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ABSTRACT.Pervasive information systems give an overview of what digital environments should
look like in the future. From a data-centric point of view, traditional databases have to be
used alongside with non-conventional data sources like data streams, services and events. In
this paper, we tackle the definition of continuous queries combining standard relations, data
streams and services in a declarative language extending SQL. We first define virtual tables
with binding patterns as a way to get a unified view of the pervasive environment. Relations,
data streams and services can be homogeneously queried using a SQL-like language, on top
of which query optimization can be performed. We also introduce a new clause defining the
optimizing criteria to dynamically choose the best way to handle each event.

RÉSUMÉ. Les systèmes d’information pervasifs montrent la tendancesur ce que seront les envi-
ronnements informatiques de demain. D’un point de vue centré données, les bases de données
classiques doivent cohabiter avec des sources de données non-conventionnelles comme les flux
de données, les services et les évènements. Dans cet article, nous abordons la définition de
requêtes continues combinant les relations classiques, les flux de données et les services dans
un langage déclaratif étendant SQL. Nous définissons tout d’abord les tables virtuelles avec
des binding patterns afin d’obtenir une vue unifiée de l’environnement pervasif. Relations, flux
de données et services peuvent être utilisés de manière homogène dans des requêtes exprimées
dans un langage à la SQL, sur lesquelles une optimisation de requête peut être effectuée. Nous
introduisons également une nouvelle clause définissant lescritères d’optimisation permettant
de choisir dynamiquement le moyen optimum de traiter chaqueévènement.
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1. Introduction

Pervasive information systems give an overview of what digital environments
should look like in the future. Information systems tend to be more and more de-
centralized and autonomous, at the infrastructure level aswell as at the data and pro-
cess level. On the one hand, personal computers and other handheld devices are now
democratized and take a large part of information systems. On the other hand, data
sources may be distributed over large area through networksthat range from a world-
wide network like the Internet to local peer-to-peer connections like for sensors.

Even data tend to change their form to handle information dynamicity. The rela-
tional paradigm has been widely adopted in DataBase Management Systems (DBMS)
for many years, but other forms of data sources are now emerging, mainly as data
streams and services.

Queries in traditional DBMS are “snapshot queries” expressed in SQL: a query
is evaluated with the current state of the database, and the result is a static relational
table. The “snapshot” term expresses that the result represents only the state of the
database at the moment of the query, and is never updated. With dynamic data sources,
“snapshot queries” may be not sufficient as it would be computation-expensive to
periodically execute them and obtain up-to-date results.

Data streams open new opportunities to view and manage dynamic systems, such
as sensor networks. The concept of queries that last in time,called continuous
queries(Chenet al., 2000), allows to define queries whose results are continuously up-
dated as data “flow” in the data streams. Data Stream Management Systems (DSMS)
have been studied in many works (Abadiet al., 2005; Arasuet al., 2003; Chan-
drasekaranet al., 2003; Cherniacket al., 2003; Franklinet al., 2005b; Tianet
al., 2003; Yaoet al., 2003).

With the development of autonomous devices and location-dependent function-
alities, information systems tend to become what Mark Weiser (Weiser, 1991) called
ubiquitous systems, or pervasive systems. Pervasive systems (Beckeret al., 2004; Bru-
mitt et al., 2000; Estrinet al., 2002; Garlanet al., 2002; Grimmet al., 2004) are dis-
tributed systems of devices able to communicate with othersthrough network links.
They offer to users access to devices and control over their environment through vari-
ous types of interfaces.

The abstraction of device functionalities allows the system to automate some of
the possible interactions between heterogeneous devices,in order to facilitate the use
of the whole system. Such device functionalities are often represented by services. As
devices may be sensors or effectors, services may representsome interactions with the
physical environment, like taking a photo from a camera or displaying a picture on a
screen. These interactions bridge the gap between the computing environment and the
user environment, and can be managed by the pervasive systemthrough such services.

In this paper, we will consider a way to use and compose services with the notion of
service-orientedqueries. From a data-centric point of view, traditional databases have
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to be used alongside with non-conventional data sources like data streams, services
and events to deal with new properties such as dynamicity, autonomy and decentral-
ization. Query languages and processing techniques need tobe adapted to those data
sources. Data management systems tend to evolve from DBMS orDSMS to a more
general concept of DataSpace Support Plateform (DSSP) (Franklin et al., 2005a). A
DSSP is intended to deal with “large amount of interrelated but disparately managed
data”. In this context, the definition of continuous queriescombining standard rela-
tions, data streams and services in a declarative language extending SQL is clearly an
ambitious and motivating goal. We begin by illustrating theproblem with an example
that will be used as a running example throughout this paper.

1.1. Motivating example

The motivating example is inspired by the night surveillance scenario presented in
Aorta (Xueet al., 2005). It illustrates the need for the integration of services from a
dynamic environment in a declarative query language and forassociated optimization
techniques.

The night surveillance scenario considers a room containing motion sensors and
network cameras. The surveillance consists of handling events from motion sensors to
trigger a photo of the location of the involved sensor and to send it to the administrators
via their cell phones. The cameras need to pan/tilt/zoom to focus on a given location
(if achievable) before actually taking the photo. This configuration phase is costly
in term of response time to an event and depends on the dynamicstate of the device
(current head position of the camera), so a cost-based evaluation of the optimal device
is needed.

In order to express this behavior in a declarative way, the environment can be
described using data schemas for the entities and the events, and functions for the
interactions with the devices. Then, a query language similar to SQL can express
the specified behavior in terms of joins, selections and functions. Query optimization
techniques can be applied to optimize the entire process.

In Aorta (Xueet al., 2005), this environment is modeled using three data sources:
a relation containing phone numbers of administrators, a data stream for sensor events
(indicating its current location and its horizontal acceleration value ‘accel_x’), and a
“virtual device table” for cameras. Three functions are also needed for the scenario:
taking a photo, sending a photo to a cell phone, and checking that a camera is able to
take a photo of a location.

The continuous query for the night surveillance scenario isgiven in Aor-
taSQL (Xueet al., 2005) in Table 1: anAction Querycalled “night_surveillance”
is active from midnight to 6:00 am every day (cf.START andSTOPclauses).
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Table 1. Query in AortaSQL for the night surveillance scenario from AortaCREATE AQ night_surveillane ASSELECT sendphoto( p.number, photo(.ip_address,s.loation,"photos/admin") )FROM sensor s, amera , phone pWHERE s.ael_x > 500AND overage( .id, s.loation )AND p.owner = "admin"START atTime(0,0,0) -- 00:00:00STOP atTime(6,0,0) -- 06:00:00
Despite the interest of Aorta, the following observations can be made:

1) at the query language definition level, no clear distinction is made between
event management and stream management. For example, in theabove scenario, an
event is represented as a tuple in the “sensor” data stream, but is however still handled
as an event: it triggers a single interaction with a device (taking one photo) and may
not be duplicated due to a join with a relation or another stream. This semantics is not
compatible with other DSMS like in (Arasuet al., 2003; Yaoet al., 2003; Franklinet
al., 2005b; Chandrasekaranet al., 2003);

2) the optimizing criteria are implicit: in the above scenario, the goal of the query
is to choose the camera with the least estimated response time for each event, and
cannot be declaratively modified to choose another criterion like, for example, the
photo quality;

3) at the query processing level, logical and physical stepsseem to be merge in a
single step. This choice limits the opportunities for queryoptimization techniques;

4) only limited support is provided for continuous query processing. Specific op-
erators for streams, like windows over streams (Dinget al., 2004) or relation-to-stream
operators (Arasuet al., 2003), are not tackled, as well as joining several streams,rela-
tions and virtual device tables.

Expressing queries such as the night surveillance scenariorequires a framework
that remains compatible with standard continuous query processing, allowing to reuse
the query optimization techniques of DSMS, and that integrates the notion of interac-
tion with devices like in Aorta.

1.2. Evolution of continuous queries

In this paper, we present an ongoing effort to develop a framework for Service-
oriented Continuous Queries(SoCQs), whose aim is to integrate services,i.e. dis-
tributed functionalities, in continuous queries over datastreams. SoCQs allow the
definition of queries combining standard relations, data streams and services using a
homogeneous representation, in a declarative language extending SQL.

The first requirement to achieve this ambitious goal is to define a common frame-
work to deal with non-conventional data sources. Relationsand data streams can share
the same representation as time-varying multisets of tuples like in (Arasuet al., 2003).
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We propose to represent sets of similar services as virtual tables containing a tuple per
service and associated with one or more binding patterns (Florescuet al., 1999; Gold-
manet al., 2000; Srivastavaet al., 2006) indicating which virtual attributes correspond
to input and output parameters of the service functions. We keep backward compat-
ibility with standard DBMS as we use standard relations, while extending the power
of expression of queries to handle the notion of time. Event flows are represented as
data streams, in order to avoid the mismatch between events and standard data tuples.

SoCQs can imply services that are statically bound (Goldmanet al., 2000; Sri-
vastavaet al., 2006) or dynamically discovered in the pervasive information system,
like in (Pigeotet al., 2007). In pervasive environments, those queries can use the ser-
vices to access to distributed functionalities. The optimal services (at a given time
for a given data set) are selected and called during query execution. SoCQs can then
express an event management functionality like event filtering and composition, and
perform cost-based optimal calls to services. Continuous queries can evolve from
data-oriented queries to service-oriented queries.

In this setting, the main contributions of this paper are :

– an extension of SQL to homogeneously express operators over relations, data
streams and services, and an associated query processing technique to handle time-
variations of data and dynamic calls to services during execution. An additionalCOL-
LAPSE clause in the SQL syntax is proposed to define an optimizing criterion over
groups of tuples;

– the development of a prototype of a query processor for SoCQs, from which
first experimental results over synthetic data are described. The SoCQ processor is
inspired by the STREAM prototype (Arasuet al., 2003), a DSMS developed at Stan-
ford University, and allows to show both the power of expression of SoCQs and the
capabilities of the query processor.

In Section 2, we situate our problem within the related works. In Section 3, we de-
fine a homogeneous representation for non-conventional data sources as virtual tables.
We tackle query processing techniques for virtual tables and theCOLLAPSEclause in
Section 4. We describe our implementation prototype and discuss some experimental
results in Section 5. We then conclude and discuss some open issues in Section 6.

2. Related work

2.1. Data streams

In modern information systems, some data sources may generate continuous un-
bounded streams of data elements. For compatibility with the relational model,
data streams are commonly modeled as an append-only multiset of timestamped tu-
ples whereas relations are considered as time-varying multisets of tuples (creation,
update, deletion) as in (Arasuet al., 2003). This widely adopted model (Abadi
et al., 2005; Chandrasekaranet al., 2003; Cherniacket al., 2003; Franklinet
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al., 2005b; Tianet al., 2003; Yaoet al., 2003) allows to manage structured data streams
along with relations.

Time is an important notion for data streams. Tuples have an order in the stream,
which is often supposed to be the order of arrival, and are timestamped. Timestamps
are also supposed to reference a shared system clock, otherwise a synchronization
mechanism is required (Bargaet al., 2006).

2.2. Costly data sources

Some data sources or function evaluations may be slow, like web services or sensed
attributes. Introducing asynchronous calls to data sources and synchronization oper-
ators in query execution plans, like in (Goldmanet al., 2000), allows to process in-
complete tuples until their costly attributes are required, which gives time to complete
the asynchronous calls and fill in the missing attribute values. (Xueet al., 2005) in-
troduces a selection among possible candidates (devices offering the same service)
based on their current state, to choose the optimal way of evaluating a function, here
interacting with a device in a pervasive environment. Furthermore, group optimization
allows to optimally distribute simultaneous function evaluations among the possible
candidates.

2.3. Continuous queries

Continuous queries over data streams are based on the relational paradigm. Stan-
dard query operators on relations (Select, Project, Join, Aggregate. . . ) are then used,
but their semantics may be unclear or ambiguous. (Arasuet al., 2003) identifies three
categories of operators to work with streams and relations:relation-to-relation (stan-
dard operators), relation-to-stream, and stream-to-relation. Stream-to-stream opera-
tors are absent because they can be composed from other operators. A continuous
query is a tree of operators with streams and/or relations asinput, and a stream or a
relation as output. Some systems (Yaoet al., 2003; Abadiet al., 2005; Franklinet
al., 2005b) do not express the difference between operator categories, and work, in
their semantics, only with data streams.

Unbounded tuple streams potentially require unbounded memory space in order
to be joined, as every tuple should be stored to be compared with every tuple from
the other stream. Tuple sets should then be bounded: a windowdefines a bounded
subset of tuples from a stream (it is the only stream-to-relation operator in (Arasuet
al., 2003)), based on time or on the number of tuples. Sliding windows (Arasuet
al., 2003; Dinget al., 2004) have a fixed size and continuously move forward (e.g. the
last 100 tuples, tuples within the last 5 minutes). Hopping windows (Yaoet al., 2003)
have a fixed size and move by hop, defining a range of interval (e.g. 5-minute window
every 5 minutes). In (Chandrasekaranet al., 2003), windows can be defined in a flex-
ible way: the window upper and lower bound are defined separately (fixed, sliding or
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hopping), allowing various type of windows. (Arasuet al., 2003) also defines a par-
titioned window as the union of windows over a partitioned stream based on attribute
values (e.g. the last 5 tuples for every different ID). With windows, join operators
handle bounded sets of tuples and traditional techniques can be applied. Although the
output is intuitively thought as a stream, join operators are seen in (Arasuet al., 2003)
as relation-to-relation operators: the output is a time-varying relation.

Continuous queries can be expressed in a declarative language. Most of the arti-
cles (Arasuet al., 2003; Chandrasekaranet al., 2003; Franklinet al., 2005b; Yaoet
al., 2003) propose an extension of SQL in order to work with both relational databases
and data streams. Some articles (Chenet al., 2000) tackle continuous querying over
distributed XML data sets and propose an extension of XML-QL. Others (Abadiet
al., 2005) are based on a box representation of operators, expressing queries as a flow
of tuples. However, when working with the data stream semantics mixed with the
relational paradigm, SQL tends to be widely adopted as a basefor query language
extensions. Data streams are then represented using a relation schema.

The long-running nature of continuous queries changes the definition of execution
plans in order to handle data streams. One method is the construction of a global
execution plan, like in (Abadiet al., 2005; Arasuet al., 2003; Franklinet al., 2005b;
Yao et al., 2003), which is an extension of a standard execution plan where input and
output of operators are queues of tuples instead of relations. As several queries may be
running simultaneously, the system can share common operators among the different
queries. Another method (Chandrasekaranet al., 2003) is to dynamically distribute
tuples to one of their next possible operators (called Eddies), each tuple creating its
own execution plan depending on the dynamic state of the system.

3. Dealing with non-conventional data sources

Non-conventional data sources are data sources that cannotbe represented as tu-
ples in standard relations, like in conventional databases. The transactional paradigm
cannot be directly applied to a data management system that handles dynamic sources
like data streams, or dynamically discovered services.

For the purpose of integrating non-conventional data sources in an augmented
DBMS, we propose a homogeneous representation of relations, data streams and ser-
vices through the notion of tables and virtual tables. We keep the presentation rather
informal, the basic notions being simple.

3.1. Relations and data streams

A relation schemais a name associated with a set of attributes. Eachattributehas
a name and a definition domain of atomic values. Atupleover a relation schema is an
element of the Cartesian product of its attribute domains. Arelation over a relation
schema is a multiset of tuples. Tuples can be inserted in a relation, and be later deleted
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from it. A streamcan be defined as a relation where tuples cannot be deleted,i.e. an
append-only multiset of tuples. Tuples inserted in a streamare associated with their
insertion date.

The following definition of a table is inspired by the work on data streams in (Arasu
et al., 2003) and the associated prototype. As data sources are dynamic, the notion of
time needs to be explicit, in contrast with the transactional paradigm. Time is repre-
sented as a discrete and ordered domain oftimestamps(e.g. positive integer values).
Two events are simultaneous if they are both associated withthe same timestamp.

In order to homogeneously represent relations and streams,we define atableover
a relation schema as a multiset of tuples associated with their insertion timestamps.
In other words, a table represents a relation where each tuple is associated with its
insertion timestamp. A table represents a stream if no tuples can be deleted from the
table. With this definition, a table can homogeneously represent a relation or a stream.

We consider theinstantaneous relation(Arasuet al., 2003) of a table at a given
timestamp as the multiset of tuples that have been inserted until this timestamp in-
cluded, and that have not yet been deleted. Note that a tuple can be inserted and
deleted simultaneously,i.e. at the same timestamp. For a table representing a stream,
the number of tuples of its instantaneous relation may only grow, as no tuple can be
deleted: a stream is unbounded.

Example 1 (Tables for relations and streams)Table 2 and Table 3 show two tables
representing a relation “phone” and a stream “sensor”. The instantaneous relations
for both tables are represented at timestamp 25 and at timestamp 30. Note that at
timestamp 30, the tuple “Bob” has been deleted from the “phone” table. Note also
that several tuples can be inserted simultaneously, like attimestamp 27 in the “sensor”
table.

Table 2. Schema and two instantaneous relations for the table representing the
“phone” relationTABLE phone( id INTEGER, owner CHAR(10), number CHAR(12))Timestamp � 25(34,"Alie","+3369911XXXX") � 10(25,"Bob" ,"+3369922XXXX") � 12 Timestamp � 30(34,"Alie" ,"+3369911XXXX") � 10(18,"Charlie","+3369933XXXX") � 26(24,"David" ,"+3369944XXXX") � 28
Table 3. Schema and two instantaneous relations for the table representing the “sen-
sor” stream TABLE sensor( id INTEGER, ael_x FLOAT, loation BYTE)Timestamp � 25(18, 362.15, 'a') � 16(65, 569.42, 'e') � 25 Timestamp � 30(18, 362.15, 'a') � 16(65, 569.42, 'e') � 25(18, 236.78, 'a') � 27(17, 718.64, 'd') � 27(98, 624.16, '') � 28
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3.2. Services

A serviceis an external entity (in regard to the query management system) that can
compute one or more functions. We define aservice interfaceas a group of semanti-
cally related functions. A function can have several input parameters (may be none)
and several output parameters (at least one). When called with atomic values for its
input parameters, a function returns zero, one or several result lines of atomic values,
each line containing all output parameters.

Example 2 (Service interface)Table 4 shows the definition of a service interface
providing three functions:checkCoverage()that indicates if the service can take a
photo of a given location,checkCost()that indicates the cost of taking this photo, and
takePhoto()that actually takes it.

Table 4. Example of service interfaceSERVICE INTERFACE ameraInterfae {FUNCTION hekCoverage( target BYTE ) : ( status BOOLEAN )FUNCTION hekCost( target BYTE ) : ( status FLOAT )FUNCTION takePhoto( target BYTE ) : ( result BLOB )}
To smoothly integrate services in our framework, we proposeto use the notion

of binding pattern. A binding patternmodels an access pattern to a relational data
source as a specification of “which attributes of a relation must be given values when
accessing a set of tuples” (Florescuet al., 1999). A relation with binding patterns can
represent an external data source with limited access patterns (Florescuet al., 1999)
in the context of data integration. It can also represent an interface to an infinite data
source like a web site search engine (Goldmanet al., 2000), providing a list of URLs
corresponding to some given keywords. In a more general way,it can represent a
data service, e.g. web services providing data sets, as a virtual relational table like
in (Srivastavaet al., 2006).

In our framework, we propose to define avirtual tableas a generalization of our
notion of table: its schema can containvirtual attributesand is associated withbinding
patternsinvolving functions from a service interface. Avirtual attributeis an attribute
whose value is set during query execution,i.e. is not set when the tuple is retrieved
from the data source. Abinding patternis a rule that indicates which function from
the service interface has to be invoked in order to retrieve the values of some virtual
attributes (the output parameters) when values are set for some other virtual attributes
(the input parameters).

Example 3 (Binding patterns) Table 5 shows the definition of a virtual table “cam-
era” and its associated binding patterns using the service interfacecameraInterface
given in Example 2. The virtual table schema contains one non-virtual attribute “id”
and four virtual attributes. When a value is given for the virtual attribute “location”,
the three binding patterns can be invoked if needed to independently retrieve the val-
ues of the other virtual attributes “coverage”, “cost” and “photo”.
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Table 5. Schema and binding patterns for the virtual table “camera”VIRTUAL TABLE amera ( id INTEGER,loation BYTE VIRTUAL,overage BOOLEAN VIRTUAL,ost FLOAT VIRTUAL,photo BLOB VIRTUAL )BINDING PATTERNS FOR amera USING ameraInterfae {FUNCTION hekCoverage( loation ) : ( overage )FUNCTION hekCost( loation ) : ( ost )FUNCTION takePhoto( loation ) : ( photo )}
A virtual table, like non-virtual tables, contains tuples.However, as those tuples

contains virtual attributes, we refer to them asvirtual tuples. Each virtual tuple is
bound to one service that implements the service interface used by the virtual table.
A reference to the bound service is stored in a special type ofattribute: a service
reference attribute. During query execution, when a binding pattern is invoked for a
virtual tuple, the required function is invoked from the service to which this virtual
tuple is bound. Like tuples in a table, virtual tuples can be inserted in a virtual table,
and deleted from it.

Example 4 (Virtual tuples) Continuing the previous example, Table 6 shows instan-
taneous relations for the virtual table “camera”,i.e. the virtual tuples it contains,
at timestamp 25 and 30. Only the non-virtual attribute “id” has a value. The “*”
indicates that no value is set for the four virtual attributes “location”, “coverage”,
“cost” and “photo”. Each virtual tuple is bound to a service,indicated by the ser-
vice reference, e.g. “Camera2”, “Camera3”. Note that the tuple bound to the service
“Camera2” at timestamp 25 does no longer belong to the table at timestamp 30, be-
cause the service itself is no longer available in the pervasive environment.

Table 6. Two instantaneous relations at different timestamps for the virtual table
“camera” Timestamp � 25(2, *, *, *, *) # Camera2 � 12(3, *, *, *, *) # Camera3 � 12(5, *, *, *, *) # Camera5 � 25Timestamp � 30(3, *, *, *, *) # Camera3 � 12(5, *, *, *, *) # Camera5 � 25(8, *, *, *, *) # Camera8 � 27(6, *, *, *, *) # Camera6 � 28

In other words, a virtual table represents a set of services providing the same func-
tionalities, i.e. implementing the same service interface. Tuples can be dynamically
inserted and deleted whenever such services are discoveredin a pervasive environ-
ment. The services can also be manually added by a system developer. An extreme
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case is a virtual table containing one and only onestatic virtual tuple, i.e. a virtual
tuple that cannot be deleted: the virtual table is then a simple interface to one stati-
cally bound service, or even one function, as it is used in previous works (Florescuet
al., 1999; Goldmanet al., 2000; Srivastavaet al., 2006). We call such a virtual table,
a static virtual table, as opposed to the general case, adynamic virtual table.

Example 5 (Environment for the night surveillance) Using our framework, the en-
vironment for the night surveillance scenario (described in the motivating example)
can be represented in a homogeneous way with four tables. Along with the “phone”
and “sensor” tables defined in Example 1, and the “camera” virtual table defined in
Example 3, one more table is required: a static virtual table“sendMMS” representing
a function that sends a MMS (Multimedia Message) to a cell phone.

To end up, virtual tables generalize the notion of table representing a relations
or a stream. It can then be thought as a homogeneous representation for all data
sources needed in a pervasive environment: relations, streams, static and dynamic
virtual tables. Table 7 summarizes the constraints for eachtype of data sources.

Table 7. Summary of constraints for each type of data sources

Type of Data Source Tuple Insertion Tuple Deletion Binding Patterns
Relation yes yes no
Stream yes no no

Static Virtual Table no no yes
Dynamic Virtual Table yes yes yes

System developers can work with a common representation of the different data
sources available in their computing environment. More importantly, they can de-
vise their queries involving different types of data sources using a single SQL-like
declarative language, without worrying about the particular implementation of the
data sources. As such, the way we model the environment is a contribution towards
the notion of dataspace (Franklinet al., 2005a).

4. Query processing for SoCQs

SoCQs are continuous queries over tables for relations and data streams, and vir-
tual tables for functions and services. Simple queries could be expressed using a SQL-
like declarative language. CQL (Continuous Query Language(Arasuet al., 2003))
provides syntax extensions to SQL in order to handle the specificities of data streams
and to enable continuous queries.

As a query language for our framework, an extension of the semantics of CQL
is required to include the notion of virtual tables and the associated processing tech-
niques for virtual tuples.



44 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

However, the introduction of virtual tables raises the needto define a new function-
ality: expressing optimization criteria to choose the optimal tuple(s) among a group
of possibilities. We need to choose the optimal virtual tuple corresponding to an event
so that only the “optimal” service is actually invoked. We present a solution to this
need through a new clause in SQL: theCOLLAPSEclause.

Example 6 For the night surveillance scenario, we need to handle events, represented
as tuples in the “sensor” table. In order to take a photo of theevent location, those
tuples have to be associated with a “camera” service, represented as tuples in the
“camera” virtual table. More than one service may be able to take the photo. How-
ever, only one photo is needed: the system should select the “optimal” service,i.e. the
service with the least estimated response time. The definition of “optimal” is context-
dependent: it justifies the introduction, at the declarative level, of a new clause in
SQL.

4.1. Continuous query processing with virtual tables

4.1.1. Taking into account virtual tables

All data sources are represented as virtual tables associated with binding patterns.
Non-virtual tables are only extreme cases with zero bindingpattern. In a logical query
plan, intermediary tables between operators are also virtual tables as well as the output
table of the root operator.

After a query is parsed, its semantics is checked using the metadata catalog refer-
encing the names and properties for tables and attributes. It is then transformed into a
logical query plan of operators like joins, selections, projections, aggregations.

The metadata catalog also contains the binding patterns associated with virtual
tables. A specific operator, the dependent join (Florescuet al., 1999), is required to
realize a binding pattern: it provides values for the binding pattern input attributes (by
an equality predicate with another attribute or a constant value) and allows to retrieve
the values for the binding pattern output attributes. Binding patterns add constraints on
the join order for the tables: a dependent join operator should have values for its input
attributes, so other dependent joins that retrieve those values (as the output attributes
of their binding patterns) should occur before.

A dependent join operator produces an output table containing virtual tuples with
values for the binding pattern input attributes. However, it is not already necessary to
invoke the service function associated with the binding pattern to retrieve the output
attribute values. On the contrary, it is interesting to keepthe tuples as long as possible
in a virtual form (with no values for the output attributes),in order to make asyn-
chronous calls (Goldmanet al., 2000) to the functions and speed up the global query
processing.
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Two additional logical operators need to be integrated in the operator tree for each
required binding pattern. Aninvocation operatormakes asynchronous calls to the
function associated with the binding pattern, and abinding operatoractually sets the
requested values into the tuple attributes. Note that the invocation operator is not
blocking for the tuples whereas the binding operator can block a tuple as long as
the corresponding asynchronous call has not returned its result lines. The blocking
operator ensures that the virtual attributes involved in the binding pattern have their
actual values for every output tuple it produces. In (Goldman et al., 2000), the bind-
ing operator (called “Request Synchronizer”) is present but the invocation operator is
integrated in the table scan operator for the data source. The independence of the in-
vocation operator allows a more flexible query plan and leadsto further optimization
possibilities.

Query optimizations techniques can be applied on the logical query plan. Opera-
tors can be reorganized in order to minimize the number and size of tuples to process,
e.g. by pushing selection operators down before joins or introducing projections. The
number of function calls can also be minimized, e.g. by pushing selection operators
down before invocation operators. Further optimization techniques can be applied to
the physical representation of the query plan, like mergingsome operators, in order to
compute an optimal physical query plan.

4.1.2. Continuous query execution

In the execution phase, the query processor actually executes the physical query
plan. Whereas in traditional DBMS, the query processor executes a query plan once
to produce a result table, the continuous query processor needs to schedule every
operator in (near) real-time, in order to process new tuplesfrom the data streams and
insertions/deletions of tuples from the relations, and to propagate them through the
operator tree. (Arasuet al., 2003) studies some scheduling algorithms for this context.

In order to realize the binding patterns, the virtual tuple processing technique
follows the same principle as theasynchronous iterationtechnique in (Goldmanet
al., 2000). When processed by abinding operator, an input virtual tuple may be du-
plicated according to the number of result lines for the corresponding function call:
each result line will produce one output tuple. Every outputtuple contains a copy of
all the attribute values from the input virtual tuple, including the input attributes of the
binding pattern. It also contains the values for the output attributes of the binding pat-
tern that are retrieved from the result line. The output tuples are virtual in the general
case: the output table of the operator may still contain somebinding patterns for other
virtual attributes.

Example 7 (Using a dynamic virtual table) In Table 8, a SoCQ allows to handle
events from the “sensor” stream (see Table 3): each tuple that has a “accel_x”value
greater than 500 is associated with every service from the virtual table “camera”
(defined in Example 3 and 4) that covers its location. This coverage is indicated by
the boolean virtual attribute “coverage”provided by the service functioncheckCover-
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age(). The virtual attribute “photo” represents an actual photo provided by the service
functiontakePhoto().

Table 8. Example of a query using the virtual table “camera” and the result table at
different timestampsSELECT sensor.id,sensor.loation,amera.id,amera.photoFROM sensor,ameraWHERE sensor.ael_x > 500.0AND sensor.loation = amera.loationAND amera.overageTimestamp � 25(65, 'e', 2, BLOB("photo001.jpg")) � 25(65, 'e', 3, BLOB("photo002.jpg")) � 25 Timestamp � 30(65, 'e', 2, BLOB("photo001.jpg")) � 25(65, 'e', 3 ,BLOB("photo002.jpg")) � 25(17, 'd', 3, BLOB("photo003.jpg")) � 27(17, 'd', 5, BLOB("photo004.jpg")) � 27(17, 'd', 8, BLOB("photo005.jpg")) � 27(98, '', 5, BLOB("photo006.jpg")) � 28
4.2. The COLLAPSE clause

Virtual tables provide a mean to represent services that aredynamically discovered
in a pervasive environment. In Example 7, each tuple from the“sensor” stream is
joined with every tuple from the “camera” virtual table,i.e. all available services.
Even if a condition on the coverage allows to discard some tuples, the result table
may contain several tuples corresponding to one event: withthe binding patterns,
the system has to invoke thetakePhoto()function for several services. Although this
behavior may be wanted, the goal of the night surveillance scenario is to choose the
best way to handle each event,i.e. to call only the best service to handle an event.
With the “camera” virtual table, the best service for a givenlocation is the one with
the minimum value for the ‘cost’ virtual attribute.

SoCQs may need to explicitly express criteria to choose the optimal service for
each event. From a data-centric point of view, the goal is to extract the first tuple from
a group of tuples according to a given ordering. On the one hand, it is similar to the
definition of a top-K query (here with K=1) applied to sub-groups of tuples. On the
other hand, computing one tuple from a group of tuples is similar to an aggregation.

However, standard aggregation functions like MIN, MAX or AVG, accept only
one parameter and return only one value. Some DBMS like PostgreSQL allow to de-
fine User Defined Aggregates (UDAs) that accept several parameters, but still return
one value. Even if the return value may be composite,i.e. a structure composed of
several attributes, it does not allow a simple syntax to express the required optimiza-
tion.

In this setting, we propose a new clause for SQL in order to express such an ag-
gregate in a generic and unambiguous way: theCOLLAPSEclause. It allows to define
an aggregate function returning several attributes that are retrieved from the optimal
tuple for each group. Table 9 shows the syntax of theCOLLAPSE clause. It has to
immediately follow theGROUP BYclause.
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Table 9. Syntax of theCOLLAPSEclauseSELECT ...FROM ...WHERE ...GROUP BY groupAtt1, groupAtt2, ...COLLAPSE (att1,att2,...,attN) INTO nameUSING orderAtt1 [ASC|DESC℄, orderAtt2 [ASC|DESC℄, ...HAVING ...
The set of attributes (“att1”, “att2”, . . . , “attN”) are thecollapsed attributesre-

turned by the aggregate function. The optimal tuple corresponds to the first tuple of
the group when it is ordered according to theUSING part (like with anORDER BY

clause in SQL). TheINTO part defines the name for the set of collapsed attributes, so
that they can be referenced as “name.attribute” in theSELECTclause and/or theHAV-
ING clause. Collapsed attributes can thus be used like other standard aggregate values
in these both clauses.

Example 8 (Using aCOLLAPSE clause) In Table 10, aCOLLAPSE clause extracts
for each group (“s.id”, “s.location”) the tuple that minimizes the “c.cost” value,
i.e. the first tuple in each group ordered by the “c.cost” value in ascending order.
The name of this collapsed set is “bestCamera”: the collapsed attributes are identi-
fied by “bestCamera.cost” and “bestCamera.photo” in theSELECTclause and in the
HAVING clause.

Table 10.Example of a query using aCOLLAPSEclauseSELECT s.id,s.loation,bestCamera.ost,bestCamera.photoFROM sensor s, amera WHERE s.loation = .loationAND .overageGROUP BY s.id, s.loationCOLLAPSE (.ost, .photo) INTO bestCameraUSING .ost ASCHAVING bestCamera.ost < 5
Although we present this clause in the context of SoCQs to choose the optimal

service(s) to be called for a given event, it can be applied toother cases, in particu-
lar in non-continuous queries, e.g. in multi-objective queries (Balkeet al., 2004) or
to declaratively define complex aggregations like in (Akindeet al., 2001; Chatzianto-
niou, 1999).

5. Implementation

Continuous query processing techniques are inspired from standard query process-
ing techniques (Garcia-Molinaet al., 1999). However, the introduction of the notion
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of time impacts on the whole conception. We propose an architecture of a SoCQ-
enabled DSMS, inspired by an open-source DSMS: STREAM (Arasu et al., 2003),
whose prototype has been developed at Stanford University.We first briefly describe
the STREAM prototype. We explain the different entities used by a SoCQ processor
and describe the architecture of our SoCQ processor prototype. The implementation
of the new query operators is tackled in details. We then describe first experimental
results from our prototype.

5.1. The STREAM prototype

STREAM provides support for “a large class of declarative continuous queries
over continuous streams and traditional stored data sets” (Arasuet al., 2003). It is
composed of a CQL parser, a query analyzer that produces execution plans, and a plan
manager that schedules operators to execute the continuousqueries. Execution plans
are optimized at the logical level, then at the physical level. The prototype allows
to register relations and streams schemas, and to associatethem with a physical data
source. A physical data source is an interface (in C++) that is currently implemented
as a file reader for both relations and streams. Support for four data types is provided:
byte, integer, float, and fixed-length string.

In the current implementation, CQL allows to define queries similar to SQL: SE-
LECT – FROM – WHERE – GROUP BY. TheFROM clause is extended to define win-
dows over the streams. The relation-to-stream operators (IStream, DStream, RStream)
are expressed by a keyword with parenthesis surrounding thewhole query text. Ag-
gregation functions are limited to theMIN , MAX andAVG functions over integer and
float attributes.

5.2. SoCQ processor entities

The goal of the SoCQ processor is to execute continuous queries over data re-
lations and data streams, with service calls as additional data sources. Like in
STREAM (Arasuet al., 2003), relations and streams are represented with a unifying
table entity, and table data is considered as a flow of tuple insertions and correspond-
ing tuple deletions, called elements. Query operators workwith element queues as
input, and produce elements into an output queue.

However, whereas the STREAM prototype considers relationsand streams only
as element queues (all elements are discarded when they are consummed), the SoCQ
processor differentiates between the two types of tables: relations keep their current
content (inserted tuples not yet deleted) and can provide them to later queries.

The SoCQ processor also manages binding patterns for virtual tables. A virtual
table can have several binding patterns. A binding pattern associates the service ref-
erence attribute of the virtual table and a service interface function, and maps some
attributes of the virtual table to the input and output parameters of the function.
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Services are external entities implementing some functions (currently, a set of shell
scripts) and are mapped to some service interfaces, indicating that the service imple-
ments all the functions of those interfaces. A service reference attribute of a virtual
table contains an identifier of a service: a binding pattern can be realized for every
tuple from this table by calling the associated function of the referenced service.

As virtual attributes of tuples from a virtual table do not have values until they
reach a binding operator in a query, they don’t need to be physically represented in
the source table. A virtual table then has two relation schemas: its main schema,
associated with binding patterns, and an internal schema, containing only the non-
virtual attributes. The physical representation of the data of a virtual table is based on
this internal schema. The main schema and its associated binding patterns are used at
a logical level to compute query plans.

A query plan represents a SoCQ and is composed of several query operators linked
by element queues to other operators or directly to tables. Query operators are:

– relational operators: selections, projections, joins and aggregations (also manag-
ing theCOLLAPSEclause);

– operators specific to streams: istreams and windows;

– operators specific to binding patterns: invocations and bindings.

5.3. SoCQ processor architecture

The architecture of the SoCQ processor is designed to handlethe different entities
needed to process SoCQs: tables with binding patterns, service interfaces, services,
and query plans. It is composed of seven main modules, as shown in Figure 1:

– theSystem Interface: this module is an interface for system administration. It
parses the user commands and interacts with theSystem Catalog(table management
commands, service interface management commands) or with the Service Manager
(service registration commands, service mapping commands). It also handles the user
queries: the SoCQs are parsed and then routed to theQuery Plan Manager;

– theSystem Catalog: this module allows to register the tables and the service in-
terfaces. A table is associated with a name, a data schema andbinding patterns. Its
internal data schema is also computed. A service interface is identified by a name and
contains a set of functions with their description: function name, input and output pa-
rameters, output cardinality. When a table is registered, theTable Manageris notified
to physically create the table;

– theService Manager: this module allows to register the services and their map-
pings to service interfaces. A service is associated with a physical access method (e.g.
executing a shell script) and a physical service identifier (e.g. a shell script name). The
module can asynchronously call a service function through amapped interface func-
tion with some given values for the input parameters and return the output parameters
values;
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– theTable Manager: this module manages the physical tables created through the
System Catalog. It allows to connect element queues to a table output, and toaccess
to a table input element queue in order to insert and delete tuples. It computes the
state of the tables from their input element flow (tuple insertion, tuple deletion) and
forwards those elements to the connected element queues;

– the Storage Manager: this module is responsible for the storage of the table
content: the tuples. It allocates some memory space for eachtable and manages the
insertion of new tuples. When a tuple is deleted from its table, it may be not immedi-
ately deleted from memory: the module maintains a referencecount for each tuple so
that its memory space can be released only when it is no longerneeded;

– theData Socket Manager: this module manages external connections to table
output and input through network sockets. It uses a simple dedicated protocol to send
and receive element flows. It interacts with theTable Managerto connect to the tables;

– the Query Plan Manager: this module interprets SoCQs and optimizes the
queries into physical query plans. A physical query plan is atree of query opera-
tors whose leaf operators are connected to the output of the involved tables and the
tree root operator feeds the input of the result table. Some intermediary tables can
be created for operators that need to create tuples (projection, join. . . ). The module
continuously executes the registered query plans,i.e.scheduling every query operator
in (near) real-time, and can dynamically register new queryplans or unregister some
existing ones.

Figure 1. Architecture of the SoCQ processor
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5.4. Focus on new operators

In order to handle SoCQs, we need to implement theCOLLAPSE clause into the
aggregation operator, and to develop two new operators dedicated to the realization of
binding patterns: the invocation operator and the binding operator.

The COLLAPSE clause is an extended aggregation function: it computes some
aggregated values for a group of tuples. The aggregation operator seems then fitted
for the task. However, as those values are taken from the optimal tuple based on some
criterion, the operator needs to find this optimal tuple every time the group of tuples
is modified (insertion, deletion).

We have implemented this functionality by maintaining a list of all tuples sorted by
the optimality criterion, so that the first tuple found for each group is the optimal tuple
for this group. A newly inserted tuple must be sorted in the list, but the order is not
modified by a deletion. Standard aggregation functions, like SUM, MIN , MAX , can be
computed on the sorted list of tuples as in a standard aggregation operator. Collapsed
values are copied from the optimal tuple of a group.

In order to realize the binding patterns, service functionsshould be called and
tuples should be filled in with the result data. Furthermore,asynchronous calls allow
the system to process tuples from other operators or to make other asynchronous calls
while current calls are pending.

We have implemented this functionality with two operators.The invocation oper-
ator is configured to call a service interface function. It needs to extract the service
reference attribute and the attributes forming the input parameters from each input
tuple. It can then launch the corresponding asynchronous calls through theService
Manager. Each call is identified with the tuple identifier so that the binding operator
can match tuples with their corresponding call result. The invocation operator, after
launching a call, forwards the tuple via its output element queue to the next operator.

The binding operator receives the input tuples and blocks them until their cor-
responding result set is provided by theService Manager. It can then produce the
resulting tuples. However, as the calls are asynchronous, the call results may arrive in
a random order: the operator needs to ensure that the produced tuples still follow the
timestamp order.

5.5. Experimentation

The whole architecture has been implemented in C++ on a LINUXmachine. We
choose to experiment the night surveillance scenario from the motivating example
with a query similar to Example 8. The actual query is shown inTable 11: it involves
the stream “sensor”, the virtual table “camera”, and aCOLLAPSEclause. The window
specification “[now]” indicates that a tuple from the “sensor” table will not be joined
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with tuples inserted at a later timestamp in the other table.The IStream operator
indicates that the output of the query is a stream: output tuples will never be deleted.

Table 11.Service-oriented Continuous Query for the experimentation of the night
surveillance scenarioSELECT ISTREAM s.loation, best.id, best.ost, best.photoFROM sensor s [now℄, amera WHERE s.loation = .loationGROUP BY s.loationCOLLAPSE (.ost,.id,.photo) INTO bestUSING .ost ASC

To evaluate this query, synthetic data have been generated to simulate the envi-
ronment. For the table “sensor”, 100 random tuples have beengenerated, with a
timestamp between 2 and 99 indicating a “accel_x” value between 100 and 900 and a
location label between 10 possibilities (“a” to “j”). The cameras have been simulated
by two shell scripts for the two involved functions of the camera interface:getCost()
andtakePhoto(). The two scripts takes the “location” attribute as an input parameter.
The getCost()script returns a random cost value, and thetakePhoto()script returns
the location label in uppercase, in order to prove an actual data processing made by
the function calls.

The query from Table 11 corresponds to the logical query planin Figure 2. The
table “camera” and the windowed table “sensor” are joined bya Cartesian product.
Note that the predicate “s.location = c.location” is not a join predicate, but an indi-
cation for the realization of the binding patterns: the input virtual attribute “location”
from the table “camera” is then an alias for the non-virtual attribute “location” from
the table “sensor”.

Figure 2. Logical query plan for the night surveillance scenario
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The following operators in the logical query plan are the invocation and bind-
ing operators that realize the first binding pattern: it provides the “cost” attribute, by
calling thegetCost()function using the service reference attribute “id” from the ta-
ble “camera”. The aggregation operator can then group the tuples by “location” and
extract the optimal tuple according to the minimum “cost” attribute. Another pair
of invocation and binding operators realizes the second binding pattern: it provides
the “photo” attribute for the optimal tuples generated by the aggregation operator, by
calling thetakePhoto()function.

In order to execute this query in the SoCQ Processor, severalsteps need to be done
to prepare the system:

1) launching the SoCQ processor,

2) registering a service interface “iCamera” with the two functionsgetCost()and
takePhoto(),

3) creating the two tables “sensor” and “camera” with associated binding patterns,

4) registering some services (executing the shell scripts), and mapping them to the
interface “iCamera”,

5) registering the query.

The SoCQ processor is now executing the query. We manually insert one tuple for
each registered service into the table “camera” (two services in the actual experimen-
tation). Using a rudimentary interface tool (Figure 3), we connect the table viewer
(on the left side in the interface) to the query output table and we insert the randomly-
generated tuples (on the right side in the interface) into the table “sensor”. The inter-
face tool enables to insert elements from an input file at three different speeds: element
by element, all the elements at the current timestamp, all the elements (until the end
of the input file). It also enables to save the query output table into an output file.

All the tuples from the input file have been inserted, timestamp after timestamp.
Tuples have been progressively retrieved from the query output table into the table
viewer and written into the output file. The beginning of bothfiles are presented
in Table 12, showing the elements inserted into the table “sensor” and the elements
retrieved from the query output table between timestamps 1 and 10.

The query output table content is as expected: for each timestamp, the tuples are
grouped by the ‘location’ attribute and the value of the ‘photo’ attribute corresponds
to the processing of the value of the ‘location’ attribute bythetakePhoto()function.

Additional experiments have been scheduled to test the prototype with more com-
plex queries and larger data sets.
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Figure 3. Snapshot of the interface tool. The table on the left side represents the
output table of the query. The list of elements on the right side contains the next
elements from the input file to be inserted into the “sensor” table

Table 12.Beginning of the files containing the tuples to be inserted into the “sen-
sor” table (left column) and the tuples retrieved from the query output table. The first
line is the schema of the tuples: (integer, char, real) for the table “sensor” and (char,
service reference, integer, char) for the query output table. The following lines are ele-
ments represented as<type>:<timestamp>:<tuple ID>:<tuple>: elements with
‘+’ are insertion elements, elements with ‘*’ are heartbeatelements, indicating a
change of timestampir*:2::*:3::+:3:101:52|g|772.66*:4::+:4:102:70|e|789.46+:4:103:37|e|426.09*:5::+:5:104:40|h|574.23+:5:105:2|h|193.28+:5:106:44|d|871.31*:6::+:6:107:89|b|441.39*:7::*:8::*:9::+:9:108:84|e|841.65+:9:109:75|d|214.01*:10::

Si*:3:0:+:3:1:g|1|62|G*:4:0:+:4:2:e|1|93|E*:5:0:+:5:3:d|1|64|D+:5:4:h|0|96|H*:6:0:+:6:5:b|0|24|B*:7:0:*:8:0:*:9:0:+:9:6:d|1|89|D+:9:7:e|1|72|E*:10:0:
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6. Conclusion

In this paper, we have presented our ongoing work on the framework for Service-
oriented Continuous Queries(SoCQs) that enables to build queries over relations,
streams and services. It is built on top of the CQL specifications (Arasuet al., 2003)
that manage streams and relations.

The SoCQ framework introduces tables and virtual tables as aunified mean to
represent relations, streams and services. A virtual tablehas virtual attributes and is
related to a service interface, using binding patterns to indicate which virtual attributes
should be used as an input for a service function call or retrieved as an output from
a service function call result. At the logical query plan level, a dependent join oper-
ator provides values for the input virtual attributes from other non-virtual attributes.
During query execution, an invocation operator makes asynchronous calls to functions
in a non-blocking manner, and a binding operator is used to block until the data are
effectively retrieved from the function calls. The underlying principle of virtual tables
can be used as a mean to take in charge the dynamicity of pervasive environments
where services appear and disappear.

Many services may be able to provide a virtual attribute value for a specific query.
We have thus introduced theCOLLAPSE clause that declaratively defines a criterion
for the selection of a sub-set of service function calls. TheCOLLAPSEclause extracts
the top-K tuples from a group of tuples according to a given ordering. It intends
to replace and augment the procedural and ad hoc user-definedaggregates that are
available today.

We have also presented our SoCQ processor prototype, inspired by the STREAM
prototype (Arasuet al., 2003). Our prototype handles SoCQs over virtual tables rep-
resenting relations and streams. It also manages both theCOLLAPSE clause and the
binding pattern mechanism.

The experimentation have presented the execution of a SoCQ from the running
example of our article using synthetic data and services simulating devices. It has
demonstrated the capabilities of the SoCQ processor and thepower of expression of
SoCQs. In future work, we plan to continue the development ofthe prototype in order
to optimize the implementation of the query operators and toimprove the (currently
basic) query optimizer. Furthermore, we aim to develop a benchmark involving real
data sets and services from a pervasive environment.
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