
Managing Pervasive Environments through
Database Principles: A Survey

Yann Gripay, Frédérique Laforest and Jean-Marc Petit

Abstract As initially envisioned by Mark Weiser, pervasive environments are the
trend for the future of information systems. Heterogeneous devices, from small sen-
sors to framework computers, are all linked though ubiquitous networks ranging
from local peer-to-peer wireless connections to the world-wide Internet. Managing
such environments, so as to benefit from its full potential of available resources pro-
viding information and services, is a challenging issue that covers several research
fields like data representation, network management, service discovery. . . However,
some issues have already been tackled independently by the database community,
e.g. for distributed databases or data integration. In this survey, we analyze cur-
rent trends in pervasive environment management through database principles and
sketch the main components of our ongoing project SoCQ, devoted to bridging the
gap between pervasive environments and databases.

Key words: Pervasive environments, Databases, Continuous queries, Data streams,
Services

Yann Gripay
Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69621, France
e-mail: yann.gripay@liris.cnrs.fr

Frédérique Laforest
Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69621, France
e-mail: frederique.laforest@liris.cnrs.fr

Jean-Marc Petit
Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69621, France
e-mail: jean-marc.petit@liris.cnrs.fr

1

2 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

1 Introduction

As initially envisioned by Mark Weiser [61], pervasive environments are the trend
for the future of information systems [43]. Heterogeneous devices, from small sen-
sors to framework computers, are all linked though ubiquitous networks ranging
from local peer-to-peer wireless connections to the world-wide Internet. Managing
such environments, so as to benefit from its full potential of available resources pro-
viding information and services, is a challenging issue that covers several research
fields like data representation, network management, service discovery...

In order to cope with the development of autonomous devices and location-
dependent functionalities, an abstraction of device functionalities as distributed ser-
vices allows the pervasive system to automate some of the possible interactions
between heterogeneous devices. As devices may be sensors or effectors, services
may represent some interactions with the physical environment, like taking a photo
from a camera or displaying a picture on a screen. These interactions bridge the gap
between the computing environment and the user environment, and can be managed
by the pervasive system through such services. Many projects of pervasive systems
have been devised, e.g. [8, 13, 45, 46, 57, 58].

In this setting, even data tend to change their form to handle information dy-
namicity. The relational paradigm widely adopted in DataBase Management Sys-
tems (DBMS) for many years is too restrictive to manage pervasive environments
with emerging data sources such as data streams and services. Queries in traditional
DBMS are “snapshot queries” expressed in SQL: a query is evaluated with the cur-
rent state of the database, and the result is a static relational table. The “snapshot”
term expresses that the result represents only the state of the database at the moment
of the query, and is never updated. With dynamic data sources, “snapshot queries”
may be not sufficient as it would be computation-expensive to periodically execute
them and obtain up-to-date results.

Data streams open new opportunities to view and manage dynamic systems,
such as sensor networks. The concept of queries that last in time, called continu-
ous queries [17], allows to define queries whose results are continuously updated
as data “flow” in the data streams. This kind of data sources has drawn the atten-
tion of the database community for many years. Data Stream Management Systems
(DSMS) have been studied in many works, e.g. [3, 7, 14, 18, 26, 55, 63].

From a data-centric point of view, traditional databases [28, 44] have to be used
alongside with non-conventional data sources like data streams and services to deal
with new properties such as dynamicity, autonomy and decentralization. Query lan-
guages and processing techniques need to be adapted to those data sources. Data
management systems tend to evolve from DBMS (DataBase Management System)
or DSMS (Data Stream Management System) to a more general concept of DataS-
pace Support Platform (DSSP) [25]. A DSSP is intended to deal with “large amount
of interrelated but disparately managed data”. However, many issues have already
been tackled in the field of databases to extend databases in this new setting, like
distributed databases or data integration.

Managing Pervasive Environments through Database Principles: A Survey 3

In this survey, we study pervasive computing from a data-centric point of view.
Current trends in pervasive environment management can be related to, and en-
hanced by, current research in the database community. In this setting, we set up an
ongoing project, called SoCQ, as our attempt to bridge the gap between pervasive
computing and database principles.

In Section 2, we first give an overview of pervasive systems and of the many
issues in this field. We then show how database principles have been leveraged to
answer to new constraints in those environments in Section 3. In Section 4, we
tackle enabling technologies for pervasive systems. We then discuss our approach
to manage pervasive environment through database principles in Section 5. Finally,
we conclude this survey and discuss some open issues in Section 6.

2 Overview of pervasive systems

Pervasive computing, or ubiquitous computing [61], is “a paradigm for the 21st cen-
tury” [50] that tackles “connecting the physical world” [23] to a ubiquitous network
and discovering available resources [64] in the environment. With such settings, ap-
plications like “Data Space” [38, 25] or “Programmable Pervasive Space” [34] can
be realized.

Pervasive information systems can be analyzed as the interaction of three layers,
each one interacting with the “individual layer” representing the user [41]:

1. the infrastructure layer, that represents the technical part for supporting pervasive
systems inducing capabilities (and limitations) for the second layer;

2. the service layer, that represents applications that can be built in pervasive sys-
tems to answer to user expectations;

3. the social layer, that imposes some restrictions upon the behavior of applications
to enforce social rules, like legal aspects and user privacy.

In this overview, the focus is put on the infrastructure layer and the service layer
through the presentation of the principles of pervasive systems and the description
of some projects of pervasive systems. The social layer is tackled in the conclusion
of this section.

2.1 Principles of pervasive systems

Most important, ubiquitous computers will help overcome the problem of information over-
load. There is more information available at our fingertips during a walk in the woods than
in any computer system, yet people find a walk among trees relaxing and computers frus-
trating. Machines that fit the human environment instead of forcing humans to enter theirs
will make using a computer as refreshing as taking a walk in the woods. Mark Weiser [61]

The idea of ubiquitous computing, or pervasive computing, was initiated by Mark
Weiser in his famous article “The Computer for the 21st Century” [61] in 1991.

4 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

His vision of computers fully integrated in the human environment and gracefully
providing information and services to users is still an open issue in computer science
and computer engineering.

Pervasive computing results from the evolution of the computing paradigm from
centralized mainframe computers with “dummy” terminals at an organizational
level to more decentralized networks of personal computers at a user level, and
toward the multiplication of “smart” small-scale appliances, e.g. hand-held devices
like smart phones or PDAs, or embedded devices integrated in the surrounding envi-
ronment, like autonomous sensors and actuators. In so-called pervasive information
systems [42], those smart objects can benefit from wireless and wired networks to
remotely access to powerful computing and large distributed databases, and to be
remotely accessed by other smart objects, thus creating what could be called the
“Internet of Things” [56].

This integration of “computerized artifacts” blurs the distinction between com-
puters and other electronic devices [43], leading to new application models. From a
user point of view, applications can be mobile, localized and personalized: new in-
teraction possibilities can make applications go “off the desktop”, i.e. applications
can run in the background, using the user environment itself as an ubiquitous in-
terface. From a system point of view, sensors and actuators can be distributed in
the environment and autonomously gather data and execute actions with no or few
human interactions.

As presented in [10], developing applications in such complex computing en-
vironments leads to the need for middlewares. Middlewares offer a unified repre-
sentation and access to those distributed resources. The following requirements are
detailed:

1. abstraction of devices (sensors, actuators, etc.);
2. loosely coupled communications, including discovery mechanisms;
3. context management;
4. application developer support.

2.1.1 Abstraction of devices

Pervasive systems are distributed systems of devices able to communicate with oth-
ers through network links. Devices may range from isolated sensors to mainframe
computers, including smart phones, PDAs, desktop computers, and may be embed-
ded in the environment, mobile, handheld, or stationary. At an abstract level, devices
can be viewed as entities providing some of the following functionalities:

• sensor: it can report one or more environment parameters or events;
• actuator: it can modify the environment through its actions;
• computation: it can compute some information given some input data;
• storage: it can store data and answer to queries about it.

Those devices are mainly represented by services distributed in the pervasive
network. This abstraction enables interoperability between heterogeneous devices.

Managing Pervasive Environments through Database Principles: A Survey 5

The service representation tends however to be divided in two categories: reactive
services and autonomous components. Reactive services can be invoked and com-
posed by a supervision system in order to create applications [9, 29, 12]. On the
other hand, autonomous components [32] can decide themselves to collaborate with
some others in order to create coherent processes.

As devices may be sensors or actuators [23], services may represent some inter-
actions with the physical environment, like taking a photo from a camera or display-
ing a picture on a screen. These interactions bridge the gap between the computing
environment and the physical environment, that can both be managed by the perva-
sive system.

In summary, the set of devices in pervasive systems can be abstracted as an envi-
ronment of distributed services providing sensor, actuator, computation and storage
functionalities, where some services may be autonomous. We call such an environ-
ment a pervasive environment.

2.1.2 Loosely coupled communications

A common representation for data and services is required for services to understand
each others. Tuple representations like for databases or standardized languages such
as XML are commonly used for data exchange between services. Services are rep-
resented by their interface: it provides a list of methods that can be invoked and
potentially the types of events that the service may publish.

At a lower level, system functionalities are often accessed through proxies and
wrappers that translate commands and data between platform-independent and
platform-specific representations.

Service discovery is a common issue [64] in distributed systems (pervasive sys-
tems, grids, or even Internet). As services may enter or exit the pervasive environ-
ment at any time (e.g. services provided by mobile devices), the discovery should
be dynamic in order to reflect the currently available services.

Remote invocation, or more generally communication between services, can not
always rely on a stable network infrastructure in pervasive systems. Asynchronous
messaging is then preferred to synchronous communications: asynchronous mes-
saging can handle more gracefully network latency and failures in this dynamic
setting.

Asynchronous messaging also enables event mechanisms through publish/subscribe
systems: a service can subscribe to some events provided by another service, and the
expected events are sent asynchronously when they occur.

2.1.3 Context management

Context management is a key element for dynamic adaptation of applications to
their environment. As devices and services are spatially distributed in the environ-
ment and may be mobile, a strong need for localization appears in pervasive sys-

6 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

tems. A spatial indexation of the entities in the environment is necessary to allow
location-aware processes.

In a more general way, the notion of context can be defined as “any informa-
tion that can be used to characterize the situation of entities (i.e., whether a person,
place, or object) that are considered relevant to the interaction between a user and an
application, including the user and the application themselves. Context is typically
the location, identity, and state of people, groups, and computational and physical
objects.” [22]. From [22], three layers of components are required to capture the
context: widgets that acquire low-level information from sensors, interpreters ab-
stracting this information and aggregators gathering information by entity. Applica-
tions can then use these components in order to provide context-aware behaviors.

A common representation for the context is also a requirement to enable in-
teroperability. Whereas simple forms of context can be expressed using key-value
pairs (e.g. [name="carla", location="elysee"]), more elaborate con-
text models need graph-model representation like RDF (Resource Description Frame-
work) or the more general concept of ontology (e.g. the Context Ontology Language
(CoOL) [54]). Ontologies allow independent services to reason about the same con-
cepts with a shared ontology or to agree about concepts with ontology alignments.

2.1.4 Application developer support

Distributed functionalities in a pervasive environment may appear or disappear dy-
namically. In order to make the development of applications easier, applications
can be defined using abstract functionalities and dynamically linked to actual im-
plementations at runtime, depending on the available resources. For instance, the
OSGi “whiteboard pattern” [49] works as follows: service consumers use a given
service interface and, at runtime, can search registered services that implement this
interface, and then invoke their methods.

Middlewares like OSGi [48], combined with network protocols like UPnP [59] or
DPWS [60], implement an abstraction of pervasive systems by providing a catalog
of available services that are dynamically discovered, and by hiding communica-
tions details through unified interfaces to access to those services.

Interfaces with users or other software components try to hide the complexity of
the pervasive system organization. Explicit interactions (reactivity) are often made
with a declarative language using an abstract view of the environment, while implicit
interactions (proactivity) provide useful automatically configured services to users
depending on their context.

2.2 Projects of pervasive system

Giant research projects on pervasive systems have been conducted in the greatest
universities throughout the world. Among them, we quote the Oxygen project [46]

Managing Pervasive Environments through Database Principles: A Survey 7

of the MIT, the EasyLiving project [45] at Microsoft Research or the Aura project [13]
of the Carnegie Mellon University. The examples they provide concern mainly in-
telligent workspaces and enhanced spaces (e.g. elderly homes). These projects en-
compass many research teams of different specialties (from hardware to software,
including artificial intelligence, speech recognition and synthesis, multimodal and
plastic user interfaces, local area networks, middleware, etc.), and have shown am-
bitious objectives in particular on the user interface.

In the Oxygen project [46, 27, 40], they have defined new devices for the end-
user (called H21s) that include computing and communication facilities as well as
multimodal user interfaces. They have designed a dedicated network technology.
They have also studied the software level by defining a technique for the adaptation
of software to the ever changing pervasive environment using a goal-oriented pro-
gramming technique [51]. It decomposes applications in two levels: the goal level
abstracts the end-user task, and the software components (called pebbles) level con-
tains effective code realization. Pebbles are platform-independent software compo-
nents, capable of being assembled dynamically by the goals planning mechanism in
response to evolving system requirements. A subsystem of the Oxygen environment
concerns the management of user knowledge. It is based on a RDF representation
and a learning system gathers information on the user habits and preferences. Col-
laborative tools have also been proposed, like the annotation of web documents.

The EasyLiving project [45, 12] also works on intelligent environments (in-home
or in-office). The context sensing and modeling has been highly studied (combina-
tion of multiple sensor modalities, automatic sensor calibration) as well as the inter-
action with the end-user (computer vision and visual user interaction, adaptation of
user interfaces. . .). They have also defined device-independent protocols for com-
munication and data. Like Oxygen, adaptation is based on an abstraction of users’
tasks and on the discovery and composition of effective services in the environment.
The originality of this project comes from their geometric model of the world. This
model represents objects (of the real world or of the software world) as entities,
and geometric relationships between entities as measurements. A measurement is
a polygon that represents the object physical expanse, and can be associated with
uncertainty values. The precise and complete geometric model allows to specify
precise situations involving different objects (e.g. an object in a certain area, close
to a certain software component).

The Aura project [13, 29] aims at providing each user with an invisible halo
of computing and information services that persists regardless of location. They
have deployed efforts at every level: from the hardware and network layers, through
the operating system and middleware, to the user interface and applications. Their
project ambition goes one step further compared to the others, as they want the user
not to be restricted to classical devices, but should be able to interact continuously
with his “aura” that follows him everywhere and at every time, using any available
appliance, even the coffee maker while the user stands in front of it (as the video
available on their web site [13] shows it).

Other big projects could be described. One can cite the following ones:

8 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

• The Portolano project [58] at the Washington University focuses on sensors man-
agement, networking, transparency to the end-user and trust. They have stud-
ied an infrastructure based on mobile agents that interact with applications and
users. Data-centric routing automatically migrates data among applications on
the user’s behalf. Data thus becomes ”smart” and serves as an interaction mech-
anism within the environment.

• The Endeavour project [57] at Berkeley University has studied a planet-scale,
self-organizing, and adaptive Information Utility. Their main objective is to ar-
bitrarily and automatically distribute data among Information Devices”. Data are
seen as software components that can advertise themselves, provide their own
adaptable user interface and their own negotiation process for their integration in
applications.

• The Sentient project [8] at AT&T Laboratories Cambridge is based on a device
called a bat with a unique id, an ultrasound transmitter and a radio transceiver,
2 buttons and a beeper. It is located by a central controller, and the world model
stores the correspondence between bats and their owners, applying algorithms to
the bat location data to determine the location of the person or object which owns
it.

All these projects focus on services and consider the environment as a halo of
available services. The notion of data is not present in the front: data are embed-
ded in software components. All information interesting the user or describing his
way of working are represented in objects or services; the paradigm for the manip-
ulation of artifacts are services or components. With the advent of the DataSpace
notion [25], another vision has appeared, placing data at the centre of the perva-
sive system. Some projects have tried to focus on a data-like representation of the
environment, including databases and data streams but also services. They have re-
sulted in hybrid SQL-like systems that include remote services calls in queries (e.g.
[31, 62]). They will be detailed in section 3.

2.3 Summary

In the previous section, we emphasized that pervasive systems need a certain degree
of abstraction of devices about hardware, software and network capabilities. Mid-
dlewares and layered architectures are mainly used to achieve this level of abstrac-
tion, through a common representation of resources as services. Communications
between services are often implemented as asynchronous messages that are inde-
pendent of the underlying platform and network protocol. Context management is
also a key element for dynamic adaptation of applications to their environment.

Among the restrictions imposed on pervasive applications by the social layer [41],
a strong issue is to enforce security policy. As sharing of data and services among
devices is one of the main point of pervasive systems, security is needed to protect
access to resources and to ensure some level of user privacy. Despite many works
on security for distributed systems, it remains an open issue in such complex envi-

Managing Pervasive Environments through Database Principles: A Survey 9

ronments. Other restrictions may come from usability issues, aesthetics issues and
environmental issues, in particular in term of energy consumption.

3 Related database research

Current trends in pervasive environment management can be analyzed as the lever-
aging of database principles, applied to a more dynamic and distributed setting. We
first tackle the representation and management of streaming data sources. We then
tackle data integration problems that occur in pervasive environment settings and
describe the interplay between data and services.

3.1 Data streams

Pervasive systems often include services that periodically or occasionally gener-
ate data, be it events or sensor readings. Managing such data sources in programs
(e.g. in a supervision system) can be complex as it implies asynchronous data han-
dling. In order to cope with this complexity, database principles can be applied: data
sources are represented in a way similar to relations in databases, and queries can be
formulated in a declarative way using a SQL-like query language from which query
optimization techniques can be applied.

Furthermore, data streams and relations may be handled in a homogeneous way
so as to enable queries combining both types of data sources. Data streams represent
the integration of dynamic data sources in databases, leading to the definition of con-
tinuous queries providing dynamic results that are continuously updated. Queries
may also still be one-shot as standard SQL queries, i.e. their results are evaluated
once and not updated.

Many projects have been launched on data streams, among which we quote Ni-
agaraCQ, TelegraphCQ, Cougar, TinyDB, STREAM, the Global Sensor Network
and Cayuga.

NiagaraCQ [17] introduces some definitions of continuous queries over XML
data streams. Queries are defined as triggers and produced event notification in real-
time. The TelegraphCQ system [14] proposes adaptive continuous query processing
over streaming data and historical data.

Cougar [63, 11] and TinyDB [30] handle continuous queries over sensor net-
works with a focus on the optimization of energy consumption for sensors using
in-network query processing. STREAM [7] defines a homogeneous framework for
continuous queries over relations and data streams.

In those systems, continuous queries are defines using a SQL-like language. An-
other approach is tackled with Borealis [37, 3, 18]: a Distributed Stream Processing
System (DSPS) enables to define dataflow graphs of operators in a “box & arrows”
fashion, making distributed query processing easier.

10 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

Continuous queries can be used to define some parts of pervasive applications in a
declarative way: in [26, 39], the progressive cleaning process for data retrieved from
numerous physical sensors is defined by a pipeline of continuous queries declara-
tively defined in SQL. A complex event-processing using state-machine operator
producing data streams is also proposed. In [4, 5], the Global Sensor Network, a
middleware for sensor networks, enables to specify continuous queries as virtual
sensors whose processing is specified declaratively in SQL, with a subquery for
preprocessing each input stream.

Cayuga [20, 19] is a stateful publish/subscribe system for complex event monitor-
ing where events are also defined by SQL-like continuous queries over data streams.

3.2 Data & services integration

In this section, we discuss the interplay between data and services, and possible
optimizations for queries involving both types of data sources.

Data integration has been a long standing theme of research over the past 30
years. Now, the broader notion of dataspaces [25, 38] has appeared to provide base
functionality over all data sources and applications, regardless of how integrated
they are and without having a full control over the underlying data [25]. For exam-
ple, to answer a query when some data sources are unavailable, the data accessible
at the time of the query have to be used to propose the best possible results.

In the setting of data integration, the notion of binding patterns appears to be
quite interesting since they allow to model a restricted access pattern to a relational
data source as a specification of “which attributes of a relation must be given values
when accessing a set of tuples” [24]. A relation with binding patterns can represent
an external data source with limited access patterns in the context of data integra-
tion [24]. It can also represent an interface to an infinite data source like a web site
search engine [31], providing a list of URLs corresponding to some given keywords.
In a more general way, it can represent a data service, e.g. web services providing
data sets, as a virtual relational table like in [53].

The SQL standard itself supports some forms of access to external functionalities
through User-Defined Functions (UDF). UDFs can be scalar functions (returning a
single value) or table functions (returning a relation). UDFs are defined in SQL or
in another programming language (e.g. C, Java), enabling to access to any exter-
nal resources. Table functions are a way to implement the notion of virtual tables,
however limited to having only one binding pattern determined by the function in-
put parameters. UDFs are also tagged as deterministic or non-deterministic: query
rewriting may not change the number of invocations for non-deterministic UDFs.
Abstract Data Types can also be used to get an object-oriented view of sensors, like
in the Cougar project [11, 63].

Optimization of queries involving expensive functions or methods leads to the
redefinition of cost models to integrate the estimated cost of computation. This issue

Managing Pervasive Environments through Database Principles: A Survey 11

has been studied for standard databases [15, 16, 35, 36], and also for continuous
query processing [21].

In a similar way to binding patterns, the ActiveXML language [1] allows to de-
fine XML documents containing extensional data, i.e. data that are present in the
document, and intensional data, representing service calls that provide data when
needed. Intensional data is close to the notion of virtual tables and binding pat-
terns. ActiveXML is also a “framework for distributed XML data management” [6]
and defines an algebra to model operations over ActiveXML documents distributed
among peers, that enables query optimization.

In Aorta [62], continuous queries can implicitly interact with devices through an
external function call. However, the relationship between functions and devices, as
well as the optimization criteria, are not explicit and cannot be declaratively defined.

In [5], the Global Sensor Network allows to define virtual sensors abstracting
implementation details of data sources, and provides continuous query processing
facilities over distributed data streams.

3.3 Summary

Database research that can be related to pervasive environments span across sev-
eral issues. From a data-centric point of view, the management of pervasive envi-
ronments is the management of distributed dynamic data sources and services that
should be accessed through declarative queries: therefore, there is a need for in-
tegration of data streams, external methods and services, into relational or XML
databases. Continuous or one-shot queries over such extended databases need to be
declaratively defined, for example using a SQL-like language, optimized for this
new setting, and processed (in real-time for continuous queries).

4 Enabling technologies

A pervasive environment is full of functionalities, but a user may be lost and not
able to comprehend and optimally use all available data sources and services the en-
vironment can provide. Furthermore, applications are not easy to develop and main-
tain because of the heterogeneity and the dynamicity of the environment. Typically,
low-level technical code using programming languages (Java, C#...) and network
protocols has to be devised to come up with some pervasive applications.

In this section, we detail some technologies that enable to build pervasive envi-
ronment systems. Those technologies tackle system problems like service discovery
and remote invocation in a heterogeneous setting, but also some higher-level issues
like a common data and service representation.

CORBA [47] (Common Object Request Broker Architecture) is an open architec-
ture and infrastructure that enables applications to interoperate over network links.

12 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

It can be defined as an object bus: applications can access to local or remote objects
without worrying about underlying network issues (including serialization issues).
A lookup allows to search objects by name and get object references. Objects are
defined using the platform-independent IDL (Interface Description Language) that
can be used to generate stub and/or skeleton in many programming languages.

Some systems tackle the same issues, but are more platform- or language-
dependent, like Microsoft DCOM (Distributed Component Object Model) or Java
RMI (Remote Method Invocation).

Whereas those systems are a sort of object bus, other systems focus on a messag-
ing protocol between services to achieve interoperability. Those protocol are more
data-oriented. The open standard XML (eXtended Markup Language) is often used
as the message format for such protocols, like for the simple yet efficient XML-RPC
(XML - Remote Procedure Call) or its more complex but powerful evolution SOAP
(Simple Object Access Protocol) for Web Services. REST (REpresentational State
Transfer) relies on the HTTP API to transfer messages, but do not define a message
format: it is rather an architecture style using the well-established HTTP protocol to
simplify communications. For those protocols, service discovery needs to be done
by external registries, like UDDI (Universal Description, Discovery and Integration)
for Web Services.

UPnP [59] (Universal Plug and Play) and the more recent DPWS [60] (Device
Profile for Web Services) are based on some messaging protocols and include auto-
matic discovery mechanisms, using network broadcast facilities. UPnP/DPWS enti-
ties are devices that host several services providing methods and events.

JMX (Java Management eXtension) and OSGi [48] are two Java framework that
can host some (potentially active) java objects as services and enable a local and
remote access to them through various network protocols like RMI, Web Services,
or even UPnP and DPWS if dynamic discovery is needed.

Nowadays, these relatively recent technologies have become mature, some of
them being used in the industry (in particular for application servers). Focused on
interoperability issues in a heterogeneous setting, they can be re-used in the context
of pervasive environment management systems.

5 SoCQ: a comprehensive PEMS

Managing pervasive environments, in particular heterogeneous devices, remains a
complex task: a certain level of abstraction and loosely coupled communications
can be achieved with current middlewares, but application developer support still
can not hide resource heterogeneity. However, with the adoption of a data-centered
point of view, this heterogeneity can be further abstracted: devices can be repre-
sented as distributed data sources providing data, data streams and services that are
manageable in a homogeneous way.

The Service-oriented Continuous Query project, or SoCQ project [33, 52], is de-
voted to making the development of pervasive applications easier through database

Managing Pervasive Environments through Database Principles: A Survey 13

principles. It aims at contributing in the area of Dataspaces [25, 38] through a unified
view of data and service spaces mandatory in pervasive environments.

We are currently working on the definition of an approach to homogeneously
represent such pervasive environments through database principles. The basic idea
is to present to application developers a database-like view of the environment re-
sources, so that they can visualize this environment as a set of tables and launch
declaratively-defined continuous queries involving available data sources and ser-
vices. This approach is built on an extension of the relational model and uses a
SQL-like query language.

DBMSs (DataBase Management Systems) provide a homogeneous view as well
as storage and query facilities for relational data. DSMSs (Data Stream Management
Systems) also provide a homogeneous view and query facilities for both relational
data and data streams. We then call PEMS, for Pervasive Environment Management
System, a system that manages in a similar way an environment containing data
relations, data streams and services.

In this project, we tackle the following challenges:

• definition of a homogeneous representation for databases, data streams and ser-
vices from the pervasive environment,

• definition of a query language over pervasive environments allowing to easily
develop pervasive applications,

• design of a Pervasive Environment Management System (PEMS) supporting
both the homogeneous representation and the query processing facilities.

In Figure 1, the different elements of a PEMS are shown. A distributed resource
manager handles service discovery and remote invocations, with local resource
managers as proxies for local devices that provide data, streams and services. An
extended table manager builds a homogeneous representation of non-conventional
data sources, and the query processor allows to define, optimize and execute queries.

Network

Local Environment
Resource Manager

PEMS Core

PEMS Client

Service

Local Environment
Resource Manager

Service

Service

Query Processor

Extended Table
Manager

Environment
Resource Manager

PEMS GUI

Database

Stream

Stream

Fig. 1 Overview of a PEMS environment

14 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

5.1 Example scenario

In the example scenario, we monitor temperatures in an office building: when a
temperature exceeds some threshold in a room, an alert message is sent to the man-
ager of this room. A photo of the room can be joined to the message. We simulate
an environment, illustrated in Figure 2, containing the following data sources and
services:

• two data relations: one containing some information about the rooms (manager,
temperature threshold. . .), the other one being a list of contacts (including con-
tacts of the managers),

• some temperature sensors distributed in several rooms, providing data streams,
• some cameras installed in the rooms, providing photo services,
• some messenger services (by mail, instant message, SMS).

Jabber Server

PDA

Network
(UPnP, JMX, ...)

SmartPhone

PEMS Core
Camera

Mail Server

Webcam

Camera

PEMS GUI

Database

Sensor

Sensor

Fig. 2 Illustration of the scenario environment

This environment can be represented homogeneously with relations and streams
extended with virtual attributes and binding patterns. Virtual attributes are attributes
that do not have a value and may be provided a value through a query, due to binding
patterns that indicate their relationship with method prototypes from services. We
call such relations XD-Relations, standing for eXtended Dynamic Relations, and
such environments relational pervasive environments. For the example scenario, we
can view a DDL representation of the schema of this environment in Table 1.

With such environments, the use of distributed functionalities provided by ser-
vices is declaratively specified in SQL-like queries by the virtual attributes that
need to be realized, i.e. that need to be provided a value. In order to realize those

Managing Pervasive Environments through Database Principles: A Survey 15

Table 1 DDL description of prototypes and XD-Relations for the environment of the example
scenario

PROTOTYPE sendMessage(address STRING, text STRING) :
(sent BOOLEAN) ACTIVE;

PROTOTYPE takePhoto() :
(photo BLOB);

RELATION surveillance (
area STRING,
manager STRING,
threshold REAL,
alertMessage STRING

);

RELATION employees (
name STRING,
address STRING,
messenger SERVICE,
text STRING VIRTUAL,
sent BOOLEAN VIRTUAL

)
USING BINDING PATTERNS (
sendMessage[messenger] (address, text) : (sent)

);

RELATION cameras (
camera SERVICE,
area STRING,
photo BINARY VIRTUAL

)
USING BINDING PATTERNS (
takePhoto[camera] () : (photo)

);

STREAM temperatures (
area STRING,
temperature REAL

);

attributes, the corresponding binding patterns are invoked for every involved tuples,
leading to several service invocations. We call these queries SoCQ, for Service-
oriented Continuous Queries.

Over this environment, many different SoCQ queries could be launched. For
example, the temperature monitoring can be declaratively defined as a continuous
query. The three XD-Relations are joined (the stream “temperature” must be win-
dowed) on the manager name and the area, the threshold is checked and the message
body is set. The binding pattern “sendMessage” will be invoked in order to fetch a
value for the virtual attribute “sent”. The SQL-like query in Table 2 is a typical ex-
ample of a pervasive application that is defined at the declarative level, without wor-
rying about low-level technical considerations (programming languages, network
protocols).

The role of a PEMS is to manage a relational pervasive environment, with its
dynamic data sources and set of services, along with the execution of the continuous

16 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

Table 2 SoCQ query for the example scenario

SELECT surveillance.area, surveillance.manager, employees.sent
FROM temperatures [now], employees, surveillance
WHERE surveillance.manager = employees.name
AND surveillance.area = temperatures.area
AND surveillance.threshold < temperatures.temperature
AND employees.text IS surveillance.alertMessage

queries over this environment. In the following sections, we first sketch the data
model that supports XD-Relations, and the algebra that enables SoCQ queries. We
then give an overview of our PEMS implementation.

5.2 Modeling of Pervasive Environments

In order to homogeneously represent data sources and other resources from perva-
sive environments, we propose a model that integrate distributed functionalities of
resources within data sources. Our model, based on the relational model, is built
on the following notions: prototypes, services and extended relations with virtual
attributes and binding patterns.

Distributed functionalities can be represented as services implementing proto-
types. For example, a webcam and an IP camera are two services from the envi-
ronment that implement a prototype takePhoto():(photo) that takes zero
input attribute and provides one output attribute photo; a mail server, an instant
messaging server and a SMS gateway are three services that implement a proto-
type sendMessage(text,address):(sent) that takes two input attributes
text and address and provides one output attribute sent. Invoking a proto-
type on a service realizes the implied actions, like taking a photo for a camera and
sending a message to the given address for the mail server.

As service invocations can have an impact on the physical environment, e.g. in-
voking a service that sends a message, we need to consider two categories of pro-
totypes: active prototypes and passive prototypes. Active prototypes are prototypes
having a side effect on the physical environment that can not be neglected (e.g. in
Table 1, sendMessage is tagged as active). On the opposite, the impact of pas-
sive prototypes is non-existent or can be neglected, like reading sensor data (e.g.
takePhoto).

Prototypes can be integrated into data relations schemas through virtual attributes
and binding patterns. Virtual attributes are attributes from the relation schema that
do not have a value at the tuple level. They represent input and output attributes
of prototypes. A binding pattern is associated with a relation schema and specifies
one non-virtual attribute as the service reference attribute, the prototype and which
attributes are linked with the prototype input and output attributes. For example, the

Managing Pervasive Environments through Database Principles: A Survey 17

employees relation (see Table 1) is associated with one binding pattern that uses
the prototype sendMessage, the service reference attribute messenger and that
links the attributes address and text with the prototype input attributes, and the
attribute sentwith the prototype output attribute. Output attribute should be virtual
attributes, whereas input attributes can also be real (i.e. , non-virtual) attributes, like
the attribute address in this example.

We call such relations, X-Relations, standing for eXtended Relations. Virtual at-
tributes represent possible interactions with services: when a query needs the virtual
attribute sent, a value is required for the virtual attribute text due to the bind-
ing pattern (the attribute address being real), and it implies an invocation of the
prototype sendMessage. The required value should be provided by the query it-
self. The services on which the prototype is invoked are defined by the value of the
service reference attribute (here, attribute messenger), at the tuple level.

In the following table, an example of content for the X-Relation employees
is presented. The constants “mailer” and “jabber” are two service references, the
former for the mail server, the latter for the instant messaging server. The star (*)
symbol reminds that virtual attributes do not have a value.

name address messenger text sent
nicolas nicolas@elysee.fr mailer * *
carla carla@elysee.fr mailer * *

françois francois@im.gouv.fr jabber * *

Pervasive environments being dynamic, data sources may include streaming data.
We extend our model to integrate data sources like data streams. We call XD-
Relations, for eXtended Dynamic Relations, X-Relations that are time-dependent:
XD-Relations can be either finite (relations where tuples can be inserted and deleted)
or infinite (append-only relations, i.e. data streams). An environment represented by
a set of XD-Relations is defined as a relational pervasive environment.

5.3 Service-oriented Continuous Queries

Queries over relational pervasive environments allow to define interactions between
dynamic data sources and services, i.e. pervasive applications. Such queries are de-
fined to be continuous queries, i.e. queries that are executed continuously to main-
tain their results up-to-date, like in the example scenario. They are called Service-
oriented Continuous Queries, or SoCQ queries. However, some queries may be
snapshot queries, i.e. queries executed once that produce their results and do not
maintain them, like standard SQL queries in DBMS.

SoCQ queries are based on the so-called Serena algebra (Service-enabled alge-
bra) that defines query operators over XD-Relations. Standard relational operators
are redefined over finite XD-Relations, and new operators are defined. Realization
operators handle the transformation of virtual attributes either by providing them a
value (a constant or the value of another attribute) or by invoking a binding pattern.

18 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

Window operators and streaming operators handle infinite XD-Relations: window
operators transform an infinite XD-Relations into a finite XD-Relations (e.g. a re-
lation that contains the tuples inserted during the last 5 minutes into the stream
operand), and streaming operators transform finite XD-Relations into infinite XD-
Relations (e.g. a stream of the tuple inserted into the relation operand).

A SQL-like query language has been defined to declaratively express SoCQ
queries. For example, for the example scenario, the query in Table 2 involves sev-
eral operators: windows (the [now] is a window of size 1 applied on the stream
temperatures), selections, joins, realizations, streaming. This query produces a
stream of alerts (when a threshold is exceeded) while invoking the sendMessage
prototype when needed (to actually send messages to area managers).

5.4 Implementation of PEMS

The PEMS core is composed of three logical layers (see Figure 1). A global re-
source manager handles service discovery and remote invocations, with local re-
source managers as distributed proxies for local devices that provide services. An
extended table manager builds a homogeneous representation of non-conventional
data sources, and the query processor allows to define, optimize and execute
Service-oriented Continuous Queries. These layers are composed of several internal
modules sketched in Figure 3.

The PEMS prototype is developed in the Java/OSGi framework [48]. Each mod-
ule of the PEMS is an OSGi bundle and communicates with each other through
the OSGi service life cycle management. The chosen network protocol for service
discovery and remote invocations is UPnP [59]: the prototype uses the dedicated
standard OSGi bundles for this protocol.

The PEMS GUI, shown in Figure 4, is also developed in the Java/OSGi frame-
work, as an Eclipse RCP Plugin, i.e. the GUI is integrated in the Eclipse platform. It
communicates remotely with the PEMS core through a JMX interface. It enables to
visualize existing XD-Relations and their content, to add/alter/delete XD-Relations,
and to launch/stop SoCQ queries.

6 Conclusion

Pervasive systems intend to take advantage of the evolving user environment so as
to provide applications adapted to the environment resources. As far as we know,
bridging the gap between data management and pervasive applications has not been
fully addressed yet. A clear understanding of the interplays between databases, data
streams and services is still lacking and is a major bottleneck toward the declarative
definition of pervasive applications.

Managing Pervasive Environments through Database Principles: A Survey 19

System
Interface

Query
Plan Manager

Data Socket
Manager

Table
Manager

Storage
Manager

U
se

r
C

o
m

m
a
n

d

D
a
ta

 I
/O

S
e
rv

ic
e
 C

a
lls

System
Catalog

Service
Manager

Query

Table
Command

Fig. 3 Internal modules of the PEMS core

Fig. 4 The PEMS GUI

Pervasive environments are complex environments that raise issues in several
research domains. Studying pervasive computing from a data-centric point of view
raises some similarity with current database research like data streams, data and
services integration, or distributed databases.

In this setting, the SoCQ project is our attempt to bridge the gap between perva-
sive computing and the database domain. It demonstrates the following points: 1)
a homogeneous database-like view on pervasive environments containing dynamic

20 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

data sources and services is possible as a set of XD-Relations, through the notions
of virtual attributes and binding patterns; 2) Service-oriented Continuous Queries
(SoCQ queries) over relational pervasive environment allow to define pervasive ap-
plications combining data sources and services. A formal algebra has been devised
allowing to apply query optimization techniques in pervasive environments. Such
declarative definitions of SoCQ queries make the definition and the evolution of
pervasive applications easier.

References

1. ActiveXML. http://www.activexml.net/
2. Advances in Database Technology - EDBT 2006, 10th International Conference on Extending

Database Technology, Munich, Germany, March 26-31, 2006, Proceedings, Lecture Notes in
Computer Science, vol. 3896. Springer (2006)

3. Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In: CIDR 2005,
Proceedings of Second Biennial Conference on Innovative Data Systems Research (2005)

4. Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor network
deployment. In: VLDB 2006, Proceedings of the 32th International Conference on Very Large
Data Bases (2006)

5. Aberer, K., Hauswirth, M., Salehi, A.: Infrastructure for data processing in large-scale inter-
connected sensor networks. In: MDM 2007, Proceedings of the 8th International Conference
on Mobile Data Management (2007)

6. Abiteboul, S., Manolescu, I., Taropa, E.: A framework for distributed xml data management.
In: EDBT [2], pp. 1049–1058

7. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava,
U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford Stream Data Manager. IEEE
Data Engineering Bulletin 26(1), 19–26 (2003)

8. ATT Laboratories, Cambridge: Sentient Computing Project. http://www.cl.cam.ac.
uk/research/dtg/attarchive/spirit/

9. Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM – A Component System for Per-
vasive Computing. In: PerCom’04, Proceedings of the Second IEEE International Conference
on Pervasive Computing and Communications, p. 67 (2004)

10. Biegel, G., Cahill, V.: Requirements for middleware for pervasive information systems, pp.
86–102. Vol. 10 of Kourouthanassis and Giaglis [42] (2007)

11. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: MDM 2001, Pro-
ceedings of the Second International Conference on Mobile Data Management, pp. 3–14
(2001)

12. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies for intel-
ligent environments. In: HUC 2000, Proceedings of the Second International Symposium on
Handheld and Ubiquitous Computing, pp. 12–29 (2000)

13. Carnegie Mellon University: Project Aura, Distraction-free Ubiquitous Computing. http:
//www.cs.cmu.edu/˜aura/

14. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain
World. In: CIDR 2003, Proceedings of the First Biennial Conference on Innovative Data
Systems Research (2003)

15. Chaudhuri, S., Shim, K.: Query optimization in the presence of foreign functions. In: VLDB
’93: Proceedings of the 19th International Conference on Very Large Data Bases, pp. 529–542.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1993)

16. Chaudhuri, S., Shim, K.: Optimization of queries with user-defined predicates. ACM Trans.
Database Syst. 24(2), 177–228 (1999). DOI http://doi.acm.org/10.1145/320248.320249

Managing Pervasive Environments through Database Principles: A Survey 21

17. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query Sys-
tem for Internet Databases. In: Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 379–390 (2000)

18. Cherniack, M., et al.: Scalable Distributed Stream Processing. In: CIDR 2003, Proceedings of
the First Biennial Conference on Innovative Data Systems Research (2003)

19. Demers, A.J., Gehrke, J., Hong, M., Riedewald, M., White, W.M.: Towards expressive pub-
lish/subscribe systems. In: EDBT [2], pp. 627–644

20. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga: A
general purpose event monitoring system. In: CIDR, pp. 412–422. www.crdrdb.org (2007)

21. Denny, M., Franklin, M.J.: Operators for expensive functions in continuous queries. In: ICDE
’06: Proceedings of the 22nd International Conference on Data Engineering, p. 147. IEEE
Computer Society, Washington, DC, USA (2006). DOI http://dx.doi.org/10.1109/ICDE.2006.
110

22. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications. Human-Computer Interaction 16(2), 97–166
(2001)

23. Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the Physical World with Pervasive
Networks. IEEE Pervasive Computing 1(1), 59–69 (2002)

24. Florescu, D., Levy, A., Manolescu, I., Suciu, D.: Query Optimization in the Presence of Lim-
ited Access Patterns. In: SIGMOD’99: Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pp. 311–322 (1999). DOI http://doi.acm.org/10.1145/
304182.304210

25. Franklin, M., Halevy, A., Maier, D.: From Databases to Dataspaces: a new Abstraction for
Information Management. SIGMOD Rec. 34(4), 27–33 (2005)

26. Franklin, M.J., et al.: Design Considerations for High Fan-In Systems: The HiFi Approach.
In: CIDR 2005, Proceedings of Second Biennial Conference on Innovative Data Systems Re-
search (2005)

27. Gajos, K., Fox, H., Shrobe, H.: End user empowerment in human centered pervasive comput-
ing. In: Pervasive 2002. Zurich, Switzerland (2002)

28. Garcia-Molina, H., Widom, J., Ullman, J.D.: Database System Implementation. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1999)

29. Garlan, D., et al.: Project Aura: Toward Distraction-Free Pervasive Computing. IEEE Perva-
sive Computing 1(2), 22–31 (2002)

30. Gehrke, J., Madden, S.: Query processing in sensor networks. Pervasive Computing, IEEE
3(1), 46–55 (2004). DOI 10.1109/MPRV.2004.1269131

31. Goldman, R., Widom, J.: WSQ/DSQ: A Practical Approach for Combined Querying of
Databases and the Web. In: Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 285–296 (2000)

32. Grimm, R., et al.: System Support for Pervasive Applications. ACM Transactions on Com-
puter Systems 22(4), 421–486 (2004)

33. Gripay, Y.: Service-oriented Continuous Queries for Pervasive Systems. In: EDBT 2008 PhD
Workshop (2008). URL http://liris.cnrs.fr/publis/?id=3428

34. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart
house: A programmable pervasive space. Computer 38(3), 50–60 (2005)

35. Hellerstein, J.M.: Optimization techniques for queries with expensive methods. ACM Trans-
actions on Database Systems 23(2), 113–157 (1998). DOI http://doi.acm.org/10.1145/292481.
277627

36. Hellerstein, J.M., Stonebraker, M.: Predicate migration: Optimizing queries with expensive
predicates. In: SIGMOD’93, Proceedings of the ACM SIGMOD Conference on Management
of Data, pp. 267–276 (1993)

37. Hwang, J.H., Xing, Y., Cetintemel, U., Zdonik, S.: A cooperative, self-configuring high-
availability solution for stream processing. In: ICDE’07, Proceedings of the 23rd International
Conference on Data Engineering (2007)

38. Imielinski, T., Nath, B.: Wireless graffiti: data, data everywhere. In: VLDB’2002, pp. 9–19
(2002)

22 Yann Gripay, Frédérique Laforest and Jean-Marc Petit

39. Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: Declarative support for sensor
data cleaning. In: Pervasive, pp. 83–100 (2006)

40. Koile, K., Tollmar, K., Demirdjian, D., Shrobe, H., Darrell, T.: Activity zones for context-
aware computing. In: Proceedings of UbiComp 2003, pp. 90–106. Springer-Verlag (2003)

41. Kourouthanassis, P.E., Giaglis, G.M.: The design challenge for pervasive information systems,
pp. 29–85. Vol. 10 of Advances in Management Information Systems [42] (2007)

42. Kourouthanassis, P.E., Giaglis, G.M. (eds.): Pervasive Information Systems, Advances in Man-
agement Information Systems, vol. 10. M.E. Sharpe, Armonk, NY (2007)

43. Kourouthanassis, P.E., Giaglis, G.M.: Toward pervasiveness, pp. 3–25. Vol. 10 of Advances in
Management Information Systems [42] (2007)

44. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond. Springer-Verlag
(1999)

45. Microsoft Research: EasyLiving. http://research.microsoft.com/
easyliving/

46. MIT: Oxygen Project, Pervasive, Human-centered Computing. http://oxygen.csail.
mit.edu/

47. OMG: CORBA. http://www.corba.org/
48. OSGi Alliance: http://www.osgi.org/
49. OSGi Alliance: Listeners Considered Harmful: The “Whiteboard” Pattern. Technical

Whitepaper, http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf
(2004)

50. Saha, D., Mukherjee, A.: Pervasive computing: a paradigm for the 21st century. Computer
36(3), 25–31 (2003)

51. Saif, U., Pham, H., Paluska, J.M., Waterman, J., Terman, C., , Ward, S.: A case for goal-
oriented programming semantics. In: UbiSys’03: Workshop on System Support for Ubiq-
uitous Computing, 5th International Conference on Ubiquitous Computing (UbiComp 2003)
(2003)

52. SoCQ Project: http://socq.liris.cnrs.fr/
53. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query Optimization over Web Ser-

vices. In: VLDB 2006, Proceedings of the 32nd International Conference on Very Large Data
Bases, pp. 355–366 (2006)

54. Strang, T., Linnhoff-popien, C.: Service interoperability on context level in ubiquitous com-
puting environments. In: SSGRR2003w, Proceedings of International Conference on Ad-
vances in Infrastructure for Electronic Business, Education, Science, Medicine, and Mobile
Technologies on the Internet (2003)

55. Tian, F., DeWitt, D.J.: Tuple Routing Strategies for Distributed Eddies. In: VLDB 2003,
Proceedings of the 29th International Conference on Very Large Data Bases, pp. 333–344
(2003)

56. Union, I.T.: The Internet of Things. ITU Internet Reports. International Telecommunication
Union (2005)

57. University of California, Berkeley: The Endeavour Expedition: Charting the Fluid Information
Utility. http://endeavour.cs.berkeley.edu/

58. University of Washington: Portolano: An Expedition into Invisible Computing. http://
portolano.cs.washington.edu/

59. UPnP Forum: Universal Plug and Play. http://www.upnp.org/
60. Web Services for Devices (WS4D): Devices Profile for Web Services (DPWS). http://

ws4d.org/
61. Weiser, M.: The Computer for the 21st Century. Scientific American 265(3), 94–104 (1991)
62. Xue, W., Luo, Q.: Action-Oriented Query Processing for Pervasive Computing. In: CIDR

2005, Proceedings of the Second Biennial Conference on Innovative Data Systems Research
(2005)

63. Yao, Y., Gehrke, J.: Query Processing in Sensor Networks. In: CIDR 2003, Proceedings of
the First Biennial Conference on Innovative Data Systems Research (2003)

64. Zhu, F., Mutka, M., Ni, L.: Service Discovery in Pervasive Computing Environments. IEEE
Pervasive Computing 4(4), 81–90 (2005)

