discovery. A solution to the “hybrid” problem is to apply algorithm HDA on
the constraint-database D, defined as follows :

1. ∀(ε, ε′) ∈ E× E such that ε <E ε
′, Gεε′ ∈ D,

where Gεε′ = {ε[−∞,+∞]ε′, ε[−∞, 0]ε′, ε[0,+∞]ε′};

2. ∀ε ∈ E, Gεε ∈ D, where Gεε = {ε[0,+∞]ε}.

On S0, the hybrid contraint-database is the one shown on figure 4. Of
course, this constraint-database could be pre-counted too before applying
algorithm HDA in order to remove non-frequent constraints.

Figure 4: Constraint-database D0 to use when discovering hybrid episodes.

6 Discussion on perfomances and interactiv-

ity

6.1 Performances

We have previously estimated the time complexity of HDA as being lower
than O(pn

2
max×|E|nmax), where nmax is the size of the biggest chronicle that is

returned by HDA and p the size of each constraint-graph inD. This complexity
estimation is an upper bound of the number of chronicles that are processed

Biggest’s size Actual nb of candidates Total nb of candidates Ratio
(nmax) from to from to from to

2 3 20 3 29 1 1
3 8 67 8 36696 1 632
4 54 1616 59 4, 23.107 1 39133
5 579 21500 1, 16.108 3, 40.1010 178050 6, 51.106

6 6336 11831 6, 33.1011 2, 06.1014 7, 29.107 1, 89.1010

Table 1: Actual number of chronicles processed compared to total candidate
number of chronicles of size nmax + 1.

16

in iteration 3-23 and we argued that this estimation is in most cases far bigger
than the actual number of chronicles that are processed, since whenever a
chronicle is proved to be non-frequent none of its successors is added to
Open chrs. We tried to measure on real event sequences if this assumption
makes sense.

All sequences we took are interaction traces of the smart kitchen [8]. Each
interaction trace contains the sequence of all events that occurred when the
user was preparing bruchettas. Events are ingredients and tools (spoon, knife,
pan, bowl, etc.) that appear and leave the workbench. Changes to the oven’s
settings and to other appliance are also recorded. The chronicle discovery
aims at learning task patterns in the user’s activity that can be reused in
order to improve task recognition in the smart kitchen and situation-aware
assistance to the cook.

In total, there were 17 sequences, with |S| varying from 71 to 262, |E|
varying from 36 to 42. We ran HDA on each of these sequences, with different
values of fth (fth varying from 2 to 10). Therefore we performed 153 tries in
total. Each time the mining time exceeded 30 seconds we stopped HDA and
dropped the try, since we cannot predict it will end in a reasonnable time.
Table 1 shows the ranges of the actual number of chronicles that have been
processed by iteration 3-23 of algorithm HDA) compared to the ranges of the
total number of chronicles of size nmax + 1 for this try. For example, the line
nmax = 4 must be read as follows : tries where the biggest frequent minimal
chronicle was of size 4 had an actual number of candidates ranging from 59
to 4, 23.107, while the total number of candidates of size 5 (nmax + 1) ranged
from 1, 16.108 to 3, 40.1010. Depending on the try, there was from 1 to 39133
times less chronicles processed than the total number of candidates

Table 1 shows that the actual number of candidates processed is far lower
than the total number of candidates. At first sight, the left column of table 1
suggests that when sequences are interaction traces of the smart kitchen the
actual complexity is rather like O(pnmax). Therefore, our assumption is true
for the smart kitchen.

We could show many other measurements to investigate further the effects
of HDA’s input parameters (fth, |E|, temporal dissemination of events in S . . .)
on the execution time, but all measurements we made tended to prove that
the only influential parameter was the resulting nmax, we cannot be known
before mining the sequence. In order to address the scaling problem, we
managed to increase the size of the sequence without impacting nmax. To
do that, we applied HDA on S with fth, then we concatenated S with S and

17

0

50

100

150

1500 3000 4500 6000 7500

Time
(sec)

Sequence’s size (size of 〈Sn〉)

total A
counting A

total B
counting B

total C
counting C

Seq S nmax Size of 〈S〉 Size of 〈Sn〉
A 4 168 168.n
B 4 71 71.n
C 4 126 126.n

Figure 5: Time measures on three sequences when only the sequence’s size
varies. (processor intel Core 2 Duo 1,67Ghz - 2Gb RAM)

applied HDA on 〈SS〉 with fth × 2 (we ensured that CRS couldn’t recognize
occurrences overlapping two consecutive sequences), then on 〈SSS〉 with
fth × 3, and so on. In that way, we make sure that the execution trace is
exactly the same in each try, thus nmax too. We applied this strategies to
three of our 17 sequences. Figure 5 shows the total time to mine the complete
set of frequent minimal chronicles depending on the size of the concatenated
sequence. We also measured the time spent by HDA on counting candidates
chronicles. It’s interesting to notice that both lines (total and counting time)
are visually merged together, which means that most of the mining time is
spent on counting tasks. As a result, the observed scaling behavior is the
same as the one in the study of CRS [5, 6]. It also explains why we HDA makes
use of Freq and non Freq to limit the number of counts.

6.2 Coping with the complexity issue through interac-
tivity

Previous section shows that the high complexity issue prevents from discov-
ering big chronicles. This is an annoying issue since the user may expect that
there may be big chronicles that are interesting to discover and that should
come out of the discovery process. In the case of discovering task patterns in
interaction traces, the user can cope with this issue by proceeding iteratively

18

as described in the interactive approach in [9]. HDA was actually designed to
fit this approach. Indeed, HDA has two methods that can serve interactive
purposes: is acceptable and take first from. is acceptable allows the
user to push monotonic constraints into the mining process. For example,
such constraints can be a maximum chronicle length, or an inclusion in a su-
per chronicle. More complex and useful constraints can be found in existing
works on interestingness measures [10, 11]. In the interactive approach, the
user can first discover small chronicles by placing a maximum length con-
straint on HDA so that the mining does not take too much time. Then, for
each “small” chronicle discovered a transformation replaces all occurrences
of the chronicle in the interaction trace by a single event of a new event
type, as described in [9]. At least, the user runs HDA again on the trans-
formed sequence so as to discover new “small” chronicles that are composed
of new event types, and so on iteratively. Each of these compound chronicles
can be interpreted as a bigger chronicle. For instance, if C is composed of
three event types, each of size 3, then C can be seen as a chronicle of size
9, while discovering chronicles of size 9 would have been probably much too
big. The platform Trace Miner we developped (cf. figure 6) implements this
interactive approach. On this example, Trace Miner is used to find relevant
patterns in an interaction trace coming from the smart kitchen. The pattern
“chr0 = 〈CKLN〉 C[−8, 5]K . . .K[−5, 4]N” has been discovered by HDA and
the user decided to open it in a chronicle editor (cf. part 3 of figure 6),
probably to modify it and to store it to the file system or to add it as an
inclusion constraint (see the contextual menu on part 3) for a later execution
of HDA. The pattern add-board-knife (part 3’) was discovered by HDA in
an earlier execution of HDA. The pattern add-board-knife represents the
situation of adding the cutting-board and the knife to the workbench. This
pattern was actually found in almost all other cooking sequences and could
be interpreted as the more abstracted user action “preparing the workbench
to cut something”.

The method take first from can have an important impact on the ex-
ecution time. Indeed, first chronicles to be processed by HDA are the first
chronicles to appear in Freq. We ran HDA with three different heuristics for
take first from: lifo, fifo and random choice. We observed very differ-
ent results depending on the heuristics. fifo was by far the worst of them,
since it performs a breadth-first search on the successor-graph (cf. figure 3).
lifo appeared to be more efficient than random choice in most cases, that
is why results discussed in this paper were computed with lifo. As Freq

19

Figure 6: Trace Miner: 1 is the mining request, 2 the content of Freq in
real time and 8 a navigation view of the mined sequence. 4 shows all event
types and their associated shapes. 5 shows the list of all constraint-graphs
in D and 6 shows the constraint-graph selected in 5. 3 is a chronicle editor
opened from the first result in 2; 3′ is a chronicle editor for the chronicle
named add-board-knife that was stored to the file system. 7 shows the
occurrences of 3 in the mined sequence showed in 8. Inclusion constraints can
be added by the user to the request view through the contextual menu of the
chronicle editor or through drag and drop. Trace Miner also supports trace
transformations based on chronicles. The view Explorer is unfortunately
iconized on the figure and lists all resources (sequences, stored chronicles,
transformations, etc.) that are used and created during the discovery process.

can make the user satisfy even though the mining process is not over, it is
very important to put in Freq chronicles that are the most interesting for
the user first. Interestingness measures can help with this challenging is-
sue, but since they never reflect perfectly the user’s real interest, we plan to
drive take first from with user’s knowledge. This user knowledge can be
acquired by taking the opportunity of any user interaction with HDA, for in-
stance when he adds a new constraint, to learn from the user’s interests and
expectations, as described in the interactive and opportunistic knowledge
acquisition framework [12].

20

7 Conclusion

The framework presented in this paper contributes to the chronicle discovery
problem by proposing a general approach that can be specialized in dis-
covering the complete set of chronicles, or in discovering hybrid episodes,
depending on the constraint-database that is given as input. In its complete
form, this framework has a very high time complexity, but the actual exe-
cution time has been proved to be far shorter than the estimated one when
applied on interaction traces. Furthermore, this framework allows the use of
heuristics and user constraints so as to enable the discovery of big chronicles,
despite its exponential complexity, by iteratively and interactively mining
chronicles.

The next step of this work is to investigate further how user knowledge
could be acquired and used to find chronicles that are of most interest for
the user. Applied to interaction traces, the iterative and interactive discovery
of interesting chronicles contributes to the trace abstraction issue [9]. The
benefit of having abstracted interaction traces that describe the user’s tasks
with a high abstraction level is huge, especially when users need a meaningful
support to share their experiences in a community like in the smart kitchen
[8].

References

[1] Georgeon, O.: Analyzing traces of activity for modeling cognitive
schemes of operators. In: AISB Quarterly. Number 127, 1-2 (2008)

[2] Faure, C., Delprat, S., Boulicaut, J.F., Mille, A.: Iterative bayesian
network implementation by using annotated association rules. In: Proc.
15th Int. Conf. on Knowledge Engineering and Knowledge Management
EKAW’06. LNAI, Springer (October 2006) 326–333

[3] Dousson, C., Duong, T.V.: Discovering chronicles with numerical time
constraints from alarm logs for monitoring dynamic systems. In: IJCAI.
(1999) 620–626

[4] Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery
1(3) (1997) 259–289

21

[5] Dousson, C., Gaborit, P., Ghallab, M.: Situation recognition: Repre-
sentation and algorithms. In: IJCAI. (1993) 166–174

[6] Dousson, C., Maigat, P.L., R&d, F.T.: Chronicle recognition improve-
ment using temporal focusing and hierarchization. In: IJCAI. (2007)
324–329

[7] Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules
between sets of items in large databases. In Buneman, P., Jajodia, S.,
eds.: Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data. (1993) 207–216

[8] Schneider, M.: The semantic cookbook: Sharing cooking experiences in
the smart kitchen. In: Proceedings of the 3rd International Conference
on Intelligent Environments, Ulm , Germany., IET (2007) 416–423

[9] Cram, D., Fuchs, B., Pri, Y., Mille, A.: An approach to User-Centric
Context-Aware Assistance based on Interaction Traces. In: MRC2008
: fifth International Workshop on Modeling and Reasoning in Context.
(June 2008)

[10] Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A
survey. ACM Comput. Surv. 38(3) (2006)

[11] Pei, J., Han, J., Wang, W.: Mining sequential patterns with constraints
in large databases. (2002) 18–25

[12] Cordier, A., Fuchs, B., Lieber, J., Mille, A.: Failure Analysis for Do-
main Knowledge Acquisition in a Knowledge-Intensive CBR System. In:
International Conference on Case-Based Reasoning, ICCBR’07. LNAI,
Springer (2007) 463–477

22

