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Robust and Blind Watermarking of Polygonal
Meshes Based on Volume Moments

Kai Wang, Guillaume Lavoué, Florence Denis, and Atilla Baskurt

Abstract

This paper describes a robust and blind watermarking algorithm for polygonal meshes, dedicated to copyright
protection. The watermark primitives are intrinsic 3D shape descriptors: the analytic and continuous geometric
volume moments. The mesh is first normalized by using its global moments, and decomposed into patches by
discretizing its cylindric domain. Then, one bit is inserted in each candidate patch by quantizing its local zero-order
moment, through a modified scalar Costa scheme. The patch is then deformed by an iterative process, so as to reach
the target quantized moment value; a smooth deformation mask is used to avoid introducing visible distortion. A
global moment compensation post-processing is carried out after bit insertion so as to recover the normalized mesh
pose; thus, the causality problem is resolved. The watermarking security is ensured by the key-dependent scalar
Costa quantization. The blind watermark extraction simply consists of mesh normalization, patch decomposition and
bit extraction. Experimental results and comparisons with the state-of-the-art have demonstrated the superiority of
the proposed approach in terms of robustness, security and imperceptibility. Moreover, to the authors’ knowledge, it
is the first attempt in the literature to tackle the robustness against 3D representation conversions (e.g. discretization
of the mesh into voxels).

Index Terms

Polygonal mesh, watermarking, robustness, blindness, volume moment, imperceptibility, causality problem,
security.

I. INTRODUCTION

RECENT advances in 3D acquisition technologies, 3D graphics rendering and geometric modeling have boosted
the creation of 3D model archives in many applications including cultural heritage, medical imaging, virtual

reality, video games, computer-aided design and so forth. Moreover, with the development of 3D graphic hardware,
high capacity mobile devices and with the technological advances in telecommunication, 3D models are now
commonly manipulated, visualized and transmitted over the Internet or intranets. With the increasing diffusion
of these 3D models over networks along with their increasing complexity (i.e. added-value), there now exists a
critical demand for protecting their intellectual property against unauthorized duplication and distribution. Digital
watermarking [1], [2] is considered as an efficient solution for the copyright protection of this 3D content, mostly
represented by polygonal meshes.

The basic idea of digital watermarking is to hide a piece of secret information within the functional part of a
cover content, which could be an image, an audio or video clip, a software package or a 3D model. The main
applications of this promising technique are the intellectual property protection and the authentication of various
multimedia contents. The watermarks used for intellectual property protection are often called robust watermarks.
Such a watermark is supposed to be as resistant as possible against both routine operations and malicious attacks
on the watermarked content, while keeping itself imperceptible. A watermarked multimedia content can still be
protected after the transmission phase and the legal access, since the inserted watermark always travels along with
it. According to whether the original non-watermarked content is required or not at the watermark extraction,
watermarking techniques are classified into two groups: non-blind and blind. The blind methods are preferred in
real-world applications since in many scenarios the original non-watermarked content is difficult to or even cannot
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be available at extraction. One example is the multimedia copy control application at the client side: it is not suitable
to make the original version available at the control device that is on the hand of a possibly non-reliable client.

This paper focuses on robust and blind watermarking of polygonal meshes; the design of such algorithms is
difficult mainly because of the mesh irregular sampling nature and the existence of many intractable attacks [3].
Besides the geometry attacks that only modify the vertex positions (e.g. similarity transformation, noise addition,
smoothing and vertex coordinate quantization), the connectivity attacks (e.g. simplification and remeshing) can
completely change the geometry and connectivity information of the watermarked mesh while conserving its global
3D shape. The most destructive attack may be the object representation conversion (e.g. from mesh to voxels); the
mesh itself disappears after such a conversion. These attacks will be potentially conducted by pirates who attempt
to remove the watermark (i.e. the copyright proof) from the model; meanwhile, these attacks also try to conserve
the global 3D shape (i.e. the visual appearance) of the model, since this constitutes its main added-value. Indeed, a
too much distorted object does not present any interest for the pirate. Following this idea, we believe that a valuable
robust watermark has to be linked to the 3D shape that is behind the mesh, and not to the mesh itself. Hence,
we have chosen an intrinsic 3D shape descriptor as watermarking primitive: the analytic and continuous geometric
volume moment. This descriptor is calculated using combinatorial elements of the mesh but depends only on its 3D
analytic shape and thus should be robust to geometry, connectivity and representation attacks providing that they
are not too destructive for the object. In our method, a readable multi-bit blind watermark is inserted by slightly
modifying these geometric moments through an informed quantization data hiding scheme that is widely used in
image, audio and video watermarking.

Another critical issue for 3D mesh blind watermarking is the causality problem, which means that the posteriorly
inserted watermark bits disturb the correctness and/or the synchronization of the previously inserted ones. For
instance, in [4], the author establishes an order for the watermarking candidate vertices according to a geometric
criterion, and then modifies another correlated geometric metric to insert watermark bits. The established order may
be altered after the bit insertion; that is the reason why the author introduces a post-processing step in order to
recover the original vertex order. In our algorithm, after watermark insertion, we introduce a geometric compensation
process so as to resolve this causality problem, by restoring the initial mesh features. Two other points have also
to be taken into account. The first is the watermark imperceptibility. It has been demonstrated that insertion in
the mesh low-frequency components can be both more robust and more imperceptible [5]. We have followed this
principle when devising our method. The second is the watermarking security. In the early stage of watermarking
research, a good security level meant preventing non-authorized extraction and optimal watermark removal. Recent
results [6] reveal that we have also to keep the information leakage of the secret parameters (usually determined
by a secret key) of the watermarking system as low as possible. However, in 3D mesh watermarking, the security
has often been ignored until now; while in our scheme, the security is explicitly taken into account.

Hence, we present a new robust and blind mesh watermarking algorithm based on volume moments. First, the
mesh is normalized to a canonical and robust pose according to its global volume moments. Then, the mesh
is decomposed into patches and a multi-bit readable watermark is inserted by quantizing the zero-order volume
moments of some selected candidate patches. Experimental results and comparisons with the state-of-the-art have
demonstrated the superiority of our approach in terms of robustness (against geometry attacks, connectivity attacks
and object representation conversions), security and imperceptibility of the watermark. The remainder of this paper
is organized as follows: section II introduces the related work and the geometric volume moments; section III
provides an overview of the proposed method; sections IV and V detail the watermark insertion and extraction
procedures; section VI presents some experimental results; finally section VII concludes the paper and gives some
future working directions.

II. RELATED WORK AND BACKGROUND

A. Robust and Blind Mesh Watermarking

A robust and blind watermark does not need the original non-watermarked cover content for its extraction, and
has to resist the attacks that cause distortions under a certain threshold beyond which the watermarked content is
greatly degraded. Relatively few robust and blind watermarking schemes have been proposed for polygonal meshes
mainly due to the particular difficulties mentioned above (e.g. irregular sampling and connectivity attacks).

The blindness has been achieved in several spatial-domain-based mesh watermarking algorithms [4], [7], [8];
however, these schemes are not robust, especially against connectivity attacks because their geometric watermarking
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primitives disappear after such attacks. On the contrary, some transform-domain-based algorithms [9]–[12] are
robust but non-blind. The used transformation tools are sensitive to connectivity changes; hence, a resampling
pre-processing step is needed at extraction. This step ensures constructing the same connectivity as the cover mesh
but inevitably makes the scheme non-blind. There exist several blind algorithms in a transform domain [13]–[16];
however, they are not robust enough against connectivity attacks.

Several blind and robust algorithms have been nevertheless proposed. In order to achieve robustness to connectivity
attacks, they consider mesh shape descriptors as watermarking primitives: the average of the facet normals in a
patch [17], the histogram of the vertex coordinate prediction errors [18], and the vertex norm histogram [19]. These
methods are either blind [18], [19] or semi-blind [17] and demonstrate good robustness due to the intrinsic stability
of the shape descriptor primitives. The method of Cho et al. [19] may have been the most robust blind algorithm
in the literature. However, it seems there exist two problems: first, this method has a low security level because
the modified vertex norm histogram is exposed to everyone and a non-authorized extraction or an optimal removal
can be easily carried out; second, the mesh center is calculated simply as the average of all its vertices, which is
not very stable under non-uniform simplification and resampling.

B. Geometric Volume Moments

The geometric volume moments of a closed 3D surface are defined as:

mpqr =
∫ ∫ ∫

xpyqzrρ (x, y, z) dxdydz (1)

where p, q, r are the orders, and ρ (x, y, z) is the volume indicator function (it is equal to 1 if (x, y, z) is inside
the closed surface; otherwise it is equal to 0). For an orientable mesh, Zhang and Chen [20] and Tuzikov et al.
[21] derived independently the explicit expression for the above volume integration. The basic idea is to calculate
it as a sum of signed integrations over elementary shapes. For a 3D triangular mesh, the elementary shape is
the tetrahedron constituted of a triangle facet fi and the coordinate system origin O. The contribution sign for
each tetrahedron is determined by the orientation of fi and the relative position between fi and O. Note that
if the facets are correctly oriented, the moment m000 is the volume of the closed surface. Some of the low-
order elementary moment integration expressions m

(fi)
pqr are listed as Eqs. 2 to 5, where fi = {vi1, vi2, vi3} =

{(xi1, yi1, zi1), (xi2, yi2, zi2), (xi3, yi3, zi3)}. With the above calculation, geometric volume moments can be easily
generalized to non-closed orientable surfaces (e.g. a mesh patch). The calculation consists in first adding fictional
facets by connecting the boundary vertices and the origin, and then calculating the moments of the obtained
closed surface. These geometric moments are very robust features and have been used for mesh self-registration
and retrieval [20]. In this paper, we use the global volume moments for mesh normalization and the local volume
moments as watermarking primitives. Actually, invariant and orthogonal moments have already been used for robust
image watermarking in [22]–[24].

III. OVERVIEW OF THE PROPOSED METHOD

Our method is based on the assumption that a good watermarking primitive has to be intrinsically linked to the
3D shape that is behind the mesh. The analytic and continuous volume moments seem good candidates. We wish
to consider them as primitives to insert a multi-bit readable watermark (in contrast to a detectable watermark). Two
difficulties immediately arise: first, the moments of different orders are correlated so it becomes very complicated
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Fig. 1. Block diagrams of (a) the watermark insertion and (b) the watermark extraction procedures.

to modify different moments of a same mesh simultaneously and independently (in order to insert multiple bits);
second, the above moment transformation is not reversible so we cannot modify the volume moment to a certain
target value in an easy and straightforward way. The first point forces us to decompose the mesh into patches and
insert one bit in each patch. For the second point, we introduce an iterative deformation algorithm for the patches,
in order to reach their target moment values.

Figure 1.(a) illustrates the bloc diagram of our watermark insertion procedure. The cover mesh is first normalized
by using its global volume moments. Then, the mesh is transformed from Cartesian coordinate system (x, y, z)
to cylindric coordinate system (h, r, θ). The mesh is then decomposed into patches by discretizing the obtained h
and θ domains. For several selected patches (cover patches), we calculate their zero-order moments and quantize
them so as to embed one bit per patch. Note that in order to ensure a precise patch moment calculation, we insert
some auxiliary vertices and edges on the patch borders; they can be easily removed after the watermark insertion.
The moment modification is carried out through iterative patch deformation. Special care is taken in order to keep
the deformation as imperceptible as possible. The third difficulty, namely the causality problem, occurs at this
point, because after the deformation of the cover patches, the mesh global volume moments are probably altered
so that we cannot achieve the same normalized mesh pose at extraction in a blind way. A moment compensation
post-processing step is introduced to resolve this problem.

Figure 1.(b) illustrates the watermark extraction procedure. It does not require the original non-watermarked mesh
nor any other supplementary information, except a secret key for reason of security. The extraction consists of three
steps: mesh normalization, patch decomposition and watermark bits extraction from the cover patches. Following
sections will present more details about the watermark insertion and extraction procedures.

IV. WATERMARK INSERTION

A. Mesh Normalization

Mesh normalization is used as a preprocessing step by both watermark insertion and extraction, and consists of
the following three sequential operations:

1) translation of the mesh so that its center coincides with the origin of the objective Cartesian coordinate system;
2) uniform scaling of the mesh so that it is bounded within a unit sphere;
3) rotation of the mesh so that its three principal axes coincide with the axes of the coordinate system.
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TABLE I
ROBUSTNESS EVALUATION OF THE DIFFERENT NORMALIZATION SCHEMES ON THE VENUS HEAD MESH

Attack Discrete moments Surface moments Volume moments
∆ ‖C‖ max{∆PA} ∆ ‖C‖ max{∆PA} ∆ ‖C‖ max{∆PA}

0.50% noise 1.12× 10−6 0.003◦ 6.36× 10−4 0.23◦ 3.74× 10−5 0.01◦

7-bit quantization 1.57× 10−5 0.01◦ 2.98× 10−3 1.07◦ 2.70× 10−5 0.05◦

90% simplification 3.29× 10−3 3.32◦ 3.95× 10−4 0.05◦ 1.18× 10−4 0.03◦

0.50% non-uniform noise 8.02× 10−6 0.01◦ 0.044 5.70◦ 2.39× 10−5 0.01◦

50% non-uniform simplification 0.40 82.53◦ 2.30× 10−3 0.18◦ 5.51× 10−4 0.05◦

The mesh center coordinates are calculated as the following moment ratios:

C = (xc, yc, zc) = (
m100

m000
,
m010

m000
,
m001

m000
) (6)

The principal axes of the mesh are obtained as the ordered eigenvectors of the following matrix:

M =

m200 m110 m101

m110 m020 m011

m101 m011 m002

 (7)

In our implementation, the most significant principal axis is aligned with axis Z. In order to resolve the axis
alignment ambiguity, besides the compliance to the right-hand rule, we impose some other geometric constraints
(e.g. the global moments m300 and m030 should be positive after alignment [20]). Note that the obtained normalized
mesh has null m100, m010, m001, m110, m101 and m011 moments.

The above normalization relies on the analytic volume moments and therefore is processed in a continuous
space. So far, existing watermarking methods have based their normalization only on the vertex coordinates while
completely discarding the mesh connectivity information [18], [19], [25]. This kind of “discrete” moment is not very
robust, especially against non-uniform connectivity changes. Recently, Rondao-Alface et al. [26] have calculated
the mesh center as the weighted average coordinates of the vertices, which is equivalent to the calculation based
on the mesh surface moments [21]. Table I presents the robustness evaluation results of the normalizations based
on discrete, surface and volume moments, in terms of the center norm ‖C‖ and the maximum principal axis (PA)
variations. The experiments are carried on the Venus head mesh illustrated in Fig. 6.(a) that owns 100759 vertices.
The volume moments present the best overall performances, especially under spatially non-uniform noise addition
and simplification.

B. Decomposing the Mesh into Patches

The mesh is then decomposed into patches so as to insert one bit per patch. After the normalization, each vertex
vk = (xk, yk, zk) is converted into cylindric coordinate system as vk = (hk, rk, θk) = (zk,

√
x2

k + y2
k, tan−1( yk

xk
)).

The patch decomposition is simply a uniform discretization of the h and θ domains into Ih and Iθ intervals with
two steps hstep and θstep. This discretization may be pseudo-randomized by using a secret key in order to still
reinforce the watermarking security.

Each vertex is associated to its proper patch by calculating its discretized indices ind(hk) and ind(θk); however
some facets may cover several patches. These facets have to be split into several smaller ones, each of which
completely lies in a single patch. This facet split process is necessary to ensure a precise patch moment calculation,
which is critical for the watermark robustness. The task is accomplished by automatically adding auxiliary vertices
and edges on the patch borders [see Fig. 2.(c)(d)]. The whole decomposition process can be considered as a
segmentation of the mesh by intersecting some 3D planes with the mesh surface in a continuous space. The mesh
is now decomposed into Ih × Iθ patches Pj,j=0,1,...,Ih.Iθ−1. These patches are ordered according to their spatial
positions and their indices are determined as j = ind(hk).Iθ + ind(θk).

Ih and Iθ are two important parameters for our algorithm: if we increase the patch number, the watermark
capacity (i.e. the watermark bit number) is increased, but it will experimentally introduce higher-amplitude patch
deformation if a comparable robustness level is required, and visible distortions are prone to occur. The explanation
is as follows: when the mesh is decomposed into a high number of patches (imagine the extreme case where each
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Fig. 2. (a), (b) and (d) illustrate three close-ups of the decomposed Venus head mesh; the original connectivity of (d) is shown in (c).

patch contains just one vertex), the final deformation will become of high frequency, which is more visible and
less robust. Ih = 11 and Iθ = 8 seems to achieve a good trade-off between watermark capacity, robustness and
imperceptibility for most meshes. Moreover, it allows to insert around 64 bits, which is a common and sufficient
payload for a robust readable watermark used for copyright protection. An adaptable setting of these two parameters
according to the mesh shape constitutes one part of our future work.

The combination “mesh normalization + cylindric discretization” constitutes a simple but effective mesh decom-
position. First, it can reproduce exactly the same decomposition at extraction in a blind way, with an intrinsic patch
order. Besides, this decomposition depends only on the center and the principal axes of the object and is also very
robust to geometry and connectivity attacks; we think that a too much shape-dependent decomposition algorithm
(e.g. based on curvature or Reeb graph) would have not been so robust to various distortions. Also note that even
if the cylindric decomposition is not one-to-one (e.g. multiple layers of the object may have the same h− θ range),
the mesh can still be robustly decomposed as long as it is orientable; indeed we don’t want to create a real mapping
such as in mesh parametrization [27]. The stability of the decomposition (i.e. normalization + discretization) has
been justified by the stability of the patch zero-order moment values under different attacks, even non-uniform
[see Fig. 3 for the results on the watermarked Horse illustrated in Fig. 7.(b) that owns 112642 vertices]. These
results also demonstrate the robustness of these local volume moments, as well as the interest of using them as
watermarking primitives. The decomposition is not robust against strong local deformation and cropping, which are
quite difficult to handle for blind watermarking methods. These attacks cause serious desynchronization problem to
our method due to the deviation of the mesh normalization. Our normalization also fails for spheres and some other
special objects, for which it is difficult to estimate the principal axes; however, most existing mesh segmentation
methods would also fail to decompose consistently a sphere object. Moreover, in real life, this kind of n-symmetric
object remains marginal.

C. Patch Classification and Watermark Synchronization

The obtained patches are classified into three groups:
1) cover patches for watermark bit insertion;
2) discarded patches not suitable for deformation;
3) compensation patches for moment compensation.
The discarded patches will not be used for bit insertion nor for moment compensation. They include the small

patches having very low zero-order moment amplitudes, the flat patches having very small h domain ranges, and
the narrow patches having very small θ domain ranges. It is in practice difficult to deform these singular patches
equally strongly as the other patches, and the bits hidden in them are often less robust; thus they are discarded.
Three empirical thresholds ¯m000 = 0.0005 for zero-order moment, h̄r = 0.35 × hstep for h domain range, and
θ̄r = 0.35× θstep for θ domain range have been set to filter out these patches.
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Fig. 3. Stability of the patch moment values of the watermarked Horse under different attacks.

The compensation patches serve to be deformed after watermark bit insertion so as to recover the mesh center
position and principal axis orientations. The patches with larger moment amplitudes are favorable for this task since
they allow a larger moment variation while keeping the deformation imperceptible. The 12 patches with the largest
m000 amplitudes are kept from watermark bit insertion and considered as compensation patches. They are noted
as Pc

l,l=0,1,..,11. A compensation patch with a smaller index in this sequence has a larger m000 amplitude.
All the other N patches are cover patches and are denoted by Pw

n,n=0,1,..,N−1. A cover patch with smaller index
in this sequence also has smaller index in the global indexing Pj,j=0,1,...,Ih.Iθ−1. This cover patch order is used for
the watermark synchronization: watermark bits are sequentially inserted in these ordered cover patches.

The above patch classification may introduce causality and desynchronization problems. For instance, after the
watermark insertion or an attack, a compensation patch can become a cover patch (if its m000 amplitude decreases).
Hence, special cares are taken for the potentially sensitive patches during the watermark insertion (e.g. the m000

amplitude of the compensation patch Pc
11 is constrained to be increased), in order to preserve and reinforce the

established classification. Experimentally, the desynchronization never happens under week and moderate attacks,
and also rarely occurs under strong attacks. Our current solution is to realize several different extractions (normally
less than 4 even under very strong attacks) by classifying the suspicious patch(es) in different possible groups. The
desynchronization would also be resolved by transmitting an additional sequence of Ih×Iθ bits at the extraction side
to explicitly indicate the cover patch locations; however, strictly speaking, this solution would make the algorithm
semi-blind.

D. Patch Moment Quantization

After patch decomposition and classification, the mesh allows for the insertion of (N − 1) bits w1, w2, ..., wN−1

in its N cover patches (the first cover patch is not watermarked, see Eq. 9). The watermark bit wn ∈ {0, 1} is
inserted by quantizing the zero-order moment m

(Pw
n )

000 . The proposed quantization scheme is a modified version of
the scalar Costa scheme (SCS) [28] that is widely used in image, audio and video watermarking. The basic idea of
SCS is that instead of replacing the initial value exactly by a quantized value, it is better to push the initial value
towards the quantized one. SCS provides more control on the insertion intensity and offers a higher security level
compared to the simple substitutive quantization.

The practical quantization procedure is as follows: first, a component-wise pseudo-random codebook is established
for each m

(Pw
n )

000 as given by Eq. 8, where ∆(Pw
n ) is the quantization step, z ∈ Z is an integer, a ∈ {0, 1} stands for

the implied bit of a codeword u, and t(P
w
n )∆(Pw

n ) is an additive pseudo-random dither signal.

U
m

(Pw
n )

000 ,t(P
w
n ) =

1⋃
a=0

{
u = z.∆(Pw

n ) + a
∆(Pw

n )

2
+ t(P

w
n )∆(Pw

n )

}
(8)
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In our implementation, t(P
w
n ),1≤n<N form a simulation sequence of a random variable T uniformly distributed

between
[
−1

2 , 1
2

]
and are generated by inputting a secret key K into an appropriate pseudo-random number generator.

Differently from in [28], the quantization step ∆(Pw
n ) in our case is no longer fixed and is also component-wise.

A fixed step, even combined with an adaptive compensation factor value (introduced in Eq. 11), is experimentally
not appropriate, since different patches can tolerate different moment variations. There are always difficulties in
introducing quantization-based schemes for mesh watermarking, even to quantize directly the vertex coordinates.
For instance, a coarse mesh can tolerate a larger step than a dense mesh, and a rough region can be deformed much
stronger than a smooth region without being noticed. We propose the derivation of ∆(Pw

n ),1≤n<N as follows:

∆(Pw
n ) =
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(9)

where
ˆ

m
(Pw

n−1)
000 is the watermarked moment value of the patch Pw

n−1 with
ˆ

m
(Pw

0 )
000 = m

(Pw
0 )

000 , and ∆pre is given by:

∆pre =

0.04, if
∣∣∣m(Pw

n )
000

∣∣∣ > 0.01

0.07, if ¯m000 <
∣∣∣m(Pw

n )
000

∣∣∣ ≤ 0.01
(10)

We can notice that the quantization step of the current patch Pw
n is related to the quantized moment of its previous

patch Pw
n−1. This is inspired from the work of Pérez-González et al. [29]. Their rational dither modulation (RDH)

method achieves the invariance to value-metric scaling attacks for the quantization index modulation paradigm [30].
We have proposed the above RDH-like scheme in order to reinforce the watermark robustness against the alteration
of the farthest vertex that is used for mesh scaling during the normalization step (see Section IV-A). This alteration

is possible during the watermark insertion and after attacks. The introduction of
ˆ

m
(Pw

n−1)
000 in the calculation of

∆(Pw
n ) makes the quantization scheme intrinsically invariant to scaling thus can effectively handle the local scaling

phenomenon caused by this farthest vertex alteration.
The quantization step ∆(Pw

n ) calculated using Eqs. 9 and 10 is approximately proportional to its moment amplitude∣∣∣m(Pw
n )

000

∣∣∣ so that the patches with larger moment amplitudes can adaptively have larger moment variations. There
are different ∆pre values for patches having moderate moment amplitudes and those having large amplitudes (Eq.
10). This distinction helps to balance the induced distortions on these different patches and is also theoretically
reasonable (please refer to Proof 1 in the support document). Although a more sophisticated derivation of ∆pre

may be possible, the empirical setting in Eq. 10 has already worked well enough in practice for many meshes.
Once the codebook is constructed, we find the nearest codeword u

m
(Pw

n )
000

to m
(Pw

n )
000 that correctly implies the

watermark bit wn (i.e. wn should be equal to value a in the derivation of u
m

(Pw
n )

000
). The quantized value

ˆ
m

(Pw
n )

000 is

calculated according to Eq. 11, where α(Pw
n ) ∈ [0, 1] is a compensation factor. Normally, we take α(Pw

n ) ≥ 0.50 in
order to ensure the correctness of the watermark extraction when there is no attack.

ˆ
m

(Pw
n )

000 = m
(Pw

n )
000 + α(Pw

n )(u
m

(Pw
n )

000
−m

(Pw
n )

000 ) (11)

α(Pw
n ) will partially drive the induced distortion and the watermarking security. A perfect security of the classical

2-symbol SCS quantization (i.e. the secrecy of K) can be gained if α(Pw
n ) = 0.50 for all the patches [31]; then,

the information leakage increases as α(Pw
n ) increases. Although our scheme is slightly different from SCS, we still

follow this principle, trying to keep α(Pw
n ) close to 0.50.

It is possible that, after quantization, the ceiled (d e) or floored (b c) integer moment ratio between
ˆ

m
(Pw

n−1)
000 and

ˆ
m

(Pw
n )

000 (see Eq. 9) may be different from that between
ˆ

m
(Pw

n−1)
000 and m

(Pw
n )

000 , so that the quantization step can be
different at extraction. For the sensitive ratios close to integers, which in practice rarely occur, we automatically
adjust the corresponding compensation factors so that these integer moment ratios are kept unchanged after
quantization; however, the correctness of the bit insertion cannot always be ensured.
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Fig. 4. Illustration of the deformation mask function pattern. Here the global deformation factor s is equal to 1.001.

E. Patch Deformation

The next step is to deform the cover patches in order to reach the quantized target moment values. Since the
volume moment transformation is not reversible, we need to modify the moment of a patch heuristically by moving
its vertices. The amplitude and direction of this patch deformation is iteratively adjusted so that the patch zero-
order moment gradually achieves its target value. Besides, the displacements of all the vertices within a patch are
modulated by using a smooth deformation pattern function that is illustrated in Fig. 4, so that the patch’s global
deformation is of low frequency. Each vertex has its own multiplicative deformation factor derived from this mask
function. For a vertex vk within Pw

n , the derivation begins with a normalization of its coordinates:

h
′

k = 1−

∣∣∣∣∣2(hk − h
(Pw

n )
min )

h
(Pw

n )
max − h

(Pw
n )

min

− 1

∣∣∣∣∣ ∈ [0, 1] (12)

θ
′

k = 1−

∣∣∣∣∣2(θk − θ
(Pw

n )
min )

θ
(Pw

n )
max − θ

(Pw
n )

min

− 1

∣∣∣∣∣ ∈ [0, 1] (13)

Under this normalization, the vertices close to the patch borders will have small h
′

k and θ
′

k values, while the vertices
close to the patch center will receive large values. For each vertex, two weights are then calculated: Eq. 14 gives
the formula for the h domain weight calculation, the calculation of the θ domain weight wtθ′k has a similar form.

wth′k =


0 if 0 ≤ h

′

k < 0.1
1
2

√
|s− 1|[sin(5π

3 (h
′

k −
2
5)) + 1] if 0.1 ≤ h

′

k < 0.7√
|s− 1| if 0.7 ≤ h

′

k ≤ 1.0
(14)

where s is called the global deformation factor. The individual deformation factor svk
for vertex vk is then determined

as follows:

svk
=

{
1 + wth′k .wtθ′k if s > 1

1− wth′k .wtθ′k if s < 1
(15)

Finally, the coordinates of a candidate moved vertex are obtained as the multiplication of its original coordinates
with svk

or (2− svk
), depending on the contribution sign of its incident facets (more details in Algorithm 1).

The defined deformation mask (in continuous setting, see Fig. 4) is very smooth: it is constant in the border and
center regions, and has a sinus-like shape between the above two regions. Its amplitude and direction depend on
the global deformation factor s. The objective now is to find, for each patch, the correct value for s that produces
the target quantized moment value when applied on the original patch. For this task we have defined a simple and
efficient iterative process that is summarized as Algorithm 1. Note that some vertices are not modifiable: the added
border vertices, their direct neighbors, and the vertices having simultaneously facets with positive and negative
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Fig. 5. A moderately watermarked Venus head (a) and a strongly watermarked one (b).

moment contributions. We have also constrained that a modified vertex cannot get out of its original patch. This
iterative algorithm permits reaching the target global deformation factor s within normally less than 25 iterations.
Actually, each patch can have its own mask function (e.g. the different ranges of h

′

k in Eq. 14 can be changed);
however, a uniform setting of the above mask for all the patches is already satisfying in practice.

Algorithm 1 Iterative patch deformation algorithm
Notations: global deformation factor s; its modification step ks; obtained zero-order moment after i-th iteration mi; original

moment m
(Pw

n )
000 ; target moment

ˆ
m

(Pw
n )

000

1: Determine the involved vertices for the current patch Pw
n ; for each involved vertex deduce its modifiability; for each

modifiable vertex vk record its coordinates (xk, yk, zk)
2: Initialize the parameters: s = 1, ks = 0.01, i = 1, m−1 = m0 = m

(Pw
n )

000

3: repeat
4: Modify s according to the following rule

• if mi−1 <
ˆ

m
(Pw

n )
000 and mi−2 <

ˆ
m

(Pw
n )

000 , then s← s + ks;

• if mi−1 <
ˆ

m
(Pw

n )
000 and mi−2 >

ˆ
m

(Pw
n )

000 , then ks ← ks/2 and s← s + ks;

• if mi−1 >
ˆ

m
(Pw

n )
000 and mi−2 >

ˆ
m

(Pw
n )

000 , then s← s− ks;

• if mi−1 >
ˆ

m
(Pw

n )
000 and mi−2 <

ˆ
m

(Pw
n )

000 , then ks ← ks/2 and s← s− ks.
5: for each modifiable involved vertex vk in Pw

n do
6: Calculate vk’s deformation factor svk

(Eqs. 14, 15) according to s and its normalized coordinates (Eqs. 12, 13)
7: Modify vk’s original coordinates to obtain a candidate moved vertex v

′

k by using the following rule
• if all vk’s incident facets have positive moment contributions, then (x

′

k, y
′

k, z
′

k) = svk
.(xk, yk, zk)

• if all vk’s incident facets have negative moment contributions, then (x
′

k, y
′

k, z
′

k) = (2− svk
).(xk, yk, zk)

8: end for
9: evaluate mi as the zero-order moment of the temporary deformed patch

10: iteration number incrementation: i = i + 1

11: until
∣∣∣∣mi −

ˆ
m

(Pw
n )

000

∣∣∣∣ < ε or i = Imax

Figure 5 shows the distortion effects of a moderate-intensity watermark and a very strong-intensity watermark.
There exists hardly any visual distortion for the former because the modification is of low frequency; for the latter,
the distortion becomes visible and has a similar shape as the deformation mask.
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F. Moment Compensation

The objective is to recover the mesh’s center position and principal axis orientations after the deformation of
the cover patches. Concretely, it needs to compensate for the variations of the mesh’s m100, m010, m001, m110,
m101 and m011 moments that have been caused by the watermark bit insertion, so that they become null again,
or at least reasonably small. Our compensation method is based on the following result: when deforming a patch
with the above iterative algorithm and the proposed deformation mask function, it can be proven (please refer to
Proof 2 in the support document) and has also been experimentally validated that the following moment variation

ratios are approximately constant under different s values: ∆m
(Pj)
100

∆m
(Pj)
000

, ∆m
(Pj)
010

∆m
(Pj)
000

, ∆m
(Pj)
001

∆m
(Pj)
000

, ∆m
(Pj)
110

∆m
(Pj)
000

, ∆m
(Pj)
101

∆m
(Pj)
000

and ∆m
(Pj)
011

∆m
(Pj)
000

.
The compensation patches are deformed arbitrarily by using Algorithm 1 prior to the compensation step in order to
learn these ratios (of course these patches are then restored before the compensation). For the notation simplicity,
the six learned ratios of Pc

l are hereafter denoted by rl
1 to rl

6.
The problem is then formulated as the deduction of the correct moment variations ∆ml

000 for the 12 compensation
patches such that the variations of the other moments compensate for the global moments m̃100, m̃010, m̃001, m̃110,
m̃101 and m̃011 of the obtained mesh after bit insertion. A 6× 12 linear least-squares system is constructed:

M = arg min
∥∥∥R.M − M̃

∥∥∥2

2
(16)

where R is a 6×12 matrix with Rij = rj−1
i , M is a 12×1 matrix with Mi1 = ∆mi−1

000 , and M̃ = [m̃100 m̃010 m̃001 m̃110 m̃101 m̃011]T .
The optimization of the above system is subject to two constraints:

Lb ≤M ≤ Ub (17)

R
′
.M

′
= M̃

′
(18)

where Lb and Ub prescribe the lower and upper bounds of the moment variations, and R
′
, M

′
and M̃

′
are composed

of the last three rows of R, M and M̃ , respectively. The first constraint is related to the deformation imperceptibility.
Practically, we have set the moment variation lower and upper bounds so that the deformation of the compensation
patches is the same order as that of the cover patches. The second constraint defines the priority of compensating the
second-order moments. The introduction of this second constraint is based on the fact that our whole watermarking
algorithm is experimentally much more sensitive to the principal axis change than to the mesh center change.

We then resolve the system and deduce the moment variations (i.e. the target moment values) for the compensation
patches; the corresponding deformation is achieved by using Algorithm 1. After this step, the six compensated first
and second order moments of the watermarked mesh are very close to zeros and have no longer any negative
influence on the blind watermark extraction. The last step of the watermark insertion is the removal of all the
inserted auxiliary vertices and edges.

V. WATERMARK EXTRACTION

The watermark extraction is blind and fast. First, the input mesh is normalized by using the technique described
in Section IV-A. Then, the vertex coordinates are converted into cylindric system and the mesh is decomposed into
patches by discretizing its h and θ domains. After using the patch classification rules given in Section IV-C, we can
select out the candidate cover patches for bit extraction. Next, with the knowledge of the secret key K and by using
Eqs. 8 to 10, we construct a codebook Û

m
(Pw

n )
000 ,t(P

w
n ) for each cover patch. According to the actual moment value

˘
m

(Pw
n )

000 of the patch, we can find the codeword û ˘
m

(Pw
n )

000

that is the closest to
˘

m
(Pw

n )
000 in the constructed codebook.

Finally, the n-th extracted watermark bit w
′

n is considered as the implied bit a of the codeword û ˘
m

(Pw
n )

000

.

VI. EXPERIMENTAL RESULTS

A. Basic simulations

The proposed method has been tested on several meshes. Figure 6 illustrates four of them: Venus (100759
vertices), Horse (112642 vertices), Bunny (34835 vertices) and Dragon (50000 vertices). The adjustable parameters
of our algorithm are the compensation factors α(Pw

n ) for the cover patches, which drive the trade-off between
distortion, robustness and security. They have been fixed for the different meshes (see Table II) by observing two
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Fig. 6. The original non-watermarked meshes: (a) Venus, (b) Horse, (c) Bunny, (d) Dragon.

Fig. 7. The watermarked meshes: (a) Venus, (b) Horse, (c) Bunny, (d) Dragon.

empirical rules: (1) they cannot be too large in reason of security, and (2) the meshes having lower sampling density
can support larger values since a stronger deformation can be introduced on them without being noticed. Figure 7
illustrates the watermarked meshes; compared with Fig. 6, there exist nearly no perceptible distortions introduced
by the watermark embedding, even on very smooth regions such as the body of the Horse. The main reason is
that these induced distortions are smooth and of low frequency, to which the human eyes are not very sensitive
[5]. Figure 8 illustrates the corresponding geometric objective distortion maps; we can notice that although the
distortion is globally well balanced, there still exist some patches that are much more deformed than others.

Table II details some statistics about the watermark insertion and extraction. All the tests have been carried out on
a Pentium IV 2.0GHz processor with 2GB memory. The objective distortions between the normalized watermarked
and original meshes are measured by Metro [32] in terms of maximum root mean square error (MRMS). A
“perceptual” distance between them is evaluated by the mesh structural distortion measure (MSDM) proposed in
[33]. Its value tends towards 1 (theoretical limit) when the measured objects are visually very different and is equal

Fig. 8. The objective distortion maps of the watermarked meshes: (a) Venus, (b) Horse, (c) Bunny, (d) Dragon.
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TABLE II
BASELINE EVALUATIONS OF THE PROPOSED METHOD

Venus Horse Bunny Dragon
α(Pw

n ) 0.70 0.75 0.80 0.85
Embedding time (s) 410.8 191.5 109.4 166.2
Extraction time (s) 3.2 2.9 1.1 1.6
WM capacity (bit) 75 46 67 49

BER when no attack 0.03 0 0 0
MRMS by WM (10−3) 2.34 1.04 1.75 1.76

MSDM by WM 0.15 0.17 0.19 0.20

to 0 for identical ones. One advantage of our method is that it can introduce relatively high-amplitude deformation
while keeping it imperceptible. The nonzero bit error rate (BER) of the extraction without attack on Venus is due
to the moment ratio sensitivity problem mentioned at the end of Section IV-D. Most of the embedding time is spent
on the iterative deformation step, which does not only depend on the mesh size (i.e. its vertex number), but also on
its cover patch number. The extraction time is almost completely due to the patch decomposition and is basically
proportional to the mesh size.

B. Robustness against Geometry Attacks

In the following subsections, the resistance of the inserted watermark is tested under different types of attacks.
The robustness is evaluated by the BER (bit error rate) and the normalized correlation [1] (given by Eq. 19) between
the extracted watermark bit string {w′

n} and the originally inserted one {wn}.

Corr. =
∑N−1

n=1 (w′
n − w̄′

n)(wn − w̄n)√∑N−1
n=1 (w′

n − w̄′
n)2.

∑N−1
n=1 (wn − w̄n)2

(19)

where w̄′
n and w̄n indicate the averages of the watermark bits. This correlation value varies between −1 (orthogonal

strings) and +1 (the same strings). The distortions induced by the attacks are measured by MRMS. This subsection
presents the test results under geometry attacks.

Our watermark is experimentally perfectly invariant to the so-called content preserving attacks including ver-
tex/facet reordering in the mesh file and similarity transformations (i.e. translation, rotation, uniform scaling and
their combination). Tables III, IV and V respectively present the robustness evaluations against noise addition,
smoothing and uniform coordinate quantization. Some geometrically attacked models are illustrated in Fig. 9.(a)-
(d). The maximum amplitude of the random additive noise is relative to the average distance from the vertices to the
mesh center. The noise intensity of each vertex is uniformly distributed between 0 and the maximum amplitude. For
each amplitude, we perform five experiments using different seeds to generate different noise patterns and report
the average as the final result. For spatially non-uniform noise addition, a random and sufficient part of the mesh is
noised while keeping the other part untouched. For smoothing attacks, we have considered a Laplacian smoothing
[34] with different iteration numbers while fixing the deformation factor λ as 0.03. Our algorithm demonstrates
a fairly high robustness against geometry attacks, even with relatively strong amplitudes or non-uniformity. For
instance, in average, we can still successfully extract up to 87% of the mark under 0.50% noise addition [see Fig.
9.(a)]. The Bunny and Dragon are less robust to smoothing because this attack produces an important shrinking
effect on these two models.

C. Robustness against Connectivity Attacks

The tested connectivity attacks include simplification (uniform and non-uniform), subdivision and remeshing. The
used mesh simplification algorithm is the one based on quadric error metrics proposed by Garland and Heckbert
[35]. The subdivision attacks include the simple midpoint scheme, the modified butterfly scheme and the Loop
scheme [36]. The remeshing attack is a uniform resampling of the mesh vertices using ReMESH [37]; two different
target vertex numbers are considered for this resampling: 100% and 50% of the original vertex number. Tables VI,
VII and VIII present the robustness evaluations against these attacks. In Fig. 9.(e)-(h), some attacked models are
illustrated. It can be observed that our scheme owns a very high robustness against all these attacks, which are
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TABLE III
ROBUSTNESS AGAINST RANDOM NOISE ADDITION

Model Amplitude MRMS (10−3) BER Corr.

Venus

0.10% 0.33 0.03 0.94
0.30% 0.98 0.06 0.87
0.50% 1.63 0.11 0.78

non-unif. 0.30% 0.68 0.05 0.89
non-unif. 0.50% 1.13 0.13 0.73

Horse

0.10% 0.21 0.01 0.98
0.30% 0.64 0.08 0.86
0.50% 1.07 0.12 0.77

non-unif. 0.30% 0.45 0.04 0.92
non-unif. 0.50% 0.78 0.11 0.78

Bunny

0.10% 0.22 0.01 0.98
0.30% 0.66 0.07 0.85
0.50% 1.11 0.11 0.77

non-unif. 0.30% 0.50 0.02 0.95
non-unif. 0.50% 0.82 0.07 0.85

Dragon

0.10% 0.24 0.01 0.98
0.30% 0.72 0.12 0.76
0.50% 1.20 0.19 0.61

non-unif. 0.30% 0.63 0.14 0.72
non-unif. 0.50% 0.94 0.24 0.53

TABLE IV
ROBUSTNESS AGAINST LAPLACIAN SMOOTHING (λ = 0.03)

Model Iteration MRMS (10−3) BER Corr.

Venus
10 0.12 0.04 0.92
50 0.51 0.04 0.92

100 0.88 0.08 0.84

Horse
10 0.07 0 1
50 0.29 0.07 0.87

100 0.52 0.13 0.74

Bunny
10 0.26 0.13 0.73
30 0.69 0.19 0.62
50 1.04 0.37 0.27

Dragon
10 0.31 0.08 0.84
30 0.82 0.24 0.52
50 1.28 0.41 0.19

TABLE V
ROBUSTNESS AGAINST UNIFORM COORDINATE QUANTIZATION

Model Intensity MRMS (10−3) BER Corr.

Venus
9-bit 0.66 0.04 0.92
8-bit 1.32 0.11 0.81
7-bit 2.70 0.11 0.79

Horse
9-bit 0.49 0 1
8-bit 0.97 0.15 0.70
7-bit 2.05 0.26 0.49

Bunny
9-bit 0.52 0.04 0.91
8-bit 1.05 0.04 0.91
7-bit 2.07 0.15 0.70

Dragon
9-bit 0.57 0.02 0.96
8-bit 1.13 0.18 0.63
7-bit 2.29 0.39 0.23
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Fig. 9. Close-ups of some attacked watermarked models: (a) 0.50% random additive noise (BER = 0.12); (b) 0.50% spatially non-uniform
noise (BER = 0.11); (c) 100-iteration Laplacian smoothing with λ = 0.03 (BER = 0.08); (d) 7-bit coordinate quantization (BER = 0.15);
(e) uniform simplification by 97.5% vertex reduction (BER = 0.07); (f) non-uniform simplification by 75% vertex reduction, the upper and
lower parts are simplified with different reduction ratios (BER = 0.09); (g) 1 Loop subdivision (BER = 0.06); (h) uniform remeshing
with original vertex number (BER = 0.10); (i) output mesh of the Marching Cubes algorithm on a 350 × 350 × 350 discretized Horse
(BER = 0.11).

TABLE VI
ROBUSTNESS AGAINST SIMPLIFICATION

Model Reduction ratio MRMS (10−3) BER Corr.

Venus

90% 0.29 0.03 0.95
95% 0.51 0.05 0.89

97.5% 0.91 0.07 0.84
non-unif. 50% 0.25 0.04 0.92
non-unif. 75% 0.67 0.09 0.82

Horse

90% 0.13 0 1
95% 0.24 0.02 0.96

97.5% 0.43 0.07 0.87
non-unif. 50% 0.21 0.09 0.83
non-unif. 75% 0.35 0.11 0.78

Bunny

70% 0.21 0 1
90% 0.54 0.13 0.73
95% 0.95 0.13 0.74

non-unif. 25% 0.17 0 1
non-unif. 50% 0.66 0.13 0.73

Dragon

70% 0.37 0 1
90% 1.00 0.22 0.56
95% 1.79 0.46 0.08

non-unif. 25% 0.23 0 1
non-unif. 50% 0.86 0.16 0.67

considered difficult to handle for a blind mesh watermarking algorithm. As an example, for Venus and Horse, we
can still retrieve 93% of the mark after having removed 97.5% of the vertices. The Dragon is less robust against
these connectivity attacks since it owns a relatively low number of vertices regarding its complexity, thus modifying
its connectivity induces important modifications on its shape.

D. Robustness against Representation Conversion

We have tested one scenario of this serious attack: the watermarked mesh is discretized into a 350× 350× 350
voxel grid. To extract the watermark from this discrete volumetric representation, we transform it back into a
mesh by using the well known Marching Cubes algorithm [38]. The watermark extraction is then carried out on
this reconstructed mesh. Table IX presents the robustness results under this attack. For Venus, Horse and Bunny,
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TABLE VII
ROBUSTNESS AGAINST ONE SUBDIVISION

Model Scheme MRMS (10−3) BER Corr.

Venus
Midpoint 0 0.03 0.95

m-Butterfly 0.10 0.03 0.95
Loop 0.11 0.04 0.92

Horse
Midpoint 0 0 1

m-Butterfly 0.05 0 1
Loop 0.06 0 1

Bunny
Midpoint 0 0 1

m-Butterfly 0.23 0 1
Loop 0.23 0.15 0.71

Dragon
Midpoint 0 0 1

m-Butterfly 0.24 0.02 0.96
Loop 0.25 0.06 0.88

TABLE VIII
ROBUSTNESS AGAINST UNIFORM REMESHING

Model Vertex number MRMS (10−3) BER Corr.

Venus 100% 0.08 0.04 0.92
50% 0.30 0.04 0.92

Horse 100% 0.06 0 1
50% 0.18 0.04 0.91

Bunny 100% 0.39 0.03 0.94
50% 0.63 0.13 0.74

Dragon 100% 0.40 0.10 0.80
50% 1.54 0.45 0.11

the robustness is very satisfying (BER is around 0.12) considering the strength of the attack [see Fig. 9.(i)]. The
extraction on Dragon fails because the Marching Cubes algorithm has created very strong artefacts on its tail, which
significantly changes the mesh’s center and principal axes.

E. Discussion and Comparison

In this subsection, we discuss our scheme and compare it with the two recent methods from Cho et al. [19], which
are considered as the most robust blind algorithms from the state-of-the-art. We have applied their algorithms on
Horse (algorithm I) and Bunny (algorithm II) so as to compare the results in terms of imperceptibility and robustness.

First, concerning the watermark imperceptibility, the induced patch deformation in our scheme is of low frequency
while their methods seem to produce relatively high frequency artefacts. Figure 10 illustrates the Horse and
Bunny models watermarked by their and our methods. Although the introduced objective MRMS distances by
their algorithms (0.51× 10−3 for Horse and 0.29× 10−3 for Bunny) are smaller, the induced mesh modifications
are more visible. This is confirmed by the MSDM distances between their watermarked and original models, which
reflect the perceptual visual difference (0.23 for Horse and 0.32 for Bunny against respectively 0.17 and 0.19 for
our method). In particular, some ring-like high frequency artefacts can be perceived on their watermarked meshes,
especially on smooth regions such as the body of the Horse. Indeed, in their methods, the watermark is inserted
by modifying the vertex norm histogram without considering the relative spatial positions of the vertices; while
during our watermark embedding, the deformation pattern of each patch is carefully controlled. Besides, it can

TABLE IX
ROBUSTNESS AGAINST VOXELIZATION

Model Intensity MRMS (10−3) BER Corr.
Venus 350× 350× 350 0.95 0.13 0.74
Horse 350× 350× 350 1.22 0.11 0.78
Bunny 350× 350× 350 0.85 0.12 0.76
Dragon 350× 350× 350 7.27 0.55 -0.11
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Fig. 10. Imperceptibility comparison between the algorithms of Cho et al. and our method: (a) Horse watermarked by their algorithm I
(strength α = 0.03); (b) Horse watermarked by our method; (c) Bunny watermarked by their algorithm II (strength α = 0.07); (d) Bunny
watermarked by our method.

be seen from Tables III-IX that our deformation induces a comparable MRMS distance as some strong attacks.
This illustrates the effectiveness of our mask-based patch deformation algorithm and the necessity of the moment
compensation post-processing.

Tables X and XI present the robustness evaluations of the methods of Cho et al. corresponding to the watermarked
models illustrated in Fig. 10.(a)(c). The correlation values of our method are also listed in the tables. For a fair
comparison, we have just inserted 46 bits in the Horse to ensure a same capacity for both schemes on this model.
Our watermarked Horse that has nearly no visual distortions is much more robust than theirs that presents obvious
noticeable distortions, under both geometry and connectivity attacks. Our algorithm is particularly more robust
to quantization (our correlation is 1 against 0.66 for their algorithm, under 9-bit quantization) and simplification
(1 against 0.58 for 90% simplification). Our watermarked Bunny has also a better imperceptibility than theirs
and is more robust against connectivity attacks (especially simplification). Robustness against geometry attacks is
quite similar: our algorithm is globally more robust to strong distortions while their method is better against small
ones. One exception is the smoothing attack which introduces obvious shrinkage deformations on this relatively
sparse surface and thus makes our method fail. In general, their methods have difficulties under strong non-uniform
simplification since the calculated mesh center can be wrongly moved towards the mesh part where the vertex
density is higher, as mentioned in Section II-A. In all, our method is particularly suitable for the protection of
dense meshes, for which the imperceptibility and the robustness against simplification are the main concerns. The
advantage of their algorithms is that the watermark can resist attacks that introduce much higher objective distortions
than its embedding. Neither method achieves the robustness against strong local deformation and cropping. In order
to resist these attacks combined with connectivity changes, we may need to devise a robust and blind characteristic
point extraction algorithm or a robust and blind mesh segmentation algorithm, which are quite difficult tasks.
Rondao-Alface et al. [26] have done some work in this direction; however, the robustness of their method seems
still to be improved.

Concerning the watermark capacity, the methods of Cho et al. can keep a constant capacity of 64 bits while the
capacity of our scheme depends on the mesh shape (varying from 45 bits to 75 bits). In the future, we would like to
exploit the possibility of ensuring a minimum capacity while keeping the other performances. Finally, our method
outperforms their algorithms in terms of security. In the latter, no secret key is used and the modified histogram
is exposed to everyone. The intrinsic easy accessibility of the global vertex norm histogram makes the security
improvement difficult. On the contrary, a secret key is used in our algorithm for the SCS moment quantization and
the current parameter setting ensures a relatively good secrecy of this key.
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TABLE X
ROBUSTNESS EVALUATION OF THE WATERMARKED HORSE BY ALGORITHM I OF CHO ET AL. (α = 0.03, 46 BITS INSERTED)

Attack BER Corr. Our Corr.
0.10% noise 0 1 0.98
0.30% noise 0.24 0.52 0.86
0.50% noise 0.41 0.17 0.77

10-itera. smoothing 0 1 1
50-itera. smoothing 0.09 0.84 0.87
100-itera. smoothing 0.20 0.62 0.74

9-bit quantization 0.17 0.66 1
8-bit quantization 0.37 0.26 0.70
7-bit quantization 0.46 0.08 0.49

90% simplification 0.22 0.58 1
95% simplification 0.22 0.57 0.96

97.5% simplification 0.30 0.40 0.87
50% non-unif. simplifi. 0.11 0.80 0.83
75% non-unif. simplifi. 0.22 0.56 0.78

100% uniform remeshing 0 1 1
50% uniform remeshing 0.24 0.52 0.91

TABLE XI
ROBUSTNESS EVALUATION OF THE WATERMARKED BUNNY BY ALGORITHM II OF CHO ET AL. (α = 0.07, 64 BITS INSERTED)

Attack BER Corr. Our Corr.
0.10% noise 0 1 0.98
0.30% noise 0 1 0.85
0.50% noise 0.17 0.69 0.77

10-itera. smoothing 0.03 0.94 0.73
30-itera. smoothing 0.16 0.69 0.62
50-itera. smoothing 0.22 0.57 0.27
9-bit quantization 0.02 0.97 0.91
8-bit quantization 0.06 0.88 0.91
7-bit quantization 0.47 0.07 0.70

70% simplification 0.09 0.81 1
90% simplification 0.34 0.32 0.73
95% simplification 0.55 -0.09 0.74

25% non-unif. simplifi. 0.07 0.87 1
50% non-unif. simplifi. 0.48 0.03 0.73
midpoint subdivision 0.02 0.97 1

m-butterfly subdivision 0.02 0.97 1
Loop subdivision 0.09 0.81 0.71

100% uniform remeshing 0.02 0.97 0.94
50% uniform remeshing 0.22 0.57 0.74

VII. CONCLUSION AND FUTURE WORK

In this paper, a new robust and blind polygonal mesh watermarking algorithm is proposed. The watermark bits are
inserted by slightly deforming the selected cover patches obtained after a simple mesh decomposition in the cylindric
coordinate system. Watermark imperceptibility is ensured by using a smooth low-frequency mask to modulate the
patch deformation; besides, the causality problem is resolved by introducing a compensation post-processing step.
The robustness of this approach is due to the stability of the global and local (in patches) volume moment values
under geometry, connectivity and even representation conversion attacks as long as they do not seriously modify
the intrinsic shape (i.e. visual appearance) of the mesh. Finally, the security is explicitly considered by using a
modified key-dependent informed quantization scheme with an appropriate parameter setting.

The proposed method can be improved in several aspects. First, it should be promising to introduce a perceptual
distance metric to drive the patch deformation. An adaptable and robust mesh decomposition that produces patches
with similar sizes is also of interest since it may allow to insert more bits without degrading imperceptibility
and robustness; this “intelligent” decomposition may also be helpful to resolve the desynchronization problem
caused by the patch classification. For long terms, we plan to investigate solutions to achieving robustness against
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cropping/strong local deformation, combined with connectivity changes; this may resort to the design of a locally
robust mesh shape descriptor.
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