
A Novel Algorithm for Distance Transformation

on Irregular Isothetic Grids

Antoine Vacavant1,2, David Coeurjolly1,3, and Laure Tougne1,2
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Abstract. In this report, we propose a new definition of the E2DT
(Squared Euclidean Distance Transformation) on irregular isothetic
grids. We describe a new separable algorithm to compute this trans-
formation on every grids, which is independent of the background repre-
sentation. We show that our proposal is able to efficiently handle various
kind of classical irregular two-dimensional grids in imagery, and that it
can be easily extended to higher dimensions.

1 Introduction

The representation and the manipulation of large-scale data sets by irregular
grids is a today scientific challenge for many applications. For example, comput-
ing the solutions of partial differential equations can be significantly improved by
a multi-grid approach [14] or octrees [15]. Here, we are interested in the notion
of discrete distance on this kind of grids, which is a very important concept in
image analysis and description on classical regular grids [10, 16].The Distance
Transformation (DT) of a binary image consists in labeling each point of a dis-
crete object E (i.e. foreground) with its shortest distance to the complement of E
(i.e. background). This process is widely studied and developed on regular grids
(see for example [5]). Some specific extensions of the DT to non-regular grids
also exist, such as rectangular grids [1, 19], quadtrees [18, 21], etc.

This report deals with generalizing the DT computation on irregular isothetic
grids (or I-grid for short) in two dimensions (2-D). The proposed method is easily
extensible to higher dimensions. In 2-D, this kind of grids is defined by rectan-
gular cells whose edges are aligned along the two axis. The size and position of
those non-overlapping cells are defined without constraint (see next section for a
formal definition). The quadtree decomposition and the RLE (Run Length En-
coding) grouping schemes are examples of classical techniques in imagery which
induce an I-grid. Here, we focus our interest on generalizing techniques that
compute the E2DT (squared Euclidean DT) of a d-dimensional (d-D) binary
image [3, 11, 17]. Many of those methodologies can be linked to the computa-
tion of a discrete Voronoi diagram of the background pixels [7, 3]. In a previous
work [20], we introduced a definition of E2DT on I-grids based on the background
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cells centers. After showing the link between this process and the computation
of the Voronoi diagram of those background points, we proposed two completing
algorithms to handle various configurations of I-grids. Unfortunately, we noticed
that they suffer from non-optimal time complexity. Moreover, the result of this
transformation strongly depends on the representation of the background. In
this document, we present a new way to compute the E2DT on I-grids, based
on the border of the background cells. We show that this transformation is thus
independent of the background encoding. We describe an algorithm based on the
work of R. Maurer et al. [11] to efficiently compute this new transformation. We
finally show the interest of our contribution by comparing it with the techniques
we proposed in [20]. We mainly consider the case of 2-D I-grids in this report,
and we will shortly show that our contribution is easily extensible to the d-D
case.

The next section of this report presents our new definition of E2DT on I-
grids, and its relation with the computation of a Voronoi diagram of segments.
In Section 3, we describe the extension of the algorithm of R. Maurer et al. [11]
to compute this transformation in 2-D but extensible to higher dimensions. We
also proove the correctness of our proposal, in the similar way as T. Hirata
showed that his method computes exactely the E2DT of a binary image [8]. We
finally show in Section 4 experimental results to compare our new contribution
with the techniques we developed in [20] in terms of speed and time complexity.

2 Distance Transformations on I-grids and Voronoi

Diagrams

In this section, we first introduce the concept of irregular isothetic grids (I-grids),
with the following definition [2]:

Definition 1 (2-D I-grid). Let I ⊂ R
2 be a closed rectangular support. A 2-D

I-grid I is a tiling of I with non overlapping rectangular cells which edges are
parallel to the X and Y axis. The position (xR, yR) and the size (lxR, l

y
R) of a cell

R in I are given without constraint:

(xR, yR) ∈ R
2, (lxR, l

y
R) ∈ R

2. (1)

We consider this definition of 2-D I-grids for the rest of the report, and we will
shortly show that our contribution is easily extensible to the d-D case. In our
framework, we consider labeled I-grids, i.e. each cell of the grid has a foreground
or background label (its value is respectively ”0” or ”1” for example). For an
I-grid I, we denote by IF and IB the sets of foreground and background cells.

We can first consider that the distance between two cells R and R′ is the
distance between their centers. If we denote p = (xR, yR) and p′ = (xR′ , yR′)
these points, and d2

e(p, p′) the squared Euclidean distance between them, the
I-CDT (Center-based DT on I-grids) of a cell R is defined as follows [20]:

I−CDT(R) = min
R′

{
d2

e(p, p′); R′ ∈ IB

}
, (2)
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and is exactly the E2DT if we consider I as a regular (square or rectangular)
discrete grid. However, this model is strongly dependent of the background rep-
resentation. In Figure 1, we present an example of the computation of the I-CDT
of two I-grids where only the background cells differ. Since this definition is based
on the cells centers position, the I-CDT do not lead to the same distance map
according to the background coding.

(a) (b) (c)

Fig. 1. The result of the I-CDT of the complete regular grid (b) computed from the
binary image (a) and an I-grid where the foreground is regular and the background is
encoded with a RLE scheme along Y (c). The distance value d of a cell is represented
with a grey level c = d mod 255. The contour of the object (background/foreground
frontier) is recalled in each distance map (b) and (c) with a smooth curve

We now choose to extend the definition of the E2DT by considering the short-
est distance between a foreground cell and the background/foreground boundary
of the I-grid. We suppose here that the intersection between two adjacent cells is
a segment of dimension one (i.e. they respect the e-adjacency relation [2]). Let
S be the set of segments at the interface between two adjacent cells R ∈ IF and
R′ ∈ IB .The I-BDT (Border-based DT on I-grids) is then defined as follows:

I−BDT(R) = min
s

{
d2

e(p, s); s ∈ S
}
. (3)

Contrary to the I-CDT given in Equation 2, this process does not take into
account the representation of the background. We can draw a parallel between
those extensions of the E2DT on I-grids and the computation of a Voronoi dia-
gram (VD). More precisely, as in the regular case, the I-CDT can be linked with
the VD of the background cells centers (i.e. Voronoi sites or VD sites) [20]. The
VD of a set of points P = {pi} is a tiling of the plane into Voronoi cells (or
VD cells) {Cpi

} [4]. If we now consider the background/foreground frontier to
compute the I-BDT, our definition implies that we compute a VD of segments,
and not a classical VD of points (see Figure 2 for an example of these diagrams
computed on a simple I-grid). Hence, a simple approach to compute the I-
CDT is to pre-compute the complete VD of the background points [20], and to
locate foreground points in the VD. In this case, the I-CDT computation has
a O(n log nB) time complexity, where n is the total number of cells, and nB is
the number of background cells. This technique is obviously not computationally
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(a) (b)

Fig. 2. Example of the VD of the background points to obtain the I-CDT of a simple
I-grid (a). Background cell centers are depicted in black, and foreground ones in white.
Distance values are presented above the cells centers. From the same grid, the compu-
tation of the I-BDT (b) implies that we consider the VD of the segments belonging to
the background/foreground frontier

efficient for every grids, and not adapted to dense grids [20]. To compute the
I-BDT, a similar synopsis can be drawn, where the computation of the VD of
segments can be handled in O(nS log2 nS), where nS = 4nB is the total number
of segments belonging to the background/foreground frontier [9]. The extension
of those transformation to d-D I-grids is a hard work. A VD can be computed

in d-D with a O(nB log nB + n
⌈d/2⌉
B ) time complexity (thanks to a gift-wrapping

approach [4] for example). However, localizing a point in the VD is an arduous
task, and an additional structure like subdivision grids [13] should be constructed
to handle this operation.

In this section, we have presented a new extension of the E2DT on I-grids,
based on the background/foreground frontier of the grid. Hence, we have shown
that building the entire VD to obtain the I-BDT is neither computationally
efficient for every I-grids, nor easily extensible to higher dimensions. We now
propose a separable algorithm to compute the I-BDT that can be extented to
the d-D case.

3 A New Separable Algorithm to Compute the I-BDT

3.1 R. Maurer et al. E2DT Algorithm on Regular Grids

The main idea of this separable method [5, 11] is that the intersection between
the complete VD of background pixels (i.e. sites) and a line of the grid can
be easily computed, then simplified. Indeed, for a row j, the VD sites can be
”deleted” by respecting three remarks mainly based on the monotonicity of de

distance [11]: (1) if we consider the line l : y = j, j ∈ Z, then we only have
to keep the nearest VD sites from l (Figure 3-b), (2) those sites can be ordered
along the X axis, which means that it is not necessary to keep the complete VD,
but only its intersection with the line l, (3) a VD site may be hidden by two
neighbour sites, and thus not considered anymore (Figure 3-c). In this report,
we show the extension of this technique on I-grids by adapting these properties
on these grids.
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(a) (b) (c)

Fig. 3. In a regular grid, when we treat a row l with R. Maurer et al. algorithm, we
consider the VD of background nodes like in (a). We only keep the nearest VD sites
of l (b). We obtain (c) by deleting sites which associated VD cells intersect the l row.
Arrows indicate the associated VD site of each foreground pixel of this row

3.2 Separable Computation of the I-BDT

To develop a separable process on I-grids, we use a similar structure as the
irregular matrix A associated to a labeled I-grid I introduced in [20]. This data
structure aims to organize the cells of the grid along the X and Y axis by
adding virtual cells centers (see Figure 4 for an example). We used it in our
previous work to adapt the separable E2DT algorithm of T. Saito et al. [17],
devoted to compute the I-CDT on I-grids. The irregular matrix contains as

(a) (b)

Fig. 4. Construction of the irregular matrix associated to the simple I-grid illustrated
in Figure 2. In (a), the extra node A(0, 2) of the matrix is depicted at the intersection
of the dotted lines, and nodes have the same value as the cell containing them. For the
I-BDT, we also need the shortest distance between a node in respect to its neighbour
nodes and the border of the cell containing it (b). Examples of values for border at-
tributes are also given along X (dashed lines) and Y (dotted lines). For instance, we
have HT (1, 1) = HB(1, 1) = 0 since this node coincides with a cell horizontal border.
We can also notice that HL(2, 3) 6= HR(2, 3)

many columns (respectively rows) as X-coordinates (Y -coordinates) in the grid.
These coordinates are stored in two tables TX and TY (and we denote n1 = |TX |
and n2 = |TY |). At the intersection of two X and Y coordinates, a node in A
has the same value as the cell containing it, and may represent the cell center
or not (i.e. this is an extra node, see Figure 4-a). The extra nodes are used to
propagate the distance values through the irregular matrix and then compute
a correct distance value for each cell center. To apply the I-BDT on this data
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structure, we also have to take into account the border and the size of the treated
cells. We thus add for each node A(i, j) border attributes along X and Y axis
that permit to propagate the distance values to cell borders through A. For
a node A(i, j) contained by the cell R in I, we denote HL(i, j) and HR(i, j)
attributes that represent respectively the minimum between the distance to the
left (right) border of R along X , and the distance to the neighbour node at the
left (right) position in A. In the same manner, we define HT (i, j) and HB(i, j) in
respect to the top (bottom) border of R and neighbour nodes at the top (bottom)
position in A (see Figure 4-b). Building the irregular matrix of an I-grid I can
be handled in O(n1n2) time complexity. More precisely, we first scan all the cells
of I to know the n1 columns and the n2 rows of A. Then, we consider each node
of A and we assign its background or foreground value and its border attributes.

Equation 3 can now be adapted on the irregular matrix with a minimization
process along the two axis (a proof is given in Appendix A of this report):

Proposition 1 (Separable I-BDT). Let A be the associated irregular matrix
of the 2-D I-grid I. Then the I-BDT of I can be decomposed in two separable
processes, and consists in computing the matrix B and C as follows:

B(i, j) = minx

{
min

(
|TX(i) − TX(x) − HR(x, j)|, |TX(x) − TX(i) − HL(x, j)|

)
;

x ∈ {0, ..., n1 − 1}, A(x, j) = 0
}
,

C(i, j) = miny

{
Gy(j); y ∈ {0, . . . , n2 − 1}

}
,

where Gy(j) is the flattened parabola given by:

Gy(j) =






B(i, y)2 + (TY (j) − TY (y) − HT (i, y))2 if TY (j) − TY (y) > HT (i, y)
B(i, y)2 + (TY (y) − TY (j) − HB(i, y))2 if TY (y) − TY (j) > HB(i, y)
B(i, y)2 else.

Fig. 5. Important features of a flattened parabola that is indeed the composition of
two half-parabolas (in dotted lines) and a constant function

This separable minimization process also permits to compute the I-CDT (Equa-
tion 2), if we assign all border attributes to zero. In this case, this transformation
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is equivalent to a minimization process of a 2-D quadratic form [20], and we con-
sider a set of classical parabolas along the Y axis, as in the regular case [17].
Here, a flattened parabola (see also Figure 5) is an ad-hoc function composed
by two half-parabolas and a constant function. It represents a constant distance
value from a node A(i, j) to its neighbour nodes and cell borders, and then in-
creases as a classical quadratic function beyond those limits. The computation
of matrix C in Proposition 1 thus consists in computing the lower enveloppe of
a set of flattened parabolas. This operation is possible since these functions are
monotone (composition of monotone functions), and there exist a single inter-
section or an infinity of intersections between two flattened parabolas. In the
regular case, E2DT algorithms based on a 2-D quadratic form minimization [8,
12, 17] are linear and correct, since the intersection between two parabolas Fα(y)
and Fβ(y) is clearly defined:

Proposition 2 (Intersection between two classical parabolas [8]). Let
Fα : R → R, y → g2

α + (α − y)2 and Fβ : R → R, y → g2
β + (β − y)2 be two

parabolas. The number of intersections is either one, or an infinity if they are
coincident, i.e. when gα = gβ and α = β.

This property is verified because parabolas are totally monotone functions [8].
It implies that we can compute the lower enveloppe of a set of parabolas since
we are able to order them. To proove that our algorithm is correct on I-grids, we
thus have to verify that this property is preserved. The following lemma enounce
the conditions so that two flattened parabolas intersect at a single point or an
infinity of points:

Lemma 1 (Intersection between two flattened parabolas). Let Gu and
Gv be two flattened parabolas given by:

Gu : R → R

y → Gu(y) =






g2
u + (u − y − lu1)

2 if u − y > lu1

g2
u + (y − u − lu2)

2 if y − u > lu2

g2
v else

and

Gv : R → R

y → Gv(y) =






g2
v + (v − y − lv1)

2 if v − y > lv1

g2
v + (y − v − lv2)

2 if y − v > lv2

g2
v else

where:

– gu, gv, lu1, lu2, lv1, lv2, u and v are positive or null real numbers;
– if u ≥ v ≥ 0, then u − lu1 ≥ v + lv2;
– if 0 ≤ u ≤ v, then u + lu2 ≤ v − lu1.

The number of intersections between these parabolas is either one, either an
infinity.



8 Antoine Vacavant et al.

Notice that the elements B(i, y), HT (i, y), HB(i, y) and TY (y) of Gy in Propo-
sition 1 respectively correspond to gu, lu1, lu2, and u of Gu. They also re-
spect the conditions given at the end of Lemma 1. For example, let Gy1

and
Gy2

be two flattened parabolas such that y1 ≥ y2, we can easily verify that
y1 − HB(i, y1) ≥ y2 + HT (i, y2) (see Figure 4 and Figure 5). The proof of this
lemma and a way to compute a valid intersection point are given in Appendix B
of this report.

3.3 Adaptation of R. Maurer et al. E2DT Algorithm on I-grids

The first stage of our method (first step of Algorithm 1) consists in scanning
along X and in initializing the distance of each node of the irregular matrix.
This is indeed a double linear scan for each row. Notice the use of HR and HL

attributes to propagate the distance to cells borders. At the end of this stage,
each node store a squared distance (line 14). In the second part of our algo-
rithm, we call the Voronoi IBDT function (Algorithm 2) to build a partial VD
intersected with each column i. As in the original algorithm [11], we use two
stacks storing real successive coordinates of treated sites (h), and their squared
distance (g). The first loop of this function (line 3) corresponds to the deletion
of hidden sites, thanks to the hidden by() predicate (Algorithm 3). In Algo-

(a) (b) (c)

Fig. 6. For the column chosen in (a), the last phase of Algorithm 2 consists in consider-
ing the lower enveloppe of a set of flattened parabolas (b). At the bottom of this plot,
background and foreground nodes are represented by black and white circles at the
corresponding Y -coordinate. Cell borders are also represented (vertical dashes). Black
squares represent where the cell centers are located along Y axis, and the associated
I-BDT value. We give in (c) the obtained I-BDT for this I-grid

rithm 2, we also use two additional stacks, denoted fT and fB to store the border
attributes and update them (line 6). Thanks to these stacks, the second stage
of our algorithm is achieved in linear time. By testing the value of l (line 7), we
know if we have to scan again the stacks and to update the distance values of
the nodes. Finally, we linearly scan the stacks to find the nearest border of the



Distance Transformation on Irregular Grids 9

Algorithm 1: Separable computation of the I-BDT inspired from [11].

input : the labeled I-grid I.
output: the I-BDT of I, stored in the irregular matrix C.
build the irregular matrix A associated to I;1

for j = 0 to n2 − 1 do {First stage along X}2

if A(0, j) = 0 then B(0, j)← 0;3

else B(0, j)←∞;4

for i = 1 to n1 − 1 do5

if A(i, j) = 0 then B(i, j)← 0;6

else7

if B(i− 1, j) = 0 then B(i, j)← TX(i)− TX(i− 1)−HR(i− 1, j);8

else B(i, j)← TX(i)− TX(i− 1) + B(i− 1, j);9

for i = n1 − 2 to 0 do10

if B(i + 1, j) < B(i, j) then11

if B(i + 1, j) = 0 then B(i, j)← TX(i + 1)− TX(i)−HL(i, j);12

else B(i, j)← TX(i + 1)− TX(i) + B(i− 1, j);13

B(i, j)← B(i, j)2;14

for i = 0 to n1 − 1 do {Second stage along Y }15

Voronoi IBDT(i);16

Algorithm 2: Function Voronoi IBDT() to build a partial VD along Y .

input : the column i of the irregular matrix B.
output: the I-BDT of each node of the column i stored in the matrix C.
l ← 0, g ← ∅, h← ∅, fT ← ∅, fB ← ∅;1

for j = 0 to n2 − 1 do2

if B(i, j) 6=∞ then3

while l ≥ 2 ∧ hidden by
`
g[l − 1], g[l],B(i, j), h[l − 1], h[l], TY (j)

´
do4

l← l − 1;5

l← l + 1, g[l]← A(i, j), h[l]← TY (j), fT [l]← HT (i, j), fB ← HB(i, j);6

if (ns ← l) = 0 then return;7

l ← 1;8

for j = 0 à n2 − 1 do9

while l < ns ∧ Gl(j) > Gl+1(j) do10

l← l + 1;11

A(i, j)← Gl(j);12

Algorithm 3: Predicate hidden by().

input : Y -coordinates of three points in R
2 denoted uy, vy , wy , and their squared

distance to the line L : y = r denoted d2
e(u, L), d2

e(v, L), d2
e(w, L).

output: is v hidden by u and w ?
a← vy − uy , b← wy − vy , c← a + b;1

return c× d2
e(v, L)− b× d2

e(u, L)− a× d2
e(w, L)− abc > 0;2
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A(i, j) current node (line 10), and this step indeed consists in considering the
lower enveloppe of a set of flattened parabolas {Gl}, given by (see also Figure 6):

Gl(j) =






g[l] + (TY (j) − h[l] − fT [l])2 if TY (j) − h[l] > fT [l]
g[l] + (h[l] − TY (j) − fB[l])2 if TY (j) − h[l] > fB[l]
B(i, y)2 else,

(4)

which is the adaptation of Proposition 1 with the stacks g, h, fT and fB. We
thus can enounce the following lemma, directly obtained from Proposition 1 and
Lemma 1:

Lemma 2. Algorithm 1, devoted to compute a separable I-BDT, is correct. More
precisely, (1) the first phase consists in computing a cell border based mono-
dimensional distance transformation along X axis, and (2) the minimization
process along Y axis computes the lower enveloppe of a set of flattened parabolas,
giving a correct distance map based on cells borders.

As a consequence, we have described a linear and correct I-BDT algorithm in
respect to the associated irregular matrix size, i.e. in O(n1n2) time complexity.
Our new contribution is easily extensible to higher dimensions: we still realize the
first step as an initialization phase, and for each dimension d > 1, we combine
results obtained in dimension d-1. If we consider a labeled d-D I-grid, which
associated irregular matrix size is n1 × · · · × nd, the time complexity of our
algorithm is thus in O(n1×· · ·×nd). In the next section, we present experiments
to show the interest of the I-BDT, and to point out that our algorithm is a very
efficient approach to compute both I-CDT and I-BDT of various classical I-grids.

4 Experimental Results

We first propose to present the result of our I-BDT algorithm for the binary
image depicted at the beginning of this report in Figure 1, digitized in various
classical I-grids in imagery. Table 1 illustrates I-BDT elevation maps where the
background and the foreground of the original image are independently repre-
sented with a regular square grid (D), a quadtree (qT) and a RLE along Y (L).
We can notice in this figure that the result of the I-BDT is independent of the

representation of the background. The distance values in the foreground region
are thus the same in the three elevation maps of a given column.

We now focus our interest on the execution time of our new algorithm, in
respect to our previous work [20]. We consider the three algorithms presented
in Table 2. The first algorithm represents the simple approach we discussed
in Section 2, which is hardly extensible to d-D treatments, and I-BDT compu-
tation. Algorithm 2 is described in [20] and is inspired from the quadradic form
minimization scheme of T. Saito et al. [17]. Thanks to the flattened parabola
definition, we can extend this algorithm to I-BDT, but with a non-optimal time
complexity, in respect to the irregular matrix size. Algorithm 3 is our new sepa-
rable transformation inspired from [11]. In Figure 7, we present the three chosen
images for our experiments, and in Table 3, we show the execution times for
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(a) noise (b) lena (c) canon

Fig. 7. For the images noise (100x100), lena (208x220), canon (512x512) we consider
in our experiments the associated I-grids (regular grid, quadtree decomposition and
RLE along Y scheme)

Table 1. Elevation maps representing the I-BDT of each I-grid. X and Y are the axis
of the image, and Z corresponds to the distance value. The foreground (columns) and
the background (rows) of the image are digitized independently. The color palette is
depicted on the right of the figure

Foreground

D qT L

B
a
c
k
g
r
o
u
n
d D

qT

L

Table 2. The three compared algorithms, and their associated time and space com-
plexities. We also check if an algorithm is extensible to d-D I-grids and what kind of
transformation it can perform (I-CDT, I-BDT)

Id. Algorithm Time Space d-D I-CDT I-BDT

1 Complete VD [20] O(n log nB) O(n) X

2 From T. Saito et al. [17, 20] O(n1n2 log n2) O(n1n2) X X X

3 From R. Maurer et al. [11] O(n1n2) O(n1n2) X X X
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these three algorithms, for I-grids built from three binary images. We have per-
formed those experiments on a mobile workstation with a 2.2 Ghz Intel Centrino
Duo processor, and 2 Gb RAM. We can first notice that our new contribution

Table 3. We present execution times (in seconds) for each algorithm for the I-CDT
(a) and the I-BDT (b) and for each I-grid. Number inside parenthesis in (b) are the
increasing rate in % between I-CDT and I-BDT execution times

(a) I-CDT

Image
Algorithm 1

D qT L

noise 0.255 0.104 0.053
lena 1.413 0.145 0.081

canon 36.236 0.273 0.234

Image
Algorithm 2

D qT L

noise 0.037 0.077 0.044
lena 0.192 0.376 0.245

canon 1.678 1.322 1.316

Image
Algorithm 3

D qT L

noise 0.046 0.065 0.038
lena 0.185 0.166 0.135

canon 1.134 0.485 0.585

(b) I-BDT

Image
Algorithm 2

D qT L

noise 0.047 (27) 0.100 (29) 0.054 (23)
lena 0.256 (33) 0.491 (31) 0.320 (31)

canon 2.248 (34) 2.107 (59) 2.020 (53)

Image
Algorithm 3

D qT L

noise 0.065 (42) 0.085 (31) 0.049 (29)
lena 0.258 (40) 0.209 (26) 0.170 (26)

canon 1.507 (33) 0.563 (16) 0.718 (23)

gives good results for I-CDT. Indeed, Algorithm 3 is the fastest one for dense
I-grids (regular grids or L for noise), and is very competitive for sparse I-grids
(e.g. near one half second for qT and L based on image canon). In the latter case
(canon), Algorithm 1 is slightly faster than our approach, but we recall that it
is hardly extensible to higher dimensions. Algorithm 2, which we developped in
our previous work [20], was interesting for dense grids, and is now overtaken by
Algorithm 3. For the I-BDT, Algorithm 2 and 3 suffer from an execution time
increase, mainly due to the integration of the complex flattened parabola. But
our contribution remains as the fastest algorithm, and the time increasing rate
is moderate for the tested grids. Large sparse I-grids like qT and L based on
canon are still handled in less than one second.

5 Conclusion and Future Works

In this report, we have proposed a new extension of the E2DT on I-grids based on
the background/foreground frontier, and independent of the background repre-
sentation. We have also developed a new separable algorithm inspired from [11]
that is able to efficiently compute the I-BDT thanks to the irregular matrix
structure. We have finally shown that our new contribution is adaptable to vari-
ous configurations of I-grids, with competitive execution time and complexities,
in comparison with our previous proposals.
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As a future work, we would like to develop the extension of the discrete me-
dial axis transform [3] on I-grids with our new definition. This would permit to
propose a centred simple form of a binary objet, independently of the represen-
tation of the background, and surely extensible to higher dimensions. As in this
document, we aim to propose a linear algorithm to construct an irregular medial
axis, in respect to the irregular matrix size.
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A Separability of the I-BDT

In this section, we focus our interest in prooving the Proposition 1 of this report.
It means that we have to make the relation between this separable process and
the I-BDT computation given in Equation 3.

Proposition 1 (Separable I-BDT) Let A be the associated irregular matrix
of the 2-D I-grid I. Then the I-BDT of I can be decomposed in two separable
processes, and consists in computing the matrix B and C as follows:

B(i, j) = minx

{
min

(
|TX(i) − TX(x) − HR(x, j)|, |TX(x) − TX(i) − HL(x, j)|

)
;

x ∈ {0, ..., n1 − 1}, A(x, j) = 0
}
,

C(i, j) = miny

{
Gy(j); y ∈ {0, . . . , n2 − 1}

}
,

where Gy(j) is the flattened parabola given by:

Gy(j) =






B(i, y)2 + (TY (j) − TY (y) − HT (i, y))2 if TY (j) − TY (y) > HT (i, y)
B(i, y)2 + (TY (y) − TY (j) − HB(i, y))2 if TY (y) − TY (j) > HB(i, y)
B(i, y)2 else.

Proof. We first recall that Equation 3 considers the set of segments S belonging
to the background/foreground boundary. As we consider I-grids, S contains only
vertical and horizontal segments. There is no points (or segments with a null-
length) in it because we suppose the e-adjacency between cells [2]. We denote
SV the set of vertical segments and SH horizontal ones. We now propose to write
Equation 3 given by

I−BDT(R) = min
s

{
d2

e(p, s); s ∈ S
}
, (3)

thanks to the sets SV and SH :

I−BDT(R) = min
{

min
sh

{
d2

e(p, sh); sh ∈ SH

}
, min

sv

{
d2

e(p, sv); sv ∈ SV

}}
. (4)

Equation 4 also means that the shortest distance to the background/foreground
boundary can be obtained by independently computing the distance along X to
the nearest segment of SV and the one along Y to the nearest segment of SH .
Hence, we now consider the two steps of Equation 4:

1. Compute min
sv

{
d2

e(p, sv); sv ∈ SV

}
(5)

2. Compute min
{

min
sh

{
d2

e(p, sh); sh ∈ SH

}
, min

sv

{
d2

e(p, sv); sv ∈ SV

}}
. (6)

and draw its relation with Proposition 1, thanks to the irregular matrix. This
data structure indeed allows us to treat an I-grid along the two axis (see for
example Figure 4 of this report). During the treatments we propose thereafter, we
also do not want to increase the size of the matrix, to keep interesting space and
time complexities in our proposed algorithm. We first consider the computation
of the shortest distance with the vertical segments.
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A.1 First Step along X Axis

Let I be a labeled 2-D I-grid, and A its associated irregular matrix of size n1×n2.
We consider in this section the nodes belonging to any row j ∈ {0, n2 − 1} of A.
This first step consists in finding the nearest segment sv ∈ SV of any node (i, j)
of A. As we work in one dimension, we thus have to find the nearest points of
(i, j) belonging to the background/foreground boundary. In the irregular matrix,
we add virtual border nodes to represent these points (see Figure 8). We now
discuss two main cases:

Fig. 8. For any node in a row j in A, we consider the nearest point belonging to
the background/foreground boundary. In this case, this point is obtained with the
background node (r, j)

– The nearest virtual border node (v, j) does not coincide with any extra node
of A. In this case, we consider the nearest background node on its left (l, j)
if (v, j) belongs to a right background cell border, or the nearest background
node on its right (r, j) if (v, j) belongs to a left background cell border. As
illustrated in Figure 8, these nodes are respectively on the left and on the
right of the (i, j) node. Suppose now that the nearest node to (i, j) is (l, j).
In this case, the attribute HR(l, j) represents the distance between (l, j) and
the right border of the cell containing it. The distance between (v, j) and
(i, j) is thus obtained with TX(i) − TX(l) − HR(l, j). In a similar way, if
(r, j) is the nearest node to (i, j), we obtain the distance between (i, j) and
the background/foreground boundary with TX(r) − TX(i) − HL(r, j) (see
Figure 8). Hence, a general way to compute the shortest distance between
(i, j) and all the virtual border nodes is to compute the minimal distance
d(x, i):

d(x, i) = min
(
|TX(i) − TX(x) − HR(x, j)|, |TX(x) − TX(i) − HL(x, j)|

)
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for any background node (x, j), i.e. A(x, j) = 0. If we suppose that (l, j) is
the nearest background node, we thus deduce that:

d(x, i) ≥ min
(
|TX(i) − TX(l) − HR(l, j)|, |TX(l) − TX(i) − HL(l, j)|

)

⇔ d(x, i) ≥ TX(i) − TX(l) − HR(l, j), ∀x ∈ {0, n1 − 1},A(x, j) = 0.

If (r, j) is the nearest background node, we obtain:

d(x, i) ≥ min
(
|TX(i) − TX(r) − HR(r, j)|, |TX(r) − TX(i) − HL(r, j)|

)

⇔ d(x, i) ≥ TX(r) − TX(i) − HL(r, j), ∀x ∈ {0, n1 − 1},A(x, j) = 0.

– The nearest virtual border node (v, j) coincides with an existing extra node
in A. Since this node belongs to a vertical cell border, we have HR(v, j) =
HL(v, j) = 0. With the notations given before, if (v, j) is on a right cell
border, the distance between (v, j) and (i, j) is thus

TX(i) − TX(v) − HR(v, j) = TX(i) − TX(l) − HR(l, j) = TX(i) − TX(l).

In a similar way, if (v, j) is located on a left cell border, we obtain

TX(v) − TX(i) − HL(v, j) = TX(r) − TX(i) − HL(r, j) = TX(r) − TX(i).

As a consequence, we have proposed in this section a formulation of the first
step of Equation 5 with the irregular matrix nodes. If we store the result of this
process in a new matrix B, we have shown that the computation of this distance:

min
sv

{
d2

e(p, sv); sv ∈ SV

}

for any cell center p can be obtained by:

B(i, j) = minx

{
min

(
|TX(i) − TX(x) − HR(x, j)|, |TX(x) − TX(i) − HL(x, j)|

)
;

x ∈ {0, ..., n1 − 1}, A(x, j) = 0
}
,

for any node A(i, j) of the irregular matrix. In practice, we do not have to add
virtual nodes in the implementation of the irregular matrix. These supplemental
nodes would have unnecessarily increase the size of the matrix. We now focus
our interest on the second phase given in Equation 6, along the Y axis, where
we compute the shortest distance with horizontal segments.

A.2 Second Step along Y Axis

We obtained in the previous phase the irregular matrix B, storing the short-
est distance between any node (i, j) and vertical segments of the back-
ground/foreground boundary. We now consider the nodes belonging to any col-
umn i ∈ {0, n1 − 1} of B. As in the regular case [17], we can integrate the
computation of the lower enveloppe of a set of parabolas to propagate the dis-
tance values along Y axis. In [20], we proposed to adapt this principle on an
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irregular matrix to compute the I-CDT. As in the previous phase, we consider
virtual border nodes in column i. The distance to horizontal segments could
thus be represented by classical parabolas on the existing nodes of the irregular
matrix, and on these new nodes. In this case, Equation 6 could be written as
in [20]:

C(i, j) = min
y

{
B∗(i, y)2 + (TY (j) − TY (y))2; y ∈ {0, ..., n2 − 1}

}
. (7)

In this equation, the term B∗(i, y)2 + (TY (j) − TY (y))2 represents a classical
parabola, and B∗ is the irregular matrix with virtual border nodes. Let us now
compare the representations of a background cell R

– in B∗ with classical parabolas on each (normal, extra or virtual border) node
(i, y) defined by

Fy(j) = B∗(i, y)2 + (TY (j) − TY (y))2,

– and in B with flattened parabolas on each (normal or extra) node (i, y),
defined by

Gy(j) =






B(i, y)2 + (TY (j) − TY (y) − HT (i, y))2 if TY (j) − TY (y) > HT (i, y)
B(i, y)2 + (TY (y) − TY (j) − HB(i, y))2 if TY (y) − TY (j) > HB(i, y)
B(i, y)2 else.

In B∗, as we consider a background cell, all the n nodes indexed
(i, y1), (i, y2), . . . , (i, yn) belonging to R have the same value B∗(i, yk)2 = 0, k ∈
{1, n}. Hence, parabolas represented on each node (see Figure 9-a) are aligned
along Z axis. Let us now consider a point of a parabola Fyk

(j), k ∈ {1, n}, thus
defined by (TY (j), (TY (j)−TY (yk))2. If k = n, then this point is lower bounded
by the flattened parabola Gyn−1

(j) associated with the node yk−1 = yn−1 in B,
since we have:

– If TY (j) − TY (yn−1) > HT (i, yn−1), then

Gyn−1
(j) = (TY (j) − TY (yn−1) − HT (i, yn−1))

2

⇔ Gyn−1
(j) = (TY (j) − (TY (yn−1) + HT (i, yn−1)))

2

⇔ Gyn−1
(j) = (TY (j) − TY (yn))2 = Fyn

(j),

because, by construction of the nodes border attributes, we have TY (yn−1)+
HT (i, yn−1) = TY (yn) (see Figure 9-b).

– If HT (i, yn−1) ≤ TY (yn−1) − TY (j) ≤ HB(i, yn−1), then

Gyn−1
(j) = 0 ≤ (TY (j) − TY (yn))2 = Fyn

(j).

– If TY (yn−1) − TY (j) > HB(i, yn−1), then

TY (j) < TY (yn−1) − HB(i, yn−1) ≤ TY (yn−1) + HT (i, yn−1) = TY (yn)

⇔ 0 ≤ TY (yn−1) − HB(i, yn−1) − TY (j) ≤ TY (yn) − TY (j)

⇔ 0 ≤ (TY (yn−1) − HB(i, yn−1) − TY (j))2 ≤ (TY (yn) − TY (j))2

⇔ 0 ≤ Gyn−1
(j) ≤ Fyn

(j).
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We can make similar reasonings if we study the first parabola in B∗ associated
with the node y1 (i.e. k = 1). In this case, we may show that the flattened
parabola Gy2

(j) in B lower bounds any points from the parabola Fy1
(j) in B∗.

If we consider a parabola Fyk
(j), k ∈ {2, n − 1}, we can also simply show

that for any Y -coordinate j, we have Gyk
(j) ≤ Fyk

(j). Our model thus permits
to represent the computation of the I-BDT distance beyond the borders of a
background cell. Indeed, imagine an infinity of background nodes between the
virtual border nodes in Figure 9-a. Hence, we should construct an infinity of
classical parabolas in B∗. Here, we choose to build flattened parabolas in B,
that are sufficient to bound them, and to correctly compute the I-BDT.

(a) (b)

Fig. 9. Instead of adding virtual border nodes and represent classical parabolas (a), we
use existing nodes and modelize flattened parabolas (b). We depict in (b) the values of
the attributes of a background node, and its link with its associated flattened parabola.
Points represented by squares belongs to the same parabola (associated with the virtual
border node y4), and are lower bounded by the same flattened parabola (associated
with the node y3). At the bottom of these plots, background nodes are represented by
black circles at the corresponding Y -coordinate. Cell borders are also represented with
vertical dashes

The justification of the model of flattened parabolas we have given for a
background cell can also be applied for any set of n ≥ 1 adjacent nodes indexed
(i, y1), (i, y2), . . . , (i, yn), where B(i, y1) = B(i, y2) = · · · = B(i, yn) ≥ 0. In a
more general point of view, using flattened parabolas for each node of B, instead
of classical parabolas, permits to compute the I-BDT, since they always lower
bound classical parabolas. Furthermore, in the next chapter, we proove that
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the intersection between two flattened parabolas can be determined (a single
intersection point or an infinity), which proove the correctness of our model.

A.3 Conclusion

We have thus proved that Equation 3 can be considered as a separable mini-
mization process, based on the irregular matrix structure. In Proposition 1, the
computation of matrix B consists in a minimization process along X axis, while
computing matrix C implies that we study the lower enveloppe of a set of flat-
tened parabolas along Y axis. The I-BDT definition can finally be compared as
a generalization of the E2DT on I-grids, to get a cell border based distance map.

�
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B Correctness of the I-BDT Separable Computation

This section aims to proove the Lemma 1 given in Section 3 of this report, and
a simple procedure to compute a valid intersection point between two flattened
parabolas. In the rest of this section, we name left branch of a classical parabola
Fα the set of points (y,Fα(y)) such that y ≤ α. In a similar way, the right branch
is the set of points (y,Fα(y)) such that y ≥ α. We need the following property
of parabola branches:

Proposition 3 (Test between two branches of a parabola). Let Fα and
Fβ be two parabolas, with β 6= α. If there exists an intersection point between
Fα and the left (respectively right) branch of Fβ, then there can not exist any
intersection between Fα and the right (left) branch of Fβ.

We now recall the lemma to be proved:

Lemma 1 (Intersection between two flattened parabolas) Let Gu and
Gv be two flattened parabolas given by:

Gu : R → R

y → Gu(y) =






g2
u + (u − y − lu1)

2 if u − y > lu1

g2
u + (y − u − lu2)

2 if y − u > lu2

g2
v else

and

Gv : R → R

y → Gv(y) =






g2
v + (v − y − lv1)

2 if v − y > lv1

g2
v + (y − v − lv2)

2 if y − v > lv2

g2
v else

where:

– gu, gv, lu1, lu2, lv1, lv2, u and v are positive or null real numbers;
– if u ≥ v ≥ 0, then u − lu1 ≥ v + lv2;
– if 0 ≤ u ≤ v, then u + lu2 ≤ v − lu1.

The number of intersections between these parabolas is either one, either an
infinity.

We can notice that a flattened parabola Gu is the composition of three distinct
parts:

– A constant function with g2
u value at the centre, largely bounded by u− lu1

and u + lu2. We name it base of Gu, and we denote it Bu;
– the left branch of the parabola given by g2

u + (y − u + lu1)
2 centred at the

point (g2
u, u − lu1). We denote the entire parabola Fu−lu1

(y) = F1
u(y), and

F̂1
u(y) is its left branch (its centre is excluded);
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– the right branch of the parabola given by (g2
u +(u− y− lu2)

2 centred at the
point (g2

u, u + lu2). We denote the entire parabola Fu+lu2
(y) = F2

u(y), and

F̂2
u(y) is its right branch (its centre is excluded).

We thus have Gu(y) = Bu ∪ F̂1
u(y)∪ F̂2

u(y), since the centres of the branches are
excluded.

Proof. We consider thereafter that gu ≥ gv and that v ≥ u (similar reasonings
may be done for others cases), and we study four different cases.

B.1 Case 1 (adjacency): gu = gv, u + lu2 = v − lv1, lu1 6= 0, lu2 6= 0,
lv1 6= 0, lv2 6= 0

Fig. 10. Illustration of case 1 of our proof. The right part of Gu, bF2
u, can not intersect

Gv because lu1, lu2 6= 0

Here, the bases of the parabolas have the same value, and intersect at one
extremity (since u + lu2 = v − lv1). By monotonicity, the right part of Gv can
not intersect Gu. Since the border attributes lv1, lv2 are not null, it can not cross
neither F̂1

u nor F̂2
u. The same is true of the left branch of F1

u with Gv. So, if
there exist any intersection, it concerns either between the constant parts of the
parabolas, or between F̂2

u and F̂1
v . But the later configuration would imply that

g2
u + (y − u − lu2)

2 = g2
v + (v − y − lv1)

2

⇔ g2
u + (y − u − lu2)

2 = g2
u + (−y + v − lv1)

2

⇔ (y − u − lu2)
2 = (−y + v − lv1)

2

⇔ y = u + lu2.

they are positive values. This implieps that the intersection between the two
branches is the point (u + lu2, g

2
u). This point is also the intersection between

the bases of Gu and Gv. As a consequence, in the case 1, the intersection between
the flattened parabolas is a single point.
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B.2 Case 2 (overlapping): gu = gv, and either
v = u + lu2, lv1 = lv2 = 0, or u = v − lv1, lu1 = lu2 = 0

We treat here a particular case of case 1, where one of the flattened parabola has
no border attributes. We thus have for example Gv = F2

v = F1
v = Fv if v = u+lu2

et lv1 = lv2 = 0. We consider this specific case, and configuration where Gu = Fu

may be treated in a similar way. As Gv = Fv, and since v = u + lu2, the right
parabola of Gu coincides with Gv, because

F2
u(y) = g2

u + (y − u − lu2)
2

⇔ F2
u(y) = g2

v + (y − v)2

⇔ F2
u(y) = Fv(y) = Gv(y).

Fig. 11. Illustration of case 2 of our proof. As the right parabola of Gu coincides with
Gv, there is an infinity of intersections

This naturally implies that there exist an infinity of intersections between
F̂2

u(y), the right branch of Gu, and Gv. To get a lower bound of this set of points,

we can not consider any intersection between Gv and F̂1
u(y) (left branch) because,

as lu1, lu2 6= 0, Gv only intersects the right branch of F1
u(y). By Proposition 3,

we deduce that Gv does not cross the left branch of F1
u(y), i.e. F̂1

u(y). The lowest
point thus belongs to Bu, and has coordinates (v, g2

u). We conclude the same if
we suppose that Gu = Fu (lu1 = lu2 = 0), and we obtain that F1

v (y) = Gu(y).
We can also suppose that u = v and lu1 = lu2 = lv1 = lv2 = 0. With these
conditions, we consider Gu = Fu and Gv = Fv = Fu as coincident classical
parabolas. As indicated in Proposition 2, they share an infinity of points. As
a consequence, flattened parabolas described in this case 2 have an infinity of
intersection points, with a infimum.
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B.3 Case 3 (general) : gu > gv

As we now suppose that v > u, the right branch of Gv (F̂2
v ) can not cross the

parabola Gu, by monotonicity (Proposition 2). Let now suppose for example that

F̂2
v intersects the right branch of Gu (i.e. F̂2

u). We have:

g2
u + (y − u − lu2)

2 = g2
v + (y − v − lv2)

2

⇔ g2
u − g2

v = (y − v − lv2)
2 − (y − u − lu2)

2,

and since gu > gv, we obtain

(y − v − lv2)
2 − (y − u − lu2)

2 > 0

⇔ y − v − lv2 > y − u − lu2

⇔ v + lv2 ≤ u + lu2.

But, in our definition of flattened parabola, we have v ≥ u ⇒ u + lu2 ≤ u− lv1,
and, moreover, u − lv1 ≤ v + lv2. Hence, we have both u + lu2 ≤ v + lv2 and
v + lv2 ≤ u + lu2, which leads to a contradiction since v > u. We can show in a
similar way that F̂2

v cannot intersect the others parts of Gu, i.e. its base Bu and

its left branch F̂1
u. We also know that the base of Gv (given by z = g2

v) cannot
cross Gu, because gu > gv. Indeed, the Y -coordinates of Gu points are all greater
than g2

u > g2
v.

As a consequence, we can now consider the intersection between the left
branch of Gv (i.e. F̂1

v (y)) and the parabola Gu. To determine where this branch

cuts Gv, we first compute the intersection between F̂1
v (y) and the line given by

z = g2
u:

g2
v + (v − y − lv1)

2 = g2
u

⇔ (v − y − lv1)
2 = g2

u − g2
v

⇔ v − y − lv1 =
√

g2
u − g2

v

⇔ y = v − lv1 −
√

g2
u − g2

v.

The square root operation is possible sicne we treat positive values. Thereafter,
we consider the different values of y that we denote ȳ to distinguish it with the
global variable y. We now study:

– the intersection between F̂1
v (y) and the line given by y = u − lu1 ;

– the intersection between F̂1
v (y) and the line given by y = u + lu2.

We can compute these crossings because we have v − lv1 ≥ u + lu2 ≥ u − lu1.
By monotonicity, we clearly have:

0 ≤ F̂1
v (u + lu2) ≤ F̂1

v (u − lu1)

⇔ 0 ≤ F̂1
v (u + lu2) − g2

v ≤ F̂1
v (u − lu1) − g2

v,
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The last inequality is true, and is due to the construction of the left branch of
Gv. We denote:

F1 = F̂1
v (u − lu1) − g2

v,

F2 = F̂1
v (u + lu2) − g2

v, with

0 ≤ F2 ≤ F1.

As gu > gv, we now compare these two values with g2
u − g2

v = G > 0 (an
illustration is depicted in Figure 12). For each case (in respect to the place of G

in the previous equation), we show a representation fo these three elements, to
make the reading easier. We also draw the relation with ȳ, and exactly determine
the intersection between the concerned flattened parabolas.

Fig. 12. Comparison between the values F1, F2 and G in our proof. We have here
g2

u − g2
v > bF1

v (u− lu1) − g2
v > bF1

v (u + lu2) − g2
v ⇔ G > F1 > F2 > 0, with F2 nearby

0. We can now determine the intersection between Gu and Gv. The case presented in
this figure (the left branch of Gv crosses the left branch of Gu) is considered in the
paragraph ”Case 3b”

Case 3a: F2 ≤ G ≤ F1 This double inequality implies that

F̂1
v (u + lu2) − g2

v ≤ g2
u − g2

v ≤ F̂1
v (u − lu1) − g2

v

⇔ (v − u − lu2 − lv1)
2 ≤ g2

u − g2
v ≤ (v − u + lu1 − lv1)

2

⇔ v − u − lu2 − lv1 ≤
√

g2
u − g2

v ≤ v − u + lu1 − lv1

⇔ v − u − lu2 − lv1 ≤
√

g2
u − g2

v ≤ v − u + lu1 − lv1

⇔ −u − lu2 ≤ −v + lv1 +
√

g2
u − g2

v ≤ −u + lu1

⇔ u − lu1 ≤ ȳ ≤ u + lu2.

Which clearly means that the parabola Gv intersects the base of Gu, Bu, and
more exactly at the point (ȳ, g2

u). So, Gv intersects the right branch of F1
u(y),
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Fig. 13. Illustration of case 3a of our proof. Gv intersects the right branch of F1
u(y)

(left classical parabola classique in dotted lines). And it crosses the left branch of F2
u(y)

(right classical parabola classique in dotted lines)

because u − lu1 ≤ ȳ. By monotonicity, (and Proposition 3), it cannot reach the
other branch of this parabola. In a similar way, Gv crosses the left branch of
F2

u(y), since ȳ ≤ u + lu2, and cannot cross its right branch. As a conclusion, Gv

crosses at a single point the parabola Gu in Bu, and any other intersection point
exists between them. Those remarks can be enounced when lu1 = lu2 = 0. In
this case, the intersection point is (u, g2

u), and Gv cannot cross the branches of
Gu (which exclude this point).

Case 3b : F2 ≤ F1 ≤ G We can enounce a double inequality as previously:

F̂1
v (u + lu2) − g2

v ≤ F̂1
v (u − lu1) − g2

v ≤ g2
u − g2

v

⇔ ȳ ≤ u − lu1 ≤ u + lu2.

The case where ȳ = u − lu1 directly implies that the parabola Gv crosses the
base of Gu. One can refer to the previous case 3a to compute the intersection
point. If ȳ < u − lu1, by the construction of flattened parabolas, it is clear that
the intersection between Gu and Gv only exists with the left branch of Gu (i.e.

F̂2
u(y)). Indeed, as ȳ < u − lu1, any crossing with the base Bu is impossible (it

is a constant function defined for u + lu2 ≥ y ≥ u− lu1). Then, suppose that Gv

(and more precisely its left branch F̂1
v (y)) crosses the right branch of Gu (F̂1

u(y)),
we have:

F̂2
u(y) = F̂1

v (y)

⇔ g2
u + (u − y − lu2)

2 = g2
v + (v − y − lv1)

2

⇔ g2
u − g2

v = (v − y − lv1)
2 − (u − y − lu2)

2.
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Fig. 14. Illustration of the case 3b in our proof. If ȳ < u − lu1, it is clear that the
intersection exists between Gv and the left branch of Gu. Hence, Gv can not intersect
any other part of Gu

But we ave supposed that F2 ≤ F1 ≤ G = g2
u − g2

v. We deduce that:

F2 = F1
v (u − lu2) − g2

v ≤ (v − y − lv1)
2 − (u − y − lu2)

2

⇔ (v − lv1 − u − lu2)
2 ≤ (−2y + v − lv1 + u + lu2)(v − lv1 − u − lu2)

⇔ v − lv1 − u − lu2 ≤ −2y + v − lv1 + u + lu2

⇔ y ≤ u + lu2,

which contradicts our hypothesis. Its is impossible that the intersection point
belongs to the right branch of Gu, defined on y > u + lu2, whereas we have
y ≤ u + lu2. Those remarks are valid if lu1 = lu2 = 0 (in this case, Gu is a
classical parabola, and we can also use the proposition 3). We can conclude that
there exists only one intersection point between the two parabolas Gu and Gv,
and its coordinates are (ȳ, F̂1

u(ȳ)).

Case 3c : G ≤ F2 ≤ F1 As the previous case, we bound ȳ thanks to the
following double inequality:

g2
u − g2

v ≤ F̂1
v (u + lu2) − g2

v ≤ F̂1
v (u − lu1) − g2

v

⇔ u − lu1 ≤ u + lu2 ≤ ȳ.

When y = u + lu2, we can apply the proof of the case 3a to compute the
intersection point between the parabola Gv and the base of Gu, i.e. Bu. If we
now suppose that u > u + lu2, we can notice that the intersection with Bu is
impossible, because this constant function is defined for u − lu1 ≤ y ≤ u + lu2.
Suppose now that the left branch of Gv (i.e. F̂1

v (y)) crosses the left branch of Gu
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Fig. 15. Illustration of the case 3c in our proof. If ȳ > u + lu2, it is clear that the
intersection exist between Gv and the right branch of Gu. Hence, Gv can not intersect
any other part of Gu

(i.e. F̂1
u(y)). We have:

F̂1
u(y) = F̂1

v (y)

⇔ g2
u + (u − y − lu1)

2 = g2
v + (v − y − lv1)

2

⇔ g2
u − g2

v = (v − y − lv1)
2 − (u − y − lu1)

2.

Since we have G ≤ F2 ≤ F1, we deduce that:

(v − y − lv1)
2 − (u − y − lu1)

2 ≤ F1 = F1
v (u − lu1) − g2

v

⇔ (v − lv1 − u + lu1)(−2y + v − lv1 + u − lu1) ≤ (v − lv1 − u + lu1)
2

⇔ −2y + v − lv1 + u − lu1 ≤ v − lv1 − u + lu1

⇔ y ≥ u − lu1,

which contradicts our hypothesis (an intersection exists on the left branch of Gu,
defined for y < u − lu1), and we obtain that y ≥ u + lu1. As a consequence,

there exists only one intersection between Gv and Gv, and is located at (ȳ, F̂2
u(ȳ).

Moreover, we obtain the same result if lu1 = lu2 = 0 (as in the case 3b).

B.4 Case of non-intersection between two flattened parabolas

In all the cases we treated up to now, there is a last configuration, where u = v,
lu1 = lu2 = lv1 = lv2 = 0 (which implies that these are two classical parabolas
Fu and Fv aligned along the Y axis), with gu > gv. This case is similar with
case 2, where gu, gv are strictly different values. Suppose that there exist an
intersection point between them, we have:

Fu = Fv

⇔ g2
u + (y − u)2 = g2

v + (y − v)2

⇔ 0 < g2
u − g2

v = (y − v)2 − (y − u)2 = 0,
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and we lead to a contradiction since gu > gv and u = v. We have depicted the
only case of empty intersection between two flattened parabolas.

Fig. 16. Illustration of non-intersection case between two flattened parabolas. If u = v,
lu1 = lu2 = lv1 = lv2 = 0, and gu > gv, then there is no intersection between them

B.5 Conclusion

Thanks to the different configurations we have treated (Cases 1, 2, 3 and 4), we
have proved that two flattened parabolas can share either one, or an infinity of
points. This property permits to directly conclude that Lemma 2 of this report
is correct. More precisely, the minimization process along Y axis computes the
lower enveloppe of a set of flattened parabolas, giving a correct distance map
based on cells borders.

As a conclusion, we now propose to describe a routine to compute a valid
intersection point between them, i.e. a point that then allows us to correctly
order them:

i) Compute the intersection point, with X-coordinate ȳ, between Gv and the
line given by z = g2

u ;
ii) If u − lu1 ≤ ȳ ≤ u + lu2, return the point (ȳ, g2

u) ;

iii) If ȳ ≤ u− lu1 ≤ u + lu2, return the intersection point between F̂1
v and F̂1

u ;

iv) If u − lu1 ≤ u + lu2 ≤ ȳ, return the intersection point between F̂1
v and F̂2

u.

The ȳ point introduced in step i) comes from Case 3 of the previous proof. As in
the regular case (and the use of classical parabolas), it is thus possible to order a
set of flattened parabolas, by considering their intersection points. This routine
is usefull to implement the adaptation of T. Saito et al.’s E2DT algorithm [17]
to compute the I-BDT.

�


