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Abstract The discovery of frequent patterns is a famous problem in data mining.
While plenty of algorithms have been proposed during the last decade, only a few
contributions have tried to understand the influence of datasets on the algorithms
behavior. Being able to explain why certain algorithms are likely to perform very
well or very poorly on some datasets is still an open question. In this setting, we
describe a thorough experimental study of datasets with respect to frequent itemsets.
We study the distribution of frequent itemsets with respect to itemsets size together
with the distribution of three concise representations: frequent closed, frequent free
and frequent essential itemsets. For each of them, we also study the distribution of
their positive and negative borders whenever possible. The main outcome of these
experiments is a new classification of datasets invariant w.r.t. minsup variations and
robust to explain efficiency of several implementations.

Keywords Pattern mining · Classification of datasets · Experimental study

1 Introduction

The discovery of frequent patterns is a famous problem in data mining, introduced
in Agrawal et al. (1993) as a first step for mining association rules. While plenty
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of algorithms have been proposed during the last decade among which we quote
Agrawal and Srikant (1994), Burdick et al. (2001), Gouda and Zaki (2001), Han
et al. (2000), Uno et al. (2004), only a few contributions have tried to understand
the influence of dataset characteristics on the algorithms behavior, such as Bayardo
and Zaki (2003), Gouda and Zaki (2001), Palmerini et al. (2004). These studies focus
on the number of transactions, average length of transactions, or frequent itemsets
distribution, i.e. statistics from frequent itemsets and maximal frequent itemsets.
Nevertheless algorithms could have quite different behaviors for (apparently) similar
datasets. Benchmarks comparing algorithms performances have been done on real
and synthetic datasets in Bayardo et al. (2004), Bayardo and Zaki (2003). Algorithm
implementations and datasets are freely available from FIMI website (see Goethals
2003) for mining frequent, frequent closed or frequent maximal itemsets. However,
being able to explain why certain algorithms are likely to perform very well or very
poorly on some datasets is still an open question.

More generally, studying datasets can provide useful hints for devising adaptive
algorithms, i.e. algorithms which adapt themselves to data characteristics in order to
increase their time or memory efficiency, such as Flouvat et al. (2004), Orlando et al.
(2003). Adaptive behavior of algorithms is not new in the setting of frequent itemsets
mining, for example Borgelt (2003), Burdick et al. (2001) use heuristics to decide
when tries-like data structure, representing datasets and/or itemset collections, have
to be rebuilt. The promising results obtained by these algorithms show the interest
of applying specific strategies according to dataset features.

Another key point is that some problems have specific invariant characteristics,
whatever the studied datasets. Their impact on algorithms could give useful infor-
mation about the difficulty to solve these problems while giving hints on the more
appropriate strategies to cope with these difficulties.

Contribution In this setting, we describe a thorough experimental study of datasets
with respect to frequent itemsets. We study the distribution of frequent itemsets
with respect to itemsets size together with the distribution of three concise represen-
tations: frequent closed, frequent free and frequent essential itemsets. For each of
them, we also study the distribution of their positive and negative borders whenever
possible. The positive (resp. negative) border corresponds to the maximal frequent
(resp. minimal unfrequent) itemsets w.r.t. set inclusion. From this analysis, we exhibit
a new classification of datasets and some invariants allowing to better predict the
behavior of well known algorithms.

To the best of our knowledge, this work is the first one to address the understand-
ing of datasets for frequent itemsets and other concise representations by using their
negative borders.

Paper organization Related works are discussed in Section 2. In Section 3, we
introduce some preliminaries on frequent itemsets and usual representations of
frequent itemsets. Experimental study of datasets is given in Section 4, including
experimental protocol, results and analysis. The Section 5 presents the main result of
this work: a new classification of datasets for frequent itemsets related to algorithms
performances. The Section 6 shows how this study can be applied to other data
mining problems. Finally, we conclude and give some perspectives for this work.
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Fig. 1 Distribution of the maximal frequent itemsets from Gouda and Zaki (2001)

2 Related works

Classical characteristics of datasets were studied in Gouda and Zaki (2001), and more
particularly a density criteria. Up to our knowledge no formal definition of density
does exist. According to Gouda and Zaki (2001), a dataset is dense when it produces
many long frequent itemsets even for high values of minimum support threshold.
The authors studied seven datasets, each of them capturing a fairly large range
of typical uses. The result of these experimentations is a classification of datasets
in four categories according to the density. The density is estimated by using the
characteristics of maximal frequent itemsets, and more precisely their distribution.
The Fig. 1 represents the distributions of the maximal frequent itemsets for the
datasets and minimum support threshold studied in Gouda and Zaki (2001).

The Table 1 shows the corresponding classification proposed.

Table 1 Datasets classification based on the maximal frequent itemsets from Gouda and Zaki (2001)

Type Type 1 Type 2 Type 3 Type 4

Distribution of Symetric Gradual increase Exponentially Explosion of
maximal frequent with a sharp decaying long maximal
itemsets drop distribution itemsets

Size of maximal Relatively Long Very short Long
frequent itemsets short

Examples of Chess(30%) Connect(30%) T10I4D100K Mushroom
datasets Pumsb(50%) Pumsb*(10%) (0.011%) (0.1%)

T40I10D100K Mushroom
(0.5%) (0.5%)
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Fig. 2 Distribution of maximal frequent itemsets for Pumsb* (minsup 10% and 25%)

We highlight two limitations of this classification. First, its variability with respect
to minimum support threshold values. For example, a dataset could belong to the first
category for a given threshold value, and to the second category for another threshold
value. As a concrete example, this case arises with Pumsb∗ dataset for minimum
support threshold values equal to 10% and 25%. As shown by the Fig. 2, Pusmb∗ for
a minimum support threshold of 10% corresponds to the type 2 of the classification
(Table 1), whereas for a minimum support threshold of 25% it corresponds to the
type 1 (Table 1). Other examples are given in Flouvat (2008).

Secondly, there is no clear relationship between the proposed classification and
algorithms performances. Even worse, a surprising result was obtained in the last
FIMI workshop (see Bayardo et al. 2004): algorithms seem to be more efficient on
some very dense datasets than on some other sparser datasets. For example in Fig. 3,
algorithms seems more efficient on Mushroom than on Chess, whereas Mushroom
has much longer maximal frequent itemsets (Fig. 1).

The Fig. 4 represents this difference between Mushroom and Chess by comparing
the average execution time for Apriori and Eclat (left figure), and for the other
algorithms (right figure).

Other works such as Ramesh et al. (2003, 2005), Palmerini et al. (2004) showed
that observations from datasets study could be very useful in many fields, from
performance prediction, minimum support threshold range determination, sampling,
generation of synthetics datasets to strategy decisions.

In Ramesh et al. (2003, 2005), the positive border distribution (i.e. the number of
maximal elements in each level) is considered as a key parameter to characterize and
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Fig. 4 Algorithms average execution time for maximal frequent itemsets discovery for Chess and
Mushroom

generate transaction databases. It is proved that any distribution is “feasible”, and
thus susceptible to be met in practice. Moreover, a constructive theorem is proposed
to compute a synthetic transaction database given a positive border distribution as
input. Nevertheless, the negative border is never considered and as a result, such
synthetic databases do not match the “complexity” of real-world datasets.

In Palmerini et al. (2004), the authors proposed a statistical property of trans-
actional datasets to characterize dataset density. They considered the dataset as a
transaction source and measure an entropy signal, i.e. the transactions produced by
such a source. The authors showed how this characteristic could be used in many
fields, such as predicting the number of frequent itemsets for a given minimum
support threshold. Thus, it is possible to estimate the algorithms performances for
very low supports thresholds. Nevertheless, it does not always explain algorithms
performances anymore. This may be due to the fact that frequent itemsets only are
used to calculate the entropy measure.

3 Preliminaries

3.1 Frequent itemsets

Let R be a set of symbols called items, and r a transaction database of subsets of R.
The elements of r are called transactions. An itemset X is a set of some items of R.
The support of X is the number of transactions in r that contain all items of X. An
itemset is frequent if its support in r exceeds a minimum support threshold value,
called minsup. Given a minimal support threshold and a transaction database, the
goal is to find all frequent itemsets F I.

We recall the notion of borders of a set using notations given in Mannila and
Toivonen (1997). The positive border of frequent itemsets Bd+ (F I) is the set of
all maximal frequent itemsets w.r.t. set inclusion. The negative border of frequent
itemsets Bd− (F I) is the set of all minimal unfrequent itemsets w.r.t. set inclusion.

Bd+ (F I) = {X ∈ F I | ∀Y ⊃ X, Y /∈ F I}
Bd− (F I) = {

X ∈ 2R \F I | ∀Y ⊂ X, Y ∈ F I
}

Each border represents all frequent itemsets, i.e. using one of the borders it is
possible to determine if any itemset of the search space is frequent or not without
accessing data.
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This notion of borders can be generalized in the following way: A set S ⊆ 2R is
closed downwards if, for all X ∈ S, all subsets of X are also in S. S can be represented
by its positive border Bd+ (S) or its negative border Bd− (S) defined by: Bd+ (S) =
{X ∈ S | ∀Y ⊃ X, Y /∈ S} and Bd− (S) = {

X ∈ 2R \S | ∀Y ⊂ X, Y ∈ S
}
.

Let p be an anti-monotone predicate on (2R ,⊆), i.e. ∀X, Y ∈ 2R , X ⊆ Y, if p(Y)

is true, then p(X) is true. If S is the subset of 2R satisfying p, then S is said to be
closed downwards.

In order to introduce our experimental study, we recall three classical representa-
tions of frequent itemsets.

3.2 Usual representation of frequent itemsets

Several concise (or condensed) representations of frequent itemsets have been
studied see for example Calders and Goethals (2003), Mannila and Toivonen (1996).
Their goal is twofold: improving efficiency of frequent itemsets mining whenever
possible, and compacting the storage of frequent itemsets for future usages.

Formally, a condensed representation must be equivalent to frequent itemsets:
one can retrieve each frequent itemset together with its frequency without accessing
data (see Calders and Goethals 2003). Such a representation is known as closed sets
(Pasquier et al. 1999). Two other representations are considered in this paper: fre-
quent free itemsets (Bastide et al. 2000; Boulicaut et al. 2003) and frequent essential
itemsets (Casali et al. 2005). We believe that this choice of concise representations
covers a fairly large range of typical cases. Notice that these sets do not convey
enough information to be condensed representation of frequent sets. They need one
of the borders to become a condensed representations (Calders and Goethals 2003).

We briefly describe these representations in the rest of this section.

Frequent Closed sets Given an itemset X, the closure of X is the set of all items that
appear in all transactions where X appears. Formally, given a transaction database r:

Cl(X) =
⋂

{t ∈ r|X ⊆ t}

If Cl(X) = X then X is said to be closed.

Frequent free itemsets An itemset X is said to be free if there is no exact rule of the
form X1 → X2 where X1 and X2 are distinct subsets of X. Free sets can be efficiently
detected through the following property:

X is free ⇐⇒ ∀x ∈ X, sup(X) < sup(X − x)

Frequent essential itemsets The notion of essential itemsets has been defined in
Casali et al. (2005). It is based on the notion of disjunctive rule defined in Bykowski
and Rigotti (2001), Kryszkiewicz and Gajek (2002). A disjunctive rule is of the form
X → A1 ∨ A2... ∨ An. Such a rule is satisfied if, every transaction that contains X
contains at least one of the elements A1, ..., An.
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An itemset X is said to be essential if there is no disjunctive rule of the form
A1 → A2 ∨ . . . ∨ Ak, where (Ai)i=1..k are distinct elements in X. As for free sets,
they can be efficiently tested exploiting the following property:

X is essential ⇐⇒ ∀x ∈ X, supdij(X) > supdij(X − x)

where supdij(X) = |{t ∈ r | t ∩ X 
= ∅}|

The three predicates “being a frequent free itemset” and “being a frequent
essential itemset” are anti-monotone w.r.t. set inclusion. In the following, we study
the distributions of these three collections w.r.t. itemsets size.

Other concise representations based on the notion of disjunctive rules have been
defined, the reader is referred to the general framework proposed in Calders and
Goethals (2003) for more details.

4 Thorough experimental study of datasets

4.1 Experimental protocol

For frequent itemsets, a benchmark of fourteen datasets is commonly used (see
Goethals 2003). Most of them are real-life datasets, only two being synthetic ones,
created using the generator from the IBM Almaden Quest research group. For
all these datasets, we have studied the distributions of frequent itemsets, frequent
closed, frequent free and frequent essential itemsets for many representative mini-
mum support thresholds w.r.t. itemset size. Moreover, we have studied the positive
and negative borders distributions of frequent, frequent free and frequent essential
itemsets.1

To perform these tests, we used algorithms available at the FIMI website (see
Goethals 2003). The discovery of frequent itemsets and frequent closed itemsets
has been done using F PClose and F P − growth∗ algorithms from Grahne and
Zhu (2003). ABS from Flouvat et al. (2004) has been updated to find frequent
free and frequent essential itemsets. All these experimentations are available at
Flouvat (2008).

4.2 Experimental results

In order to perform a fair comparison with Gouda and Zaki (2001), results given
in this paper focus on the same datasets, i.e. Chess, Pumsb , Connect, Pumsb∗,
Mushroom and T10I4D100K. Some characteristics of these datasets are in Table 2.

Notations used in the sequel are reported in Table 3.
Given a dataset and a minimum support threshold value, the Table 4 describes a

typical example of our experimental results. The reader is referred to Flouvat (2008)

1The set of closed itemsets is not closed downwards, and thus the notion of borders does not apply.
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Table 2 Characteristics of datasets studied in Gouda and Zaki (2001)

Dataset Number of items Average transactions size Number of transactions

Chess 75 37 3196
Connect 129 43 67557
Mushroom 119 23 8124
Pumsb* 2088 50.5 49046
Pumsb 2113 74 49046
T10I4D100K 1000 10 100000

for full results from which the analysis made in this paper has been performed.
A wider range of minimum support threshold values and other datasets are also
described in Flouvat (2008).

4.3 Analysis

We discuss our experimental results with respect to two main axes: borders distri-
bution of frequent itemsets, and borders distribution of frequent free and essential
itemsets.

4.3.1 Borders distribution of frequent itemsets

Consider the positive and negative borders of frequent itemsets from five datasets as
given in Fig. 5. In all experiments, the negative border appears to be “lower” than its
corresponding positive border. From a theoretical point of view, the negative border
may have elements one level after the positive border. This case never occurs in our
experiments.

The following will study more in details the distribution of the borders w.r.t. each
other.

For Chess, Pumsb and T10I4D100K (Fig. 5), the borders distributions are close
to each other, i.e. the mean of the negative border curve is only a few levels before
the mean of the positive border curve.

For datasets Connect, Pumsb∗ and Mushroom (Fig. 5), a larger distance between
the borders exists.

The dataset T10I4D100K is different from the others since its borders are made
of small itemsets.

The interest of this “distance” criteria is that it represents the part of the search
space “between” the two borders. Recall that once a border has been find all the
remaining frequent itemsets, i.e. those “between” the two borders, can be deduced
by anti-monotonicity without accessing data (but not their supports).

Table 3 Notations FI Frequent itemsets
FCI Frequent closed itemsets
FFI Frequent free itemsets
FEI Frequent essential itemsets
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Fig. 5 Borders of frequent itemsets

As we will see, the relative position of the negative border w.r.t. the positive
border will be of special interest, in particular to predict the “hardness” of a dataset
for algorithms.

4.3.2 Borders of concise representations

Now, we consider the positive and negative borders of frequent free itemsets and
frequent essential itemsets on Chess and Connect given in Figs. 6 and 7.

From these two figures, the distance between the mean of the negative and
positive borders appears to be small for each concise representation. The same
behavior has been observed in all our experiments (see Flouvat 2008), suggesting
that such kind of distributions is specific to these predicates.

5 A new classification of datasets for frequent itemsets

Observations described in previous section lead us to devise a new classification for
datasets w.r.t. borders distribution.
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Fig. 6 Borders of frequent free itemsets

5.1 The new classification

This new classification differs from the classification given in Gouda and Zaki (2001)
since it takes into account both the negative border and the positive border of
frequent itemsets.

These different types of datasets have been identified by taking advantage of the
“distance” between positive and negative borders distributions of frequent itemsets.
As a consequence, we introduce a new classification of datasets made of three types:

– Type I datasets are datasets having long itemsets in the positive border and a
negative border closed to the positive border, i.e. the mean of the negative border
curve is not far from the mean of the positive border curve. In other words, most
of the itemsets in the two borders have approximately the same size. Chess and
Pumsb fall into this category.

– Type II datasets are datasets having long itemsets in the positive border and a
large distance between the two borders distributions. In other words, the itemsets
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Fig. 7 Borders of frequent essential itemsets

in the negative border are much smaller than those of the positive border.
Connect, Pumsb∗ and Mushroom fall into this category.

– Type III is a very special case of type I: the two distributions are very close, but
they are concentrated in very low levels. This type allows to catch the notion of
sparseness (for example T10I4D100K).

The next section will show the two main interests of this classification: the stability
w.r.t. variation of minimum support thresholds and the better correspondence with
algorithms performances.

5.2 Properties of the new classification

5.2.1 Stability of the classification

In this section, we study the variation of minimum support threshold values on
borders distribution of frequent itemsets. A surprising observation is that the borders



J Intell Inf Syst (2010) 34:1–19 13

distributions and their relative position are stable w.r.t. variation of minimum support
threshold values. For example in Fig. 8, we consider Chess, Connect, Pumsb and
Pumsb∗ (a dataset per row) for various minimum support threshold values.

In other words, this observation suggests a kind of global structure for frequent
itemsets borders distribution invariant to variation of minimum support threshold
values.
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Note that this “stability” has been observed for all our experiments (see Flouvat
2008). Moreover, it appears that the distributions of the others itemsets studied
(closed frequent itemsets, free frequent, frequent essential and their borders) are
also relatively stable w.r.t. each others.

Consequently, the proposed classification is very stable w.r.t. variation of mini-
mum support thresholds, while being simpler than the one presented in Gouda and
Zaki (2001).

5.2.2 Impact on algorithms performances

We focus on the discovery of maximal frequent itemsets, and we study the perfor-
mances of implementations available at the FIMI website (see Goethals 2003). Let
us consider results given in Fig. 9 showing execution times of major implementations
on the datasets studied in Gouda and Zaki (2001). Note that the y-axis represents
the execution time on a logarithmic scale, and the x-axis represents the minimum
support threshold values in decreasing order.

On Chess dataset (Fig. 9, upper-left corner), execution times increase exponen-
tially for every implementation, whereas for Connect (Fig. 9,upper-right corner) they
appear to be almost linear for Maf ia (Burdick et al. 2003), fp − zhu (Grahne and
Zhu 2003), LCM (Uno et al. 2004) and af opt (Liu et al. 2003).
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For classical algorithms such as Apriori (Agrawal and Srikant 1994) and Eclat
(Zaki et al. 1997), the execution time is also better for Connect than for Chess, but
still exponential w.r.t. decreasing minimum support threshold.

Recall that Connect has more and longer transactions, and more items than
Chess. Moreover, Connect has longer maximal frequent itemsets. Therefore, Connect
should be “harder” to mine than Chess.

The same kind of behavior can be noticed for datasets such as Chess and
Mushroom, or Pumsb and Pumsb∗ (Fig. 9). For example, the datasets Pumsb
and Pumsb∗ are very similar w.r.t. the transactions and number of items, but their
borders distribution is very different (Fig. 5). Algorithms for Pumsb∗ are still very
effective for very low minimum support threshold, whereas for Pumsb , algorithms
do not perform very well for relatively high minimum support threshold values.

One could think that this difference is due to a more important number of frequent
itemsets for datasets such as Chess or Pumsb , since in the worst case algorithms
have to explore all these itemsets (in addition to some unfrequent itemsets). But
as shown by the Table 5, the number of frequent itemsets for Connect (30%) and
Mushroom (2.5%) is more important than Chess (34.4%), whereas the algorithms
are more efficient for these datasets and minimum support thresholds. This remark
is also true for Pumsb∗(10%) and Pumsb (50%).

Therefore, we deduce from Fig. 9 that the position of the borders in the search
space and the “distance” between them influence implementations performances.
Algorithms are indeed more efficient when the negative border is mainly composed
of small itemsets, i.e. for the datasets of type II and III w.r.t. the new classification.
However, implementations of “classical” algorithms such as Apriori and Eclat still
have difficulties when the positive border is composed of long itemsets, i.e. for type II
datasets. The efficiency of the others algorithms depends on the “distance” between
the two borders: the more important is the distance, the more implementations are
likely to be efficient.

To summarize, the following cases may arise:

– either the borders are composed of small itemsets (i.e. the borders are in the
“low” levels of the search space), algorithms have no difficulties until very low
supports; such dataset belongs to the type III of our classification;

– or the positive border have long itemsets:

– either a large distance between the two borders does exist. Every implemen-
tations perform well except classical algorithms such as Apriori and Eclat;
such dataset belongs to the type II of our classification;

– or there is a small distance between the two borders, all the algorithms have
difficulties; such dataset belongs to the type I of our classification.

Table 5 Number
of frequent itemsets

Chess minsup 34.4% (1100) 16 763 342
Connect minsup 30% (20268) 1 331 673 367
Pumsb minsup 50% (24523) ≈ 1, 65 × 108

Pumsb∗ minsup 10% (4905) ≈ 5, 5 × 1011

Mushroom minsup 2.5% (200) 18 094 857
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In addition to classical characteristics of datasets, the “distance” between the
mean of the negative and positive border distributions makes possible a better
evaluation of the difficulty of a dataset.

Consequently, the main interests of the new classification are:

– a better correspondence between algorithms performances and the classification.
In other words, this classification is a first attempt in order to evaluate the
“hardness” of a dataset.

– a stability w.r.t. the variation of minimum support thresholds.

The Table 6 summarizes this new classification and shows the type of each dataset
used for FIMI.

Finally, we also intent to use these results for other data mining problems, i.e.
those problems said to be “representable as sets” (defined in Mannila and Toivonen
1997). In the next section, we will more particularly show how this study could also
be applied to the discovery of inclusion dependencies.

6 Towards predicate classification

In the setting of this paper, we focus our analysis on datasets with respect to frequent
itemsets. In our experiments, we studied three anti-monotone predicates, one for
frequent itemsets, another one for frequent free itemsets and the last one for frequent
essential itemsets. These three predicates exhibit very different behaviors on the
same dataset (see Fig. 5 to 7 on Connect and Chess for different minimum support
threshold values). Moreover, note that for frequent free and frequent essential
itemsets, the new classification suggests that almost all datasets belong to type I or III.

Quite clearly, this work could be generalized to other data mining problems, i.e.
those which are representable as sets (Mannila and Toivonen 1997). We argue that
the study of both positive and negative borders for a given anti-monotone predicate
may allow us to come up with some general results.

From the previous sections, we deduced that studying the gap between the nega-
tive and positive borders may be very insightful to explain the behavior of algorithms
and may also give some hints to guess the existence of properties associated with anti-
monotone predicates. In spite of the huge amount of work done for frequent itemset

Table 6 New classification of frequent itemsets datasets

Type Type I Type II Type III

Algorithms Fast Slow Fast for most of the supports
performances thresholds
(from FIMI Slow for very small supports
experimentations) thresholds (<1%)

“Distance” between Small Large Small
the borders

Itemsets size Long Long Small

Examples of Chess, Pumsb, Connect, T10I4D100K, BMS − Pos,
datasets Accidents, Pumsb∗, BMS − WebView1, retail,

Webdocs Mushroom BMS − WebView2, Kosarak,
T40I10D100K
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Fig. 10 An interaction
between FD and IND

mining, we are not aware of such kind of contributions. Nevertheless, we introduce
in the sequel another data mining problem known to be representable as sets where
such properties have been clearly identified (see Marchi and Petit 2003).

Application to inclusion dependency mining Inclusion dependencies (IND) are
fundamental semantic constraints for relational databases (see Mannila and Räihä
1994). Let r and s be two relations over schemas R and S, and X and Y be sequences
of attributes into R and S respectively. The IND R[X] ⊆ S[Y] is true in (r, s) if all
the values of X in r are also values of Y in s. This notion generalizes foreign keys
constraints, very popular in practice.

The underlying data mining problem can be stated as follows: “Given a database,
find all inclusion dependencies satisfied in this database” (see Kantola et al. 1992;
Mannila and Toivonen 1997; Koeller and Rundensteiner 2003; Marchi and Petit 2003
for related works). From Mannila and Toivonen (1997), the set of IND candidates
can be organized in a levelwise manner; a given level, say k, corresponds to INDs
whose arity is equal to k. Moreover, a partial order for INDs can be defined as
follows: if i and j are two INDs, j � i if j can be obtained by performing the same pro-
jection on the two sides of i. For example, R[AB] ⊆ S[EF] � R[ABC] ⊆ S[EFG].
In this setting, the predicate “being satisfied in a database” is anti-monotone with
respect to � (see Mannila and Toivonen 1997 for the proof).

Consider now the well known inference rule for inclusion dependencies together
with functional dependencies (see Casanova et al. 1984) given in Fig. 10. Intuitively,
consider an inclusion dependency i = R[X AB] ⊆ S[Y EF] where X and Y are
attribute sequences and A, B, E and F are single attributes. Suppose that every IND
j such that j � i is satisfied, and let j1 = R[X A] ⊆ S[Y E] and j2 = R[X B] ⊆ S[Y F]
be two of them. The more |Y| is large, the more Y is likely to determine E or F. In
other words, i is likely to be satisfied (from inference rule of Fig. 10).

From this result, one may logically expect that large INDs should never appear
in the negative border, even if large INDs exist. It implies a potentially large gap
between the two borders distribution, like for type II datasets for frequent itemsets.

All our experiments corroborate this hypothesis; We tested three synthetic data-
bases built using the chase procedure presented in Beeri and Vardi (1984). We
enforced large INDs in their positive border, until size 18. For all databases, INDs in
the negative border were all of size lower than 3.

This particular behavior of the positive border of INDs underlines the interest of
frequent itemsets algorithms for this problem, and justifies an algorithm based on the
negative border discovery (Marchi and Petit 2003).

7 Conclusion and perspectives

In this paper, we have studied datasets for problems related to frequent itemset
mining. We have shown that the distribution of the negative and positive borders
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have an important impact on datasets classification and algorithms performances.
For frequent itemsets mining, a new classification of datasets has been proposed.
This work is a first step toward a better understanding of the behavior of algorithms
with respect to the search space to be discovered.

This work has two main perspectives. The former is to find out theoretical
foundation of the stability obtained for the distributions in most of our experiments.
The latter is the design of adaptive algorithms with respect to dataset characteristics,
i.e. changing dynamically their strategy during runtime.
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