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Abstract—We present an original approach for the
computation of the Minkowski sum of a non-convex
polyhedron without fold and a convex polyhedron,
without decomposition and union steps—that con-
stitute the bottleneck of convex decomposition-based
algorithms. A non-convex polyhedron without fold is
a polyhedron whose boundary is completely recov-
erable from three orthographic projections defined
by three orthogonal basis vectors in R3. First, we
generate a superset of the Minkowski sum facets
using the concept of contributing vertices we accom-
modate for a non-convex–convex pair of polyhedra.
The generated superset guarantees that its envelope
is the boundary of the Minkowski sum polyhedron.
Secondly, we extract the Minkowski sum facets and
handle the intersections among the superset facets
by using 3D envelope computation. Our approach is
limited to non-convex polyhedra without fold because
of the use of 3D envelope computation to recover the
Minkowski sum boundary. Models with holes are not
handled by our method. The implementation of our
algorithm uses exact number types, produces exact
results, and is based on CGAL, the Computational
Geometry Algorithms Library.

Keywords—Minkowski sum; contributing vertices;
3D envelope computation

1. INTRODUCTION

The Minkowski sum of two polyhedra in R3 is a fun-
damental task for many applications, such as computer-
aided design and manufacturing [1], computer animation
and morphing [2], morphological image analysis [3],
robot motion planning [4], and solid modeling.

For two polyhedra A and B in R3, the Minkowski
sum polyhedron S is the result of the position vector
addition of all elements a and b coming from A and B
respectively: S = A⊕B = {a+ b|a ∈ A, b ∈ B}.

A second definition states that the Minkowski sum
of two polyhedra A and B is obtained by sweeping all
points of A by B, i.e. translating B such that its origin
(the common initial point of all its position vectors)
passes through all boundary points of A, and taking the
union of all resulting points (see Fig. 1):

A⊕B =
⋃
a∈A

Ba (1)
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Fig. 1. (a) Two polygons A and B. (b) Sweeping all boundary points
of A by B. (c) The Minkowski sum polygon A⊕B.

Where ∪ denotes the set union operation and Ba
denotes the set B translated by a position vector a.

A non-convex polyhedron is a polyhedron having
one or more reflex edges. An edge is called a reflex
edge if it exhibits a reflex angle, i.e. whose adjacent
facets comprise an angle of more than 180 degrees
w.r.t. (with respect to) the interior of the polyhedron
[5]. We call a non-convex polyhedron without fold
if its boundary is completely recoverable from three
orthographic projections defined w.r.t. three orthogonal
basis vectors in R3. Fig. 2.a illustrates in 2D the concept
of a polygon without fold. Note that the polygon in Fig.
2.b has a fold because there are no two orthographic
projections defined by two orthogonal basis vectors in
R2 that allow the complete recovery of its boundary.
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Fig. 2. (a) P is a non-convex polygon without fold. (b) P has a fold,
the edge e can not be recovered completely from any two orthographic
projections defined by an orthogonal basis in R2.

The Minkowski sum of a non-convex–convex pair of
polyhedra can be seen as a general offset problem of
a non-convex polyhedron and a convex one (which is
not necessarily a sphere). In this work, we took benefit
from the concept of contributing vertices we introduced
in [6] and propose a novel algorithm for the computation
of the Minkowski sum of a non-convex polyhedron
without fold and a convex polyhedron. We show that
we can generate a superset of the Minkowski sum facets
and extract the exact Minkowski sum boundary by 3D
envelope computation. Therefore, we avoid convex de-
composition, union, and even convex hull computation.



The rest of this paper is organized as follows. A
literature review is presented in section II. In section
III, we describe briefly the Contributing Vertices-based
Minkowski Sum (CVMS) algorithm for convex polyhe-
dra. After that, we present in section IV an algorithm
exploiting the concept of contributing vertices in order to
generate a superset of the facets of the Minkowski sum
of a non-convex–convex pair of polyhedra. In section
V, we show how we can extract the Minkowski sum
polyhedron from the superset of facets generated in the
previous step. Finally, we present a complexity study, a
performance benchmark, and some results.

2. LITERATURE REVIEW

The Minkowski sum of two convex polyhedra A
and B is obtained by performing the vector addition
of all points of A and B and computing the convex
hull of the resulting points. This process takes O(mn)
time for polyhedra with m and n features. For two
non-convex polyhedra, the most common approach is
based on convex decomposition of polyhedra. It takes
O(m3n3) time [7] to compute the sum by decomposing
each non-convex polyhedron into convex pieces [5],
computing the pairwise Minkowski sums of all possible
pairs of convex pieces, and performing the union of
the pairwise Minkowski sums [8]. The main bottleneck
of this approach is the union step which is very time-
consuming.

Another decomposition method was proposed by
Evans et al. [9]. The authors decomposed the boundary
of the summands into affine cells (instead of convex
pieces), computed the pairwise Minkowski sums of
transversal affine cells, and performed their union. The
decomposition into affine cells yields more pieces than
does the decomposition into convex pieces.

Recently, Hachenberger presented the first exact and
robust implementation of a convex decomposition-
based Minkowski sum algorithm [10] that performs in
O(m3n3) time for polyhedra with m and n features.
He implemented an optimal convex decomposition al-
gorithm similar to that proposed by Chazelle [5] and
computed the union of the pairwise Minkowski sums
through the use of Nef polyhedra [11].

To avoid drawbacks related to convex decomposition-
based approaches, Varadhan and Manocha [12] approx-
imated the union of the pairwise Minkowski sums using
an adaptively subdivided voxel grid. They used isosur-
face extraction and guaranteed the same topology as the
exact Minkowski sum. Recently, Lien [13] used a point-
based representation instead of the mesh-based one. He
constructed a point set by adding all points from two
point sets uniformly sampled from the boundary of two
polyhedra. He used three filters (a collision detection,
normal, and octree filter) to discard inner points and
showed several applications of the point-based repre-
sentation. In the worst case (when the summands are
convex), the point-based approach has a time complexity
of O(mnTfilter), where m and n are the sizes of the

point sets sampled from the summands and Tfilter is
the time complexity of filtering a single point.

Some dual space-based approaches have been inves-
tigated for the computation of the Minkowski sum.
Ghosh [14] presented a unified computational frame-
work for the Minkowski sum of polygons and polyhedra.
Polyhedra are represented in a dual space—the slope
diagram. The sum polyhedron results from the merging
of two slope diagrams. The existent implementations of
slope diagram-based algorithms work only for convex
polyhedra. Other slope diagram variants can be found
in [6], [15], [16], [17].

Guibas et al. [18], [19] defined the operation of con-
volution on planar tracings in 2D. Basch et al. [20] ex-
tended this definition to polyhedral tracings and used it
to generate a superset of the Minkowski sum. They used
arrangement computations to extract the exact boundary
of the Minkowski sum. Their algorithm computes the
convolution Q of two polyhedral tracings of size m and
n in an output-sensitive time O(kα(k)log3k), where k
is the size of the convolution Q and α(k) is the familiar
inverse Ackermann function. Nevertheless, at the best
of our knowledge, the convolution-based approach for
polyhedra has not been yet implemented.

3. OVERVIEW OF THE CVMS ALGORITHM FOR
CONVEX POLYHEDRA

Let A and B be two convex, closed, and two-manifold
polyhedra. A is composed of fA facets, eA edges, and
vA vertices. B is composed of fB facets, eB edges,
and vB vertices. We stated in [6] that the Minkowski
sum polyhedron S = A ⊕ B is a convex polyhedron
composed of three types of facets: fA facets with
supporting planes parallel to those of the facets of A,
these facets are named the “translated facets” of S; fB
facets with supporting planes parallel to those of the
facets of B, these facets are named the “corner facets”
of S; and at most eAeB facets that result from the
Minkowski sum of two non-parallel edges of A and B,
these facets are named the “edge facets” of S.

The three categories of facets are obtained from the
facets of A and B by computing their contributing
vertices. The concept of contributing vertices is defined
below and illustrated in Fig. 3. Further details can be
found in [6].

facet f

outer normal n
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contributing vertex associated to f

translated facet

origin of B

Fig. 3. The concept of contributing vertices. (a) Two convex
polyhedra A and B. (b) The contributing vertex associated to a
particular facet f of A is the vertex of B which is farthest from
the supporting plane of f .
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Definition 1: the contributing vertex vk,B of a par-
ticular facet fi,A with an outer normal ni,A is the
vertex of B which is at maximal distance away from
the supporting plane of fi,A. Formally, the contributing
vertex vk,B of a particular facet fi,A satisfies:

〈vk,B , ni,A〉 = max
R
〈vl,B , ni,A〉 ∀l = 1, 2, ..., vB (2)

Where 〈., .〉 denotes the scalar product.
The contributing vertex vk,A of a particular facet fi,B

having an outer normal ni,B is defined in a similar
manner by interchanging A and B in equation 2. For
some facets of A and B, we can find many contributing
vertices due to the fact that these contributing vertices
are at the same (maximal) distance away from the
supporting planes of the considered facets.

For each facet fi,A, if it has one contributing vertex,
the corresponding translated facet is obtained by a
translation of fi,A according to a position vector starting
from coordinates origin O and ending at the contributing
vertex vk,B of fi,A. If it has two contributing vertices,
the corresponding translated facet is obtained by a planar
Minkowski sum of fi,A and the edge of B incident to the
two contributing vertices. Finally, if fi,A has more than
two contributing vertices, the corresponding translated
facet is obtained by a planar Minkowski sum of fi,A
and the facet of B incident to the contributing vertices
associated to fi,A. The corner facets are obtained in the
same manner from the contributing vertices associated
to the facets of B. So the translated facets of A⊕B are
corner facets of B ⊕A and vice-versa.

The edge facets of the sum polyhedron are obtained
by sweeping all edges of A by B. Because not all facets
resulting from this sweep lie on the boundary, we used
two criteria to retain only valid ones. So for each edge
ei,A, the first criterion is a visibility criterion. It enables
to find horizon edges of B w.r.t. the direction defined by
the edge ei,A. The second criterion of normal orientation
selects among the horizon edges, those that are valid for
the computation of edge facets. We will revisit these two
criteria in more depth in section IV-B.

We also gave two important properties. The first
property states that if an edge of A or B is incident to
facets having at least one common contributing vertex,
then this edge will never contribute in any edge facets
construction and can be simply ignored. The second
property states that each facet from A or B contributes
only once in the sum polyhedron. These two properties
improve significantly the performance of the CVMS
algorithm by reducing the number of facets and edges
to be considered when computing translated, corner, and
edge facets.

We have considered in the previous paragraphs that
the origin of B coincides with the coordinates origin
O. If the origin of B is any other point c in R3,
then it suffices to take the Minkowski sum polyhedron
computed with O as an origin of B and to translate it
by a position vector starting from c and ending at O.

For convex polyhedra A and B, the CVMS algorithm
has a worst-case time complexity of O(fAvB +fBvA+
fA + fB + eAeB).

4. ADAPTATION OF THE CONTRIBUTING VERTICES
CONCEPT AND GENERATION OF THE MINKOWSKI

SUM FACETS SUPERSET

In this section, we take benefit from the concept of
contributing vertices and show how we can use it to
develop a novel algorithm for the computation of a
superset of the Minkowski sum facets of a non-convex–
convex pair of polyhedra. Throughout the rest of the
paper, A denotes the non-convex polyhedron and B
denotes the convex polyhedron.

4.1 Adaptation of the CVMS properties for a non-
convex–convex pair of polyhedra

The first property of the CVMS algorithm for convex
polyhedra states that if an edge of A or B is incident to
facets having at least one common contributing vertex,
then this edge will never contribute in any edge facets
construction and can be simply ignored. For non-reflex
edges of A, this property remains true because the
corresponding facets of the sum are translations of the
two facets w.r.t. the common contributing vertex and are
incident to the same edge of the sum polyhedron.

An important property of the facets which are
incident to the same reflex edge is that their outer
normals are oriented towards each other. Therefore, the
corresponding translated facets which are generated by
translations in the directions of their two outer normals
collide. We conclude that there are no edge facets
generated by reflex edges since they will necessarily lie
inside the sum polyhedron.

Property 1: If two adjacent facets fi,A and fj,A are
either incident to a reflex edge or they have at least
one common contributing vertex, the edge ek,A shared
by these adjacent facets will never contribute in any edge
facets construction and can be simply ignored.

Property 1 is not applicable to any two adjacent facets
fm,B and fn,B having at least a common contributing
vertex (as done for convex polyhedra). Since A is a non-
convex polyhedron, computing the contributing vertices
associated to the facets of B is not convenient. A typical
case occurs when two vertices vi,A and vj,A of A are
contributing vertices of a particular facet fk,B but they
are not incident to the same edge of A (this configuration
is unfeasible for convex polyhedra but it is a valid one
for non-convex ones). In this case, if we consider that
the corner facet is the planar Minkowski sum of fk,B
and the edge incident to vi,A and vj,A (as done in
corner facets determination step for convex polyhedra),
we will introduce a facet that is not by definition in the
Minkowski sum polyhedron (since there is no edge of
A connecting vi,A and vj,A). So, we will not compute
contributing vertices for the facets of B.
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The second property of the CVMS algorithm for
convex polyhedra states that each facet of A or B
contributes only once in the Minkowski sum polyhedron
S (a proof can be found in earlier works [2], [14],
[15]). Suppose that the non-convex polyhedron A
is decomposed into convex polyhedra A1, ..., An.
This implies that A ⊕ B =

⋃
i=1,...,n (Ai ⊕B).

Since there is no facet of A which appears twice in
Ai and Aj (except facets introduced by the walls
used when decomposing polyhedra), we conclude
that each facet of A contributes only once in the
Minkowski sum A ⊕ B. In contrast, B (and thus each
of its facets) appears in each pairwise Minkowski sums
Ai⊕B. So, each facet of B contributes more than once.

Property 2: Each facet of the non-convex polyhedron
A contributes only once while each facet of the convex
polyhedron B contributes more than once in A⊕B.

After the two properties related to the contributing
vertices concept have been adapted to our scenario, it
remains to generate the translated, edge, and corner
facets of A⊕B.

4.2 Construction of the Minkowski sum facets superset

Since B is a convex polyhedron, the translated
facets determination step is the same as for two convex
polyhedra except that the facets of B contribute many
times.

(1) Translated facets determination: for each facet
fi,A, compute its contributing vertices vk,B (see equa-
tion 2).
• If there are more than two contributing vertices,

there exists a facet fj,B incident to the contributing
vertices associated to fi,A and which lies on a
supporting plane parallel to that of fi,A. The corre-
sponding translated facet is the planar Minkowski
sum fi,A⊕ fj,B . The facet fj,B will be considered
in the corner facets determination step since it
contributes more than once (see property 2 above).

• If there are exactly two contributing vertices, there
is an edge ej,B incident to the two contributing
vertices associated to fi,A and which lies on a
supporting line parallel to the supporting plane of
fi,A. The resulting translated facet is the planar
Minkowski sum fi,A ⊕ ej,B .

• If there is only one contributing vertex vk,B ,
the corresponding translated facet is computed by
translating the facet fi,A by a position vector start-
ing at coordinates origin O and ending at vk,B .

An example of a non-convex polyhedron A and a
convex polyhedron B is depicted in Fig. 4.a and 4.b
respectively. The translated facets of A⊕ B are shown
in Fig. 4.d.

For the edge facets determination step, we ignore
reflex edges and consider the fact that no contributing
vertices are computed for the facets of B (since A is a

(a)                  (b)                 (c)

(d)                  (e)                 (f)

Fig. 4. (a) A non-convex polyhedron A. (b) A convex polyhedron
B. (c) The entire superset of facets of the Minkowski sum A ⊕ B.
(d) The translated facets of A⊕B. (e) The corner facets of A⊕B.
(f) The edge facets of A⊕B.

non-convex polyhedron).

(2) Edge facets determination: for each non-reflex
edge ei,A incident to facets having distinct contributing
vertices, find the horizon edges of B (edges separating
invisible facets from other facets of B) w.r.t. the visibil-
ity direction ei,A. This resumes to find invisible facets
fj,B having outer normals nj,B that satisfy:

〈ei,A, nj,B〉 > 0 (3)

• For each horizon edge ek,B : an edge facet ei,A ⊕
ek,B is added to the sum polyhedron S if its outer
normal orientation ni,k = ei,A× ek,B lies between
the two outer normal orientations n1,A and n2,A of
the facets f1,A and f2,A incident to the edge ei,A
(n2,A follows n1,A in a counterclockwise order).
This is equivalent to: 〈n1,A × ni,k, ei,A〉 < 0 and
〈ni,k × n2,A, ei,A〉 < 0.

The edge facets of the example we considered above
are depicted in Fig. 4.f.

Since A is a non-convex polyhedron, it is not possible
to compute the contributing vertices associated to the
facets of B in a global fashion. Therefore, we will
consider that A is the union of several convex features
and use the contributing vertices concept indirectly
and locally throughout each convex feature. By convex
features, we mean edges and vertices of A satisfying
some conditions.

Definition 2: a non-reflex edge ei,A is called an elevated
edge w.r.t. a direction defined by a vector u if u lies
between the two outer normal orientations nj,A and nk,A
of the facets fj,A and fk,A incident to the edge ei,A
(nj,A follows nk,A in a counterclockwise order w.r.t a
view along the oriented edge ei,A towards its end; see
Fig. 5.a). Formally, an elevated edge ei,A w.r.t. a vector
u satisfies:
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〈nj,A × u, ei,A〉 < 0 and 〈u× nk,A, ei,A〉 < 0 (4)

ei,A

nj,A

nk,A

fk,A fj,A

nk,A nj,A

u1

u2

(a) (b)

Fig. 5. (a) A non-reflex edge ei,A. (b) A 2D view in the plane
perpendicular to ei,A. The edge ei,A is elevated w.r.t. u1 but it is not
an elevated edge w.r.t. u2.

Definition 3: A vertex vi,A is called a non-reflex
vertex if each of its incident edges are non-reflex
edges.

Definition 4: A vertex vi,A is called an elevated vertex
w.r.t. a direction defined by a vector u if it is a non-reflex
vertex and if it satisfies the following equation:

〈vi,A, u〉 = max
R
〈vj,A, u〉 ∀j = 1, 2, ..., |vi,A| (5)

Where |vi,A| denotes the valence of the vertex vi,A,
i.e. the number of edges incident to it. vj,A, j =
1, 2, ..., |vi,A| are the 1-ring neighbors of vi,A (vertices
sharing edges that are incident to vi,A).

An elevated vertex is depicted in Fig. 6.a. If we
take the opposite planes to the supporting planes of
the facets fk,A, k = 1, 2, ..., |vi,A| incident to the vertex
vi,A, then their intersection will define a frustum with
apex vi,A (see Fig. 6.b). An equivalent definition of the
elevated vertex can be formulated as follows: a vertex
vi,A is an elevated vertex w.r.t. the direction defined by
a vector u if u belongs to the frustum resulting from the
intersection of the planes opposite to those supporting
the facets incident to vi,A.

vi,A

v1,A

v2,A

v6,A

v5,A

v3,A

v4,A

u

(a) (b)

apex vi,A

f1,A
f2,A

f3,A

f4,A

u

f5,A

f6,A

frustum

Fig. 6. (a) An elevated vertex vi,A w.r.t. the direction defined by
the vector u. (b) A frustum created by the intersection of the planes
opposite to those supporting the facets f1,A, f2,A, ..., f6,A incident
to the vertex vi,A. The vector u belongs to the created frustum.

Now, if we sweep B by A in order to compute
corner facets, the features of A that are considered

are those having normal orientations coinciding with
the orientations of the outer normals of the facets of
B. So, the corner facets determination step is as follows:

(3) Corner facets determination: for each facet fi,B
of B having an outer normal ni,B :
• If there is an edge ej,A of A which is elevated w.r.t.
ni,B and which lies on a supporting line parallel to
the plane supporting fi,B , then the two vertices of
A incident to ej,A are considered as local contribut-
ing vertices of fi,B . The resulting corner facet is
the planar Minkowski sum fi,B ⊕ ej,A.

• If there is a vertex vk,A of A which is an elevated
vertex w.r.t. ni,B , the vertex vk,A is a local con-
tributing vertex associated to fi,B . So the corre-
sponding corner facet is computed by translating
the facet fi,B by a position vector pointing from
coordinates origin O and ending at vk,A.

Finally, the corner facets of our example are shown
in Fig. 4.e. The entire superset of the Minkowski sum
facets is depicted in Fig. 4.c.

5. EXTRACTION OF THE MINKOWSKI SUM
POLYHEDRON FROM THE SUPERSET OF MINKOWSKI

SUM FACETS

The process of construction of the superset of the
Minkowski sum facets is valid for any non-convex–
convex pair of polyhedra. A view from outside the super-
set of facets in any direction will always show a closed
polyhedron. Nevertheless, the intersections among these
facets must be handled in order to keep only portions
of them lying completely on the boundary of the sum
polyhedron.

In this work, we are restricted to the special class of
non-convex polyhedra without fold we defined in section
I. So, the process we will explain below is only valid for
a non-convex polyhedron without fold A and a convex
polyhedron B.

This definition of polyhedra without fold characterizes
a class of non-convex polyhedra that can be projected
into three planes having u, v, and w as outer normals
such that each facet can be completely recovered from
these orthographic projections. Note that the star-shaped
polyhedra class is a subset of the non-convex polyhedra
without fold class (the non-convex polygon without fold
P in Fig. 2.a is not a star-shaped polygon because there
is no point a ∈ P such that the line segment ab ⊂
P | ∀b ∈ P ).

To extract the Minkowski sum facets from the su-
perset already generated, it is sufficient to compute the
lower and upper 3D envelopes of the superset of facets
w.r.t. each basis vector u, v, and w, and to take the union
of the resulting envelopes. This guarantees the complete
recovery of all facets of the Minkowski sum polyhedron
S and at the same time, the handling of the intersections
and the elimination of patches of facets that do not lie on
the boundary of S (they will not be visible from outside
S).
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The computation of lower and upper envelopes in-
volves the computation of minimization and maximiza-
tion diagrams. The minimization (or maximization) di-
agram for a set σ of xy-monotone surfaces is the
subdivision of the xy-plane into cells, such that the
identity of the surfaces that induce the lower (or upper)
diagram over a specific cell of the subdivision is the
same. Further details about lower and upper envelopes
can be found in [21].

The principle of our Minkowski sum boundary extrac-
tion approach is revealed by algorithm 1. It is explained
in Fig. 7 for 2D polygons. In 2D, we speak about x-
monotone curves (intersecting each line parallel to the
y-axis at a single point at most) and their envelopes.
So, the minimization and maximization diagrams are
subdivisions of the x-axis. Fig. 7.a depicts a typical
superset of edges (with self intersections) of the Min-
kowski sum of a non-convex polygon without fold and
a convex polygon. In order to extract the boundary
of the Minkowski sum polygon, we consider the two
orthogonal vectors u and v. In Fig. 7.b, the superset
of faces (or edges of the polygon) is rotated by 90◦

counterclockwise in order to have u coincident with y-
axis and the lower and upper envelopes are computed. At
this stage, some parts of the boundary of the Minkowski
sum are not yet extracted from the superset of edges. The
computed envelopes are rotated again to return to their
original positions (Fig. 7.c). In Fig. 7.d, no rotation of
the superset of edges is needed since v coincides with y-
axis, the lower and upper envelopes are also computed.
Finally, the last step is to perform the merge of the lower
and upper envelopes computed w.r.t. u and v (see Fig.
7.e) and to compute their union in order to obtain the
Minkowski sum polygon depicted in Fig. 7.f.
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Fig. 7. An illustration of the Minkowski sum boundary extraction
algorithm in 2D.

Because the envelopes computation time depends on
the number of surfaces involved, we use a trick to
split the superset of facets into two sets, one of them
is used for the lower envelope computation and the
other for the upper envelope computation. These two
sets are denoted lower candidates and upper candidates
respectively. Since the Minkowski sum polyhedron we
want to extract is closed and since the lower and upper

envelopes are always contiguous planar maps (without
holes), a facet fi having outer normal orientation ni
oriented outside the considered z-axis (u, v, or w) will
be hidden by other facets having outer normals oriented
towards the z-axis when computing the upper envelope.
So, ignoring this facet will eliminate some computation
overhead without affecting correctness of the overall
algorithm.

Therefore, if we want to compute the envelopes when
u is coincident with the z-axis, we put a particular facet
fi in the upper candidates set if its outer normal ni
is oriented towards u, i.e. 〈ni, u〉 > 0. Similarly, we
put fi in the lower candidates set if its outer normal
ni is oriented outwards u, i.e. 〈ni, u〉 < 0. If the
outer normal ni of a particular facet fi is perpendicular
to the considered z-axis (〈ni, z〉 = 0), we simply
ignore this facet from both lower and upper envelopes
computation since it will be automatically recovered
when considering the other z-axes. The same reasoning
is applied when v or w are considered as z-axis.

So, given a superset F = (f1, f2, . . . , fn) of the
Minkowski sum facets of a non-convex polyhedron A
without fold and a convex polyhedron B, we denote
the upper and lower candidates as Cupper and Clower
respectively. U (Cupper) and L (Clower) denote the com-
puted upper envelope for Cupper and the computed
lower envelope for Clower respectively. V = {u, v, w}
denotes the set of three orthogonal vectors used for
computing envelopes. The algorithm of the extraction
of Minkowski sum polyhedron S from F is as follows:

Algorithm 1 Extraction of the Minkowski sum bound-
ary from the superset of facets
Require: a superset of the Minkowski sum facets F and

a set of basis vectors V
Ensure: the Minkowski sum polyhedron S

1: for each basis vector vi ∈ V, i = 1, 2, 3 do
2: clear lower and upper candidates Cupper and

Clower
3: get Cupper and Clower
4: compute the upper envelope U(Cupper)
5: compute the lower envelope L(Clower)
6: if S is empty (i = 1) then
7: add the upper envelope U(Cupper) to S
8: add the lower envelope L(Clower) to S
9: else

10: compute the union of S and the upper envelope
U(Cupper) (S ← S ∪ U(Cupper))

11: compute the union of S and the lower envelope
L(Clower) (S ← S ∪ L(Clower))

12: end if
13: end for

6. IMPLEMENTATION AND PERFORMANCE

In this section, we describe our algorithm’s implemen-
tation. We also give a complexity study, a performance
benchmark, and present some results.
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TABLE 1
PERFORMANCE BENCHMARK OF OUR ALGORITHM AND THE NUMBER OF FACETS OF THE MINKOWSKI SUM COMPUTED FOR SEVERAL

POLYHEDRA.

Operands (facets number) Runtime(sec.)
A (non-convex without fold) B (convex) Superset computation Envelope extraction Overall time Number of facets of A⊕ B

Star(24) IcosiDodeca.(32) 0.172 6.953 7.125 320
L(20) Sphere3(320) 0.391 10.250 10.641 527

Star(24) Sphere3(320) 0.454 29.094 29.548 1120
Rabbit(2000) Sphere3(320) 25.188 384.937 410.125 6155
Rabbit(10000) Sphere2(80) 34.782 1163.924 1198.706 11225

6.1 Implementation
For the implementation of our algorithm, we used

C++ and CGAL [22]. The exactness of the result is
guaranteed through the use of the exact number types
provided by the GNU Multi Precision (GMP) library
[23]. We also used the lazy kernel adapter [24], which
speeds up exact computations.

6.2 Complexity study
The first part of our algorithm aims at producing a

superset of the Minkowski sum facets. So, the compu-
tation of the contributing vertices for the fA facets of
the non-convex polyhedron A requires O(fAvB) time.
The determination of translated facets is done directly
from the computed contributing vertices in O(fA) time.
The computation of the edge facets takes at most
f(eAeB) time since not all edges will be considered.
Finally, the computation of the corner facets requires
O(fBvA + fBeA) time. Note that the enumeration of
the elevated vertices of A w.r.t. a direction defined by
the outer normal of a particular facet of B is linear to
the number of vertices of A and the maximum valence
on the vertices of A (this factor is considered constant
and does not appear in the time complexity of the
corner facets determination step). Taking the sum of
these partial time complexities leads to a worst-case time
complexity of O(fAvB + fA + fBvA + fBeA + eAeB)
for the computation of the superset of Minkowski sum
facets.

The complexity of the lower/upper envelope of a
set of surfaces is defined as the complexity of its
minimization/maximization diagram [21]. For n surface
patches in R3, it takes at most O(n2+ε) time to compute
their lower or upper envelope (for any ε > 0) [21].
Therefore, the complexity of the CVMS algorithm is
the addition of the complexities of the superset facets
construction and the envelope computation. So, it takes
O(fAvB +fA+fBvA+eAeB +f2+ε

F ) time to compute
A⊕B where fF is the number of facets of the superset.
Note that the combinatorial complexities of the union
operation, the envelope rotation, and the lower/upper
candidates computation are ignored in comparison to the
combinatorial complexity of the envelope computation.

Although the quadratic complexity of the CVMS
algorithm may seem high, it should be viewed in context
of the high complexity of the convex decomposition-
based approach (O(v3

Av
3
B)) which has been recently

implemented [10].

6.3 Performance benchmark and results

The experiments where done on a 2 GB RAM, 2.2
GHZ Intel Core 2 Duo personal computer. Table 1 gives
some results and run-times of our algorithm on several
polyhedra. Some models computed by our algorithm are
depicted in Fig. 8.

Table 1 indicates that our algorithm works well with
small as with larger models having few thousand facets
or tens of thousands of facets. The run-times are reason-
able when considering the use of exact number types
which are slower than built-in ones. As an example,
our algorithm computes the Minkowski sum of a rabbit
model having 2000 facets and a sphere having 320
facets in less than 7 minutes (410.125 seconds) and the
Minkowski sum polyhedron has 6155 facets. The same
computation took 22 minutes (1293.94 seconds) when
performed with the convex decomposition implementa-
tion of Hachenberger [10]. The computation of the union
of the 3D envelopes is the most time consuming step in
the process. In contrast, the generation of the superset
of Minkowski sum facets is a quick process because the
only facets computed in this step are those which are
relevant for the Minkowski sum boundary extraction.

(a)

(b)

(c)

Fig. 8. Minkowski sum examples. From left to right: the polyhedron
A, the polyhedron B, and the Minkowski sum polyhedron A⊕B. (a)
The Minkowski sum (6155 facets) of the rabbit model (2000 facets)
and a sphere (320 facets). (b) The Minkowski sum (1893 facets) of the
hand model (1000 facets) and a cube (6 facets). (c) The Minkowski
sum (4440 facets) of the bunny model (1500 facets) and a sphere (80
facets).
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7. CONCLUSION AND FUTURE WORK

We have presented a novel algorithm based on the
concept of contributing vertices for the computation of
the Minkowski sum of a non-convex-polyhedron without
fold A and a convex polyhedron B. First, we computed
a superset of the Minkowski sum facets of A and B.
Secondly, we extracted the boundary of the Minkowski
sum polyhedron from the superset of facets by perform-
ing the union of 3D envelopes computed from three
orthogonal axes. The implementation of our algorithm
guarantees the exactness of the results. It computes the
Minkowski sum of a non-convex polyhedron without
fold and a convex polyhedron without decomposition
and union steps.

One of the drawbacks of our algorithm is that there
is a redundancy in the computation of envelopes. It
will be better if we find a criterion eliminating facets
completely recovered at each step from further compu-
tations in order to reduce computation time. Actually, we
have no way to determine the u, v, and, w directions.
However, we done several experiments which confirmed
that nearly all u, v, and, w directions are suitable
for the extraction of the Minkowski sum boundary.
For some specific models, the sum of a non-convex
polyhedron without fold and a convex polyhedron gives
a polyhedron having folds, which can not been handled
by our algorithm.

As a part of our future work, we are aiming to gen-
eralize our algorithm to non-convex polyhedra having
folds. We are investigating two ideas: the first is the com-
putation of several local envelopes for disjoint subsets
of facets and the assembly of the local envelopes. The
second idea is to use some region growing techniques
to start from seed facets and explore their neighborhood
until the Minkowski sum polyhedron is obtained.

ACKNOWLEDGMENTS

This work is partly supported by the Cluster ISLE of
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