
 
 

Facoltà di Ingegneria  
Dipartimento di Ingegneria dell’Informazione e Ingegneria Elettrica 

 
Ecole Doctorale 

Informatique et Information pour la Société 
EDA 335 

 
Dottorato di Ricerca in Ingegneria dell’Informazione 

IV Ciclo – Nuova Serie  
 

TESI DI DOTTORATO 
 

Real-time Video Analysis 
from a Mobile Platform: 

Moving Object and 
Obstacle Detection 

 
CANDIDATO: ALESSANDRO LIMONGIELLO 

 
COORDINATORE:  PROF. MAURIZIO LONGO 
 
TUTORS:  PROF. MARIO VENTO 
    PROF. JEAN-MICHEL JOLION 
 
 

Anno Accademico 2005 – 2006 



 



 
 
 

Al mondo che soffre, 
ma non vuole amare ... 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table of Contents 
 

Sommario I 

Summary VII 

Résumé  XIII 

Chapter 1 – Autonomous navigation of mobile platform: a visual 

approach  1 

1.1 Introduction  1 

1.2 Autonomous navigation systems nowadays 2 

1.3 Why this research is still of interest 4 

1.4 Computer Vision for autonomous navigation 6 

1.5 Open problems in visual autonomous navigation 8 

 References 10 

 

Chapter 2 - The Robotic Vision: State of Art 13 

2.1 Introduction 13 

2.2 Visual navigation: a possible classification 15 

2.3 Obstacle detection and avoidance 24 

2.4 A schema for a Robotic Vision System 27 

 References 30  

 

Chapter 3 – Our System Architecture 37 

3.1  Introduction 37 

3.2 A Vision Architecture: methodologies and issues 38 

3.3 Our system architecture 41 

3.4 Our constraints 45 



 References 48 

 

Chapter 4 – Stereo Vision 49 

4.1 Introduction 49 

4.2 Stereopsis 50 

4.2.1 3D Reconstruction 51 

4.2.2 Correspondence Calculus 52 

4.3 Stereo matching methods: State of Art 55 

4.3.1 Feature based methods 56 

4.3.2 Area based methods 57 

4.4 Stereo matching algorithms 58 

4.4.1 SSD 58 

4.4.2 Dynamic Programming 60 

4.4.3 Graph Cut 62 

 References 64 

 

Chapter 5 – Moving Object and Obstacle Detection (MOOD 

System)  67 

5.1 Introduction 67 

5.2 Why a new approach 68 

5.3 The Rationale 71 

5.4 A graph based definition  75 

5.4.1 Overview of the method 75 

5.4.2 The algorithm 78 

5.5 A correlation based definition 86 

5.5.1 Overview of the method 86 



5.5.2 The algorithm 88 

5.6 Moving Object and Obstacle Detection 92 

5.6.1 The Entire System 93 

 References 98 

 

Chapter 6 – Experimental Results 101 

6.1 Introduction 101 

6.2 The Obstacle Detection: The Results 102 

6.3 The Moving Object Detection: The Results 111 

 References 118 

 

Chapter 7 – Conclusions 119 



 



Sommario 
“E continuamente penso alla vita nel suo essere profondo; 

vago di arcani mondi e lontane genti, inquieto.    ...” 

A.L. 

 

Negli ultimi anni, la comunità scientifica mondiale ha mostrato un 

interesse crescente nella navigazione autonoma di piattaforme mobili. 

Esistono, infatti, innumerevoli contesti in cui la navigazione autonoma 

è necessaria per l’esecuzione di differenti compiti. Tali sistemi sono 

comunemente noti con il nome di Automated Guided Vehicles (AVG) 

e Autonomous Mobile Robot (AMR). La navigazione autonoma di una 

piattaforma mobile è un argomento vasto, che abbraccia differenti 

tecnologie e discipline. Indipendentemente dal campo di applicazione, 

è necessaria una percezione dell’ambiente in cui la piattaforma mobile 

opera, in modo da garantire la navigazione. L’interazione tra il robot e 

l’ambiente è, inoltre, da rapportare allo specifico compito da eseguire.  

 Esistono diversi metodi che consentono di acquisire informazioni 

sull’ambiente, una buona strategia è di utilizzare diversi tipi di sensori, 

quindi integrare i diversi dati prima di prendere delle decisioni. La 

visione, in particolare, è l’unico strumento non invasivo per percepire 

l’ambiente circostante. Per questo motivo, anche se un laser potrebbe 

essere più efficace di una telecamera, in alcuni contesti potrebbero 

non essere tollerate interferenze e quindi essere richiesti 

necessariamente approcci basati sulla visione. Inoltre, la visione, 

fornisce una quantità di informazioni maggiore; per esempio, un laser 

può individuare solo la posizione di un ostacolo, mentre la visione può 
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determinare la sagoma dell’oggetto, riconoscerlo, e poi inseguirlo nel 

tempo.  

 In questa tesi presentiamo un sistema di visione per la navigazione 

autonoma di una piattaforma mobile. Il sistema è in grado di interagire 

con lo spazio immediatamente circostante, riconoscendo gli ostacoli e 

gli oggetti in movimento, costruendo una visione stabile del mondo 

esterno. Un sistema di visione per la navigazione autonoma, infatti,  

deve essere in grado di identificare gli oggetti dell’ambiente e 

classificarli come “ostacoli”, in modo da evitarli, oppure come oggetti 

“target”, così da poterli inseguire. 

 Ci occupiamo del complesso problema chiamato “Obstacle 

detection and avoidance”. Consiste nell’individuazione degli ostacoli 

in modo da trovare un cammino sicuro da seguire durante la 

navigazione autonoma della piattaforma mobile. Un ostacolo può 

essere un oggetto in movimento o un oggetto immobile, potrebbe 

appartenere ad un preciso insieme di oggetti (per esempio altri robot o 

veicoli, persone), o potrebbe essere un oggetto generico e inatteso; 

quindi, un sistema per l’obstacle detection dipende fortemente da cosa 

si intende per ostacolo. 

 Affrontiamo il problema dell’obstacle detection nel senso più 

generale, cioè nel caso di ambiente non strutturato. L’obiettivo è 

complicato dall’assenza di informazioni sull’ambiente e sugli oggetti 

presenti nella scena. Inoltre, il movimento della telecamera, solidale al 

robot, rende l’analisi video molto difficile e fa fallire la maggior parte 

degli algoritmi presenti in letteratura. Infine, l’elaborazione deve 
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essere real-time per poter guidare velocemente la piattaforma mobile 

lungo un percorso sicuro. 

 L’intero sistema verrà descritto in accordo ad una precisa 

metodologia per lo sviluppo di un sistema di visione, il così detto 

systemic approach. In questo modo, il sistema presenterà precise 

specifiche di utilizzo e garantirà buone prestazioni in uno specifico 

dominio di applicazione. L’intero sistema può essere suddiviso nei tre 

compiti fondamentali: adeguata rappresentazione dell’ambiente; 

analisi dell’immagine per l’individuazione degli ostacoli; 

interpretazione dell’immagine per il superamento degli ostacoli e 

l’analisi comportamentale.  

 Il contributo maggiore del presente lavoro riguarda una 

“percettiva” rappresentazione dell’ambiente, cioè non una 

rappresentazione “passiva”, ma rapportata all’obiettivo finale della 

navigazione autonoma. Tale rappresentazione è basata sul paradigma 

della stereo vision e permette di individuare nella scena gli ostacoli e 

gli oggetti in movimento proprio in relazione alla navigazione, infatti 

il risultato che perseguiamo ha una “risoluzione adeguata” ai nostri 

obiettivi. Definiamo, quindi, un sistema scalabile che opera a partire 

da una risoluzione richiesta in uno specifico contesto. 

 Molti autori hanno espresso il convincimento che un sistema di 

visione robotica dovrebbe essere in grado di riprodurre il sistema di 

visione umano, quindi dovrebbe essere basato sulla visione 

stereoscopica. Il vantaggio maggiore della visione stereoscopica 

rispetto ad altre tecniche (per esempio optical flow, o tecniche basate 

su modelli) è che viene prodotta una descrizione completa della scena, 
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possono essere individuati sia ostacoli fermi che in movimento (senza 

definire un modello complesso per l’ostacolo), e tale tecnica è meno 

sensibile ai cambiamenti ambientali (l’inconveniente maggiore delle 

tecniche basate sull’optical-flow). La stereo vision fornisce una 

rappresentazione 3D (o almeno una approssimazione 2D ½) della 

scena. Una coppia di immagini acquisite da una telecamera stereo 

contiene implicitamente informazioni di profondità della scena: questa 

è la principale assunzione della stereo vision. La difficoltà più grande 

sta nello stabilire una corrispondenza nelle due immagini tra i punti 

rappresentanti lo stesso punto della scena; questo processo è chiamato 

disparity matching. In letteratura, tutti gli approcci sono basati su 

questa corrispondenza puntuale. 

 Noi proponiamo una estensione di tale concetto, più precisamente 

definiamo un valore di disparità per un’intera regione della scena a 

partire dalle due viste omologhe della regione nella coppia stereo. La 

ragione principale per tale estensione è che un approccio basato sulla 

corrispondenza puntuale è ridondante in applicazioni AMR e AVG. In 

questo contesto, infatti, non è molto importante avere una buona 

ricostruzione delle superfici, ma è più importante identificare 

adeguatamente lo spazio occupato da ogni oggetto nella scena, anche 

assegnandogli un'unica informazione di disparità. Inoltre gli approcci 

basati sul pixel sono poco robusti in alcuni contesti reali, specialmente 

nel caso di filmati acquisiti da una piattaforma mobile. Il nostro 

metodo fornisce la profondità media di una intera regione facendo un 

calcolo integrale sulla regione stessa, così da avere minori problemi in 

aree uniformi rispetto ad altri metodi. La stima della posizione delle 
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regioni risulta sufficientemente accurata per la navigazione e il 

sistema è sufficientemente veloce per applicazioni real-time. 

 I risultati del nostro metodo di corrispondenza stereo sono stati 

confrontati con i migliori algoritmi in letteratura. Tali algoritmi sono, 

tradizionalmente, testati su database standard composti da immagini 

statiche (non provenienti da telecamere in movimento), ben calibrate e 

acquisite in condizioni controllate di illuminazione. In questa tesi 

riportiamo alcuni risultati ottenuti su filmati più realistici acquisiti 

dalla nostra piattaforma mobile, in modo da sottolineare i limiti degli 

algoritmi pixel-based presenti ad oggi in letteratura. E’ stata proposta, 

anche, una metrica quantitativa di confronto sperimentale con 

riferimento allo specifico obiettivo dell’obstacle detection nel contesto 

della navigazione autonoma. 

 L’organizzazione complessiva della tesi è descritta di seguito. Nel 

capitolo 1 viene illustrata l’importanza applicativa e scientifica dei 

sistemi di analisi video in tempo reale per la navigazione autonoma di 

piattaforme mobili, mostrando i vantaggi delle tecniche vision-based 

rispetto ad altre alternative. Il capitolo 2 è dedicato allo stato dell’arte 

e ad una possibile classificazione dei diversi approcci di visione 

robotica. Dopo una breve rassegna sulle metodologie di visione 

computazionale, nel capitolo 3 è presentata l’architettura del nostro 

sistema. Il capitolo 4 contiene un survey sulla stereo vision e presenta 

alcuni dei più importanti algoritmi presentati in letteratura. Il capitolo 

5 è dedicato al nostro approccio: dopo il nostro metodo innovativo per 

la rappresentazione dell’ambiente, presentiamo il sottosistema per la 

detection degli oggetti in movimento e degli ostacoli. In fine, nel 
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capitolo 6 è presente una discussione dei risultati sperimentali su un 

database stereo standard e sulla nostra sequenza video. Le conclusioni 

della tesi sono riportate nel capitolo 7. 



Summary 
“Continuously thinking about the Life and its Deepness; 

wandering thoughts of arcane worlds and far people, restless.  …” 

A.L. 

 

During the last years, the World Scientific community has shown an 

increasing interest in autonomous navigation of mobile platforms. The 

reason is that a lot of contexts need an autonomous mobile platform 

for different aims. These systems are usually known as Automated 

Guided Vehicles (AVG) and Autonomous Mobile Robot (AMR) 

systems. The autonomous navigation of a mobile platform is a broad 

topic, covering a large spectrum of different technologies and 

disciplines. Independently from the several applying fields, we need a 

perception of the environment in which the mobile platform moves, in 

order to guarantee an autonomous navigation. The interaction between 

the mobile robot and the environment is, then, related to the particular 

goal.  

 Several methods can be used by a robot to acquire information on 

the environment in which it is moving, a good strategy is to use 

different kind of sensors and then integrate the different data before 

deciding what to do. Vision is the only way that makes a non 

invasive perception of external environment possible. For this reason, 

even if a laser could perform better than cameras, in given problem we 

can not always tolerate signals interferences and are so obliged to use 

the vision approach. Moreover, Vision can provide a much larger set 

of information; for example, a laser can only locate an obstacle, vision 



Summary VIII

can identify the shape of the object, recognize it, and then follow it in 

the time.   

 In this thesis we present a vision system for autonomous 

navigation of a mobile platform. The system is enable to interact with 

its immediate surroundings, recognizing obstacles and other moving 

objects, and obtaining a stable view of the world. In fact, a vision 

system for autonomous navigation has to detect the objects in the 

environment and classify them as “obstacles”, in order to avoid them, 

or as “target” objects, in order to follow them.  

 We face the challenging problem of the “Obstacle detection and 

avoidance”. It consists of obstacle detection in order to find the safety 

path to follow during the autonomous navigation of a mobile platform. 

An obstacle could be a moving or a motionless object, it could belong 

to a precise set of objects (for example other robots or vehicles, 

people), or it could be a generic and unexpected object. Afterwards, a 

system for obstacle detection depends on what an obstacle means. 

 We face the obstacle detection problem in the most general 

framework, in fact we consider an unstructured environment. This 

task is very hard to solve, we do not have a large knowledge of the 

environment and of the objects in the scene. Moreover, the motion of 

the camera, mounted on the robot, makes the video analysis very 

difficult and the most algorithms, in the literature, fail. Finally, an 

autonomous navigation needs a real-time elaboration to guide quickly 

the mobile platform through the safety path. 

  The entire system will be described according to a precise 

methodology for vision system development, called systemic 
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approach. In this way, our system will have some using specifications 

and will guarantee a good performance for the specified application 

domain. We can divide the whole system into three most significant 

tasks: a suitable representation of the environment; image analysis in 

order to detect obstacles; image understanding for obstacle avoidance 

and behavioral analysis.  

 The major contribution of this work concerns a “perceptive” 

representation of the environment, that it is not a “passive” 

representation, but related to the final goal of autonomous navigation. 

It is based on the stereo vision paradigm and detect obstacles and 

moving objects in the scene right according to the autonomous 

navigation goal, that is obtaining a result as fine as it is enough for our 

aims. Therefore, we define a scalable system that works with a 

required resolution in a specific context. 

 Many authors have expressed their conviction that a robotic vision 

system should aim at reproducing the human vision system, and so 

should be based on stereo vision. The greatest advantage of stereo 

vision with respect to other techniques (e.g. optical flow, or model-

based) is that it produces a full description of the scene, can detect 

motionless and moving obstacles (without defining a complex 

obstacle model), and is less sensitive to the environmental changes 

(the major disadvantage of optical-flow techniques). The stereo vision 

provides a 3D representation (or at least an approximation like a 2D ½ 

representation) of the scene. A pair of images acquired from a stereo 

camera implicitly contains depth information about the scene: this is 

the main assumption of stereo vision. The main difficulty is to 
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establish a correspondence between points of the two images 

representing the same point of the scene; this process is called 

disparity matching. All the approaches, in the literature, are based on 

this pixel correspondence.  

 We propose an extension of that concept, namely we define a 

disparity value for a whole region of the scene starting from the two 

homologous views of it in the stereo pair. The main reason of this 

extension is that a pixel-matching approach is redundant for AMR and 

AVG applications. In fact, in this framework, it is not very important 

to have a good reconstruction of the surfaces, but it is more important 

to identify adequately the space occupied by each object in the scene, 

even by just assigning to it a single disparity information. Moreover 

the pixel-based approaches are lacking in robustness in some realistic 

frameworks, especially for video acquired from a mobile platform. 

Our method estimates the average depth of the whole region by an 

integral measure, and so has fewer problems with uniform regions 

than other methods have. The estimate of the position of the regions is 

sufficiently accurate for navigation and it is fast enough for real time 

processing. 

 The results of our method for stereo matching are shown in a 

comparison with the best algorithms in the literature. The tests for 

stereo matching algorithms are usually performed with standard 

databases composed of static images (i.e. acquired from a static 

camera), well-calibrated and acquired in uniform lighting. We report 

some results obtained on a more realistic video acquired from our 

mobile platform, in order to underline the limits of the algorithms 
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present by now in the literature that are pixel-based. It is also 

proposed a quantitative measurement for performance evaluation, with 

a reference to our specific goal of the obstacle detection in 

autonomous navigation framework. 

 The plan of the thesis is described in the following. In Chapter 1 

the significance of real-time video analysis systems for autonomous 

navigation of mobile platforms is shown and compared with other 

alternatives techniques. Chapter 2 is devoted to the state of art of the 

robotic vision and a possible classification of the different approaches 

has been defined. After a brief survey on computer vision 

methodologies, in the Chapter 3 our system architecture is shown. 

Chapter 4 presents a survey on Stereo Vision and some of the most 

relevant algorithms in the literature are shown. Chapter 5 is devoted to 

our approach. After our novel method for the representation of the 

environment, we present the subsystem for Moving Object and 

Obstacle Detection. Finally, in Chapter 6 there is a discussion of 

experimental results on standard stereo database and also on our stereo 

video sequence. Conclusions are drawn in Chapter 7. 
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Résumé 
“Et tout le temps je pense à la vie dans son être profond; 

je vague de mondes mystérieux et de gens lointaines, inquiet. …” 

A.L. 

 

Dans les dernières années, la communauté scientifique mondiale a 

montré un intérêt croissant dans la navigation autonome de 

plateformes mobiles. En effet ils existent de nombreux contextes dans 

lesquels la navigation autonome est nécessaire pour l'exécution de 

différentes tâches. Des tels systèmes sont communément connus sous 

le nom Automated Guided Vehicles (AVG) et Autonomous Mobile 

Robot (AMR). La navigation autonome d'une plateforme mobile est 

un vaste sujet, qui concerne différentes technologies et disciplines. A 

part le domaine d’application, une  perception de l’espace dans lequel 

la plateforme mobile agit est nécessaire, de façon à garantir la 

navigation. L'interaction entre le robot et l’espace environnant, en 

outre, dépend de la tâche spécifique. 

 Il existe différentes méthodes qui permettent d'acquérir des 

informations sur l'espace environnant. Une bonne stratégie est celle 

d'utiliser différents types de capteurs et d’intégrer différentes données 

avant de prendre des décisions. La vision, en particulier, c’est le 

moyen unique qui n’est pas envahissant pour percevoir l'espace 

environnant. Pour cette raison, même si un laser pourrait être plus 

efficace qu'une caméra, dans quelques contextes où des interférences 

ne sont pas tolérées, il faut nécessairement utiliser des approches 

basées sur la vision. En outre, la vision, fournit une quantité 



Résumé XIV 

d'informations majeure; par exemple un laser peut déterminer 

seulement la position d’un obstacle, alors que la vision peut 

déterminer la silhouette de l'objet, le reconnaître, et ensuite le 

poursuivre dans le temps. 

 Dans cette thèse nous présentons un système de vision pour la 

navigation autonome d'une plateforme mobile. Le système est en 

mesure d'interagir avec l'espace immédiatement environnant, en 

reconnaissant les obstacles et les objets en mouvement et en 

construisant une vision stable du monde extérieur. Un système de 

vision pour la navigation autonome, en effet, doit être en mesure 

d'identifier des objets, dans l'espace contrôlé, et les classifier comme 

« obstacles », de façon à les éviter, ou bien comme des objets 

« target », ainsi qu’il puisse les poursuivre. 

 Nous nous occupons du problème appelé « Obstacle detection and 

avoidance ». Il s’agit de la détermination des obstacles pour chercher 

un chemin sûr à suivre pendant la navigation autonome de la 

plateforme mobile. Un obstacle peut être un objet en mouvement ou 

un objet immobile, ou pourrait appartenir à un ensemble précis 

d'objets (par exemple d’autres robots ou véhicules, ou alors des 

personnes), ou bien il pourrait être un objet générique et inattendu ; 

donc, un système pour la détection d'obstacles dépend fortement de ce 

qu’on entend pour obstacle. 

 Nous affrontons le problème de la détection d’obstacles dans le 

sens plus général, c'est-à-dire dans le case d’espaces non structurés. 

L'objectif est compliqué pour l'absence d'informations sur l'espace 

environnant et sur les objets présents dans la scène. En outre, le 
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mouvement de la caméra, solidaire au robot, rend l’analyse très 

difficile et la plupart des algorithmes présents en littérature échouent 

dans la tâche. Finalement, l'élaboration doit être en temps réel pour 

pouvoir conduire rapidement la plateforme mobile le long d'un 

parcours sûre. 

 Le système sera décrit en accord à une méthodologie précise 

(appelé «systemic approach ») pour le développement d'un système de 

vision. De cette manière, le système présentera des précis détails 

d’utilisation et il garantira des bonnes prestations dans un domaine 

d'application spécifique. Le système est partagé dans trois composants 

fondamentales : un composant pour la représentation de l’espace 

environnant ; un système d’analyse des images pour la détection des 

obstacles ; un composants pour l’interprétation des images pour le 

dépassement des obstacles et pour l’analyse comportemental. 

 La contribution majeure de ce travail concerne la représentation 

« perceptive » de l'espace, c'est-à-dire une représentation qui n’est pas 

« passive » mais qui est comparé à l'objectif final de la navigation 

autonome. Telle représentation est basée sur le paradigme de la  

« stereo vision » et elle permet de déterminer dans la scène les 

obstacles et les objets en mouvement par rapport à la navigation. En 

effet les résultats que nous poursuivons sont adaptés aux objectifs. 

Nous définissons, donc, un système scalable qui agit à partir d'une 

solution demandée dans un spécifique contexte. 

 Beaucoup d'auteurs ont exprimé la conviction qu’un système de 

vision robotique devrait être en mesure de reproduire le système de 

vision humaine, donc devrait être basé sur la vision stéréoscopique. 
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L'avantage majeur de la vision stéréoscopique par rapport aux autres 

techniques (par exemple « optical flow », ou des techniques basées sur 

des modèles), est qu'elle produit une description complète de la scène ; 

telle technique est moins sensible aux changements de l’espace 

environnant (l'inconvénient majeur des techniques basées sur l'  

« optical-flow »). La « stereo vision » fournit une représentation 3D 

(ou au moins une approximation 2D ½) de la scène. Un couple 

d'images acquises d'une caméra stéréo contient implicitement toutes 

les informations de profondeur de la scène : celle-ci est la thèse 

principale de la vision stéréo. La difficulté majeure réside en 

l’établissement d’une correspondance, dans les deux images, entre les 

points représentants le même point de la scène ; ce procédé est appelé 

« disparity matching ». Dans la littérature, toutes les approches sont 

basées sur cette correspondance ponctuelle. 

 Nous proposons une étendue de tel concept. Plus précisément nous 

définissons une valeur de disparité pour une région de la scène à partir 

des deux vues homologues de la région dans le couple d’images 

stéréo. La raison principale pour telle étendue est qu'une approche 

basée sur la correspondance ponctuelle est redondante en applications 

AMR et AVG. Dans ce contexte, en effet, ce n'est pas très important 

d’avoir une bonne reconstruction des surfaces, mais c’est plus 

important d’identifier adéquatement l'espace occupé de chaque objet 

dans la scène, même en lui assignant une unique information de 

disparité. En outre les approches basées sur le pixel sont peu robustes 

dans des contextes réels, spécialement dans le case de séquence vidéo 

acquises d'une plateforme mobile. Notre méthode fournit la 
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profondeur moyenne d'une région entière en faisant un calcule intégral 

sur la région même, de façon à avoir des mineurs problèmes dans les 

surfaces uniformes par rapport aux autres méthodes. L'estimation de la 

position des régions résulte suffisamment  soignée pour la navigation 

et le système est suffisamment rapide pour les applications en temps 

réel. 

 Les résultats de notre méthode de correspondance stéréo ont été 

confrontés avec les meilleures algorithmes de la littérature. Ces 

algorithmes sont, traditionnellement, testée sur des bases de donnée 

standards composés d'images statiques (acquises par une caméra qui 

n’était pas en mouvement), bien calibrées et avec des conditions 

d'éclairage contrôlées. Dans cette thèse nous montrons quelques 

résultats obtenus sur des séquences vidéo plus réalistes acquises par la 

notre plateforme mobile, de façon à souligner les limites des 

algorithmes basées sur les pixels présentes aujourd'hui dans la 

littérature scientifique. Une métrique quantitative de comparaison 

expérimentale a été aussi proposée. Cette métrique fait référence au 

spécifique objectif de la détection d'obstacles dans le contexte de la 

navigation autonome. 

 L'organisation globale de la thèse est ici décrite. Dans le premier 

chapitre est illustrée l'importance applicative et scientifique des 

systèmes d'analyse vidéo en temps réel pour la navigation autonome 

de plateformes mobiles, en montrant les avantages des techniques 

basée sur la vision par rapport aux autres alternatives. Le deuxième 

chapitre est dédié à l'état de l'art et à un classement des différentes 

approches de la vision robotique. Après une revue sur les 
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méthodologies de vision, dans le chapitre 3 est présentée l'architecture 

du système. Le quatrième chapitre contient une revue sur la vision 

stéréo et présente quelqu’un des plus importantes algorithmes de la 

littérature scientifique. Le chapitre 5 présente notre approche : nous 

présentons une méthode innovatrice pour la représentation de l’espace 

e un sous-système pour la détection des objets en mouvement et des 

obstacles. Finalement, dans le sixième chapitre est présent une 

discussion des résultats expérimentaux sur des bases de données 

stéréo standard et sur le nôtres séquences vidéo. Les conclusions de la 

thèse sont rapportées dans le chapitre 7. 



Chapter 1 
 

Autonomous navigation of mobile 

platforms: a visual approach 
“… Mislaid, lost in a black  moonless  night, I fall into 

 A painful despondency of being a man. …” 

“… Smarrito, perduto in una notte buia, senza luna, cado 

nella disperazione angosciosa di essere uomo.    ...” 

A.L. 

1.1 Introduction 

During the last years, the World Scientific community has shown an 

increasing interest in autonomous navigation of mobile platforms. The 

reason is that a lot of contexts need an autonomous mobile platform 

for different aims. For example, a mobile robot can be engaged in 

general fields, for mining, cleaning, maintenance and supervision 

aims; or for searching operations in hard environment, as collapsed or 

radiation areas, space or underwater explorations. In the industrial 

areas a mobile platform is used for material transportation, as like 

intelligent driver helper systems have been developed in open roads to 

increase security. Finally, automatic vehicles have been used in 

numerous military operations. These systems are usually known as 

Automated Guided Vehicles (AVG) [1,2] and Autonomous Mobile 

Robot (AMR) [3] systems. The autonomous navigation of a mobile 
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platform is a broad topic, covering a large spectrum of different 

technologies and disciplines, as robotics, A.I., informatics, computer 

architecture, telecommunications, control theory and automation, etc. 

It draws on some very ancient techniques, as well as some of the most 

advanced space science and engineering. Independently from the 

several applying fields, we need a perception of the environment in 

which the mobile platform moves, in order to guarantee an 

autonomous navigation. 

1.2 Autonomous navigation systems nowadays 

In 1997 the robot Sojourner Rover [4] made its first “semi-

autonomous” step over the Mars ground. The mobile robot Sojourner 

Rover was used during the Pathfinder mission (formerly known as the 

Mars Environmental Survey, or MESUR, Pathfinder). It was a six-

wheeled vehicle which was controlled by an Earth-based operator. 

The communication time delay was between 6 and 41 minutes 

depending on the relative position of Earth and Mars, requiring some 

autonomous control. The on-board control system was capable of 

compressing and storing a single image on-board. The rover was 

equipped with a black and white imaging system which was used to 

image the surrounding terrain to study size and distribution of soils 

and rocks, as well as locations of larger features. 
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Figure 1: Some examples of autonomous mobile robot: on the left side, some 

Robots playing football during the Robocup Competition; on the middle side, the 
Sojourner rover; on the right side, the HelpMate mobile robot. 

 Since then a lot of robots, which gained information about the 

extern environment with the help of different type of sensors, have 

been produced. For example, Robocup [5] is an International 

Competition of robots playing football. In this case, a robot has a lot 

of sensors to understand the environment and the location of the other 

robots and some cooperation mechanisms to plan the game. 

HELPMATE [6] is a mobile robot used in hospitals for transportation 

tasks. It has various on board sensors for autonomous navigation in 

the corridors. The main sensor for localization is a camera looking to 

the ceiling. It can detect the lamps on the ceiling as reference 

(landmark). 

 An example of industrial mobile platform is the newest generation 

of Automated Guided Vehicles (AGV) by VOLVO [7] used to 

transport motor blocks from on assembly station to an other. It is 

guided by an electrical wire installed in the floor but it is also able to 

leave the wire to avoid obstacles. There are over 4000 AGV only at 
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VOLVO’s plants. An other example of Automated Guided Vehicles is 

the DARPA Challenge [8]. It is a cross country race of autonomous 

vehicles across the California and Nevada desert that the Defense 

Advanced Research Projects Agency (DARPA) made to any non-

governmental group interested in competing for the million dollar 

prize. 

 
Figure 2: Some examples of Automated Guided Vehicles: on the left side, a vehicle 

during the D.A.R.P.A. Challenge ; on the right side, newest generation of 
Automated Guided Vehicle by VOLVO. 

1.3 Why this research is still of interest 

About twenty years ago, the growing of interest towards Intelligent 

Transport Systems (ITS) led to the birth of different governmental 

foundations, in United States, with the goal of exploiting the 

opportunities given by this field of study. The military, mainly 

through the Defense Advanced Research Projects Agency (DARPA) 

and the research offices of the Navy, Army and Air Force (ONR, 

ARO, AFOSR), is a major supporter of basic and applied research in 

robotics. The military funds work in all the major subject areas of 

robotics (manipulation, vision, planning, locomotion, sensing and 
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computing) by heavily supporting robotics in industry and university 

research centers (such as Carnegie-Mellon University, MIT and 

Stanford). In 1982, the National Research Council Commission on 

Engineering and Technical Systems produced a report [9] for the 

United States Army, in order to underline how reduce risk and 

improve effectiveness in applications of Robotics and Artificial 

Intelligence. In Europe the PROMETHEUS (PROgraM for a 

European Traffic with Highest Efficiency and Unprecedented Safety) 

program was born in 1986. The government in the U.S. founded 

NAHSC (National Automated Highway System Consortium) in 1995.  

 Nowadays we are living the ITS second generation characterized 

by a mature technology. Different approaches were used to face the 

problem: robotics, A.I., informatics, computer architecture, 

telecommunications, control theory and automation, etc. Researchers, 

today, are trying to improve the intelligence in the vehicle (or robot) 

rather than in the infrastructures. For example, a highway equipped so 

that modified vehicles can move in an autonomous way would be very 

expensive. For this reason the research is oriented towards the 

improvement of the sensors on the vehicles. A more and more detailed 

understanding of the environment from sensory data is the main issue 

to have an autonomous navigation. Sometimes an information fusion 

is the main topic of the research, other times a new method to analyze 

the sensory information is defined. Anyway, the autonomous 

navigation is a so hard and useful objective that its interest can not 

come to an end.  
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1.4 Computer Vision for autonomous 
navigation 

Several methods can be used by a robot to acquire information on the 

environment in which it is moving, a good strategy is to use different 

kind of sensors and then integrate the different data before deciding 

what to do. 

 Vision is the only way that makes a non invasive perception of 

external environment possible. A camera is a so-called passive sensor, 

and through it we can get information without “polluting” the 

environment with signals, this is what happens when we use infrared 

or lasers (active sensor). For this reason, even if a laser could perform 

better than cameras, in given problem we can not always tolerate 

signals interferences and are so obliged to use the vision approach. 

Such a problem could be faced, for example, every time there is more 

than one robot on the scene. Moreover, Vision can provide a much 

larger set of information than passive sensors [10,11]. For example, a 

passive sensor can only locate an obstacle, vision can identify the 

shape of the object, recognize it, and then follow it in the time. A 

vision system is closer to the human vision system (HVS), so the first 

result is that the system we are going to produce will fail at least in the 

same circumstances in which the HVS fails (rain, fog, etc.). 

Furthermore video signals are well known and very general. In fact 

such systems can use all the well known techniques in image and 

video processing. As consequence a video-based navigation system is 
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more general than an active-sensory system. An architecture for a 

video navigation system can be used in a wide range of situations and 

environments.  On the other hand, only in recent years the computing 

power needed for real-time video processing has become sufficiently 

available and affordable for dealing with this kind of applications. As 

already said, the solution is not “vision or not vision”, but a mixture of 

different sensors, and the visual sensor has become more and more 

suitable for all the mentioned reasons. 

 In the last years, a wide discussion about computer vision 

methodologies [12,13,14,15,16] has been faced. In general, there are 

many ways to manage the development of a computer vision 

architecture. Vision is an under constrained problem and the used 

methodologies are different depending on the different sources of 

constraints they consider and on the different goals to achieve. A brief 

survey on computer vision methodologies will be presented in the 

chapter 3. Right now, we just like to introduce the main dichotomy 

between “passive” and “active” vision. The passive vision, firstly 

defined by Marr [13], suggests to investigate the visual information in 

order to obtain a reconstruction of the environment, then use it in 

several recognition and understanding aims. The visual information is 

the unique input of a visual system. Aloimonos et al. [14], instead, 

consider that observer (the robot, for example) actively affects the 

visual system. The perception of the environment can not leave the 

observer out of consideration. As it will be clear afterwards, we design 

a visual system according to the so-called systemic approach [12], in 

which even the goal is an integrate part of the understanding process. 
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The video analysis is faced thinking about the nature of the 

environment, the nature of the mobile robot and the kind of goal we 

suppose to reach. In this way an ill-posed problem becomes tractable. 

1.5 Open problems in visual autonomous 
navigation 

If the goal is to move a mobile robot from one coordinate location to 

another coordinate location, we believe there is sufficient accumulated 

expertise in the research community today to design a mobile robot 

that could do that in a typical building. A vehicle can follow a line on 

the ground if a well structured environment is available. But, if the 

goal is to carry out behavior-based navigation — an example being to 

find a particular object on the scene, a person in a searching operation, 

or an interesting object in a planetarium exploration — we are still far 

away. Useful navigation where a robot must be aware of the meaning 

of the objects encountered in the environment is beset with a harder-

to-solve version of the central problem of general computer vision — 

automatic scene interpretation. On the other side, an intelligent vehicle 

should be able to move in several kind of environment, and not only in 

structured one. For this reason, scene interpretation for mobile 

platforms is a harder problem than for stationary platforms because, in 

the mobile context, there is much less control over illumination and 

background scene clutter. Progress will also surely be made in more 

efficient ways of representing the metrical and topological properties 

of the environment and, on the other, in more efficient ways of 
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representing the uncertainties in a robot’s knowledge of its 

environment and its own position relative to the environment. These 

uncertainties have to take into account in the visual system, in fact the 

best autonomous platform is the one which has awareness of its limits 

and stops to be sure (or asks human operator an help).  

 The results acquired today in intelligent vehicles are a hope for 

tomorrow; other problems above all legal ones are arising today: who 

is responsible in an intelligent vehicle accident? Nowadays, 

technology is not so mature to have intelligent autonomous cars 

moving on our highways, in the next future, however, we could see 

autonomous vehicle used in industrial environments (indoor 

environments). 
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Chapter 2 
 

The Robotic Vision: State of Art 
“… But a sweet and sudden light excites my weak heart, 

barren by this Icy Life. It’s so easy to be happy? …” 

“…Ma una luce in-aspettata e dolce riscalda il mio fragile cuore, 

dal ghiaccio della vita inaridito. E’ così facile essere felici?  ...” 

A.L. 

2.1 Introduction 

Experimental robotics is a research field in which the efforts of 

different disciplines and scientists convey: engineering, informatics, 

A.I., physiology, etc. The aim of robotics is to produce human-

independent and efficient automatons. Nowadays robots are produced 

with the hardware that is sold in the consumer-market, so we can 

overcome budget problems maintaining a good level of sophistication. 

Modern architectures based on Intel x86, ARM and PowerPC, both in 

the general purpose and embedded versions, have a calculus power 

that can not face the computational load of vision algorithms. This 

mismatch has not been a problem, since it forced researchers to 

produce even more efficient and smart algorithms. 

 The aim of artificial vision is to give to a machine some visual 

capacities so that it can get information from the external 

environment. Artificial vision comes from the evolution of Image 
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Processing and Pattern Recognition [1] [2]. In a vision system we 

have two basic steps: image acquisition and image processing.  

 Two or more cameras are needed in order to acquire images used, 

subsequently, for navigation. The choice of the camera, that is going 

to be used, is of utmost importance for the following elaboration. 

There are a lot of camera models, from the simple pin-hole1 one to the 

digital one. The image quality and the next elaboration step will be 

dramatically influenced by the choice of the cameras. For example, 

since with a pin-hole camera we acquire an image with a great radial 

distortion, the very first thing that the vision system has to do is filter 

the image in order to reduce distortion. If we use a camera with 

enough focal length the filtering stage is unnecessary. Modern 

cameras are so sophisticated that they can solve (i.e. at a sensor level) 

problems like auto-tuning to light variation or contrast. The usually 

CCD cameras are employed. In vision applications, they have a 

refresh frequency in the 25-35 HZ range and a contrast intensity on 

the same image of about 10.000:1 (while common cameras have about 

500:1). CMOS technology based sensors improve, greatly, contrast 

intensity and max resolution. 

 The image processing system must be a real-time one in order to 

produce results in a time that can be useful for navigation applications. 

This is why we need a great calculus power. It is easy to understand 

                                                 
 
1 Pin hole: A pinhole camera is a camera without a conventional glass lens. An 
extremely small hole in a very thin material can focus light by confining all rays 
from a scene through a single point. 
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how the elaboration time is an upper bound (together with the 

actuators speed) to the robot speed. Some years ago this calculus 

power was only available on parallel (even embedded) systems, while 

nowadays we can think of using general purpose computers in the 

image processing. 

 There are two main approaches to vision; the natural one and the 

artificial one. The former aims reproduce in a laboratory a natural 

vision system, such as Human Vision System (HVS) or insects vision 

system, the latter uses information coming from the images in a way 

that is “intelligible” by the machine that has to process them. With 

such a classification the approach used in this thesis is definable as an 

artificial one. 

 In this chapter we show a possible classification of visual systems 

for Robot Navigation, and underline our focus that is the obstacle 

avoidance. 

2.2 Visual navigation: a possible classification 

 A possible schema to classify all the approaches for autonomous 

navigation is shown in the following Figure 1.   
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Figure 1: A classification schema for autonomous navigation. A visual system for 

autonomous navigation of a mobile platform can be classified according to: the kind 
of environment, the hypothesis and goals, the techniques. 

Therefore, a visual system for autonomous navigation of a mobile 

platform can be classified according to: the kind of environment, in 

order to obtain useful information to take into account in the following 

analysis (the degree of structured information); the hypothesis on the 

environment, i.e. the kind of scene interpretation we want to face, and 

the intermediate goals we can define to reach the final navigation goal 

(we can guide a robot or a vehicle using landmarks or detecting 

obstacles, knowing a map of the environment or without a map); 

finally, different techniques are defined depending on the specific 

environment and the intermediate goals.  

 The environment in which the robot is going to move itself has a 

great influence on the navigation approach. So we have a first 
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important classification between indoor navigation and outdoor 

navigation [3]. Indoor navigation can use techniques unavailable in an 

outdoor context, such as a model of the external environment. 

In indoor navigation we have three main approaches: 

1. Map-Based Navigation [4,5,6,7,8,9,10,11,12,13,14]. These are 

systems that depend on user created geometric models or 

topological map of the environment. Those models may 

contain different degrees of detail, varying from a complete 

CAD model of the environment to a simple graph 

interconnections or interrelationships between the elements in 

the environment. Since the central idea in any map-based 

navigation is to provide to the robot, directly or indirectly, a 

list containing a sequence of landmarks expected to be found 

during navigation, the task of the vision system is then to 

search and identify the landmarks observed in an image. Once 

they are identified, the robot can use the provided map to 

estimate its position (self-localization) by matching the 

observation (image) against the expectation (landmark 

description in the database). The computations involved in 

vision–based localization can be divided into the following 

four steps [14]: 

a. Acquire sensory information – for vision-based 

navigation, this means acquiring and digitizing camera 

images. 

b. Detect landmarks – usually this entails extracting 

edges, smoothing, filtering, and segmenting regions in 
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the basis of differences in grey levels, colors, depths or 

motions. 

c. Establish matches between observation and 

expectation – within this step, the systems tries to 

identify the observed landmarks by searching in the 

database for possible matches according to some 

measurement criteria. 

d. Calculate position - once a match (or a set of matches) 

is obtained, the system needs to calculate its position as 

a function of the observed landmarks and their 

positions in the database. 

2. Map Building based Navigation [15,16,17,18]. These are 

systems that use sensors to construct their own geometric or 

topological models of the environment and then use these 

models for navigation. This approach does not have good 

performances, since a map is built according to information 

coming from different kind of sensors, lasers for example. 

3. Map-less Navigation [19,20,21,23]. These are systems that use 

no explicit representation at all about the space in which the 

navigation is going to take place, but rather resort to 

recognizing objects found in the environment or to tracking 

those objects by generating motions based on visual 

observations. It is, of course true that in the approaches that 

build maps automatically there is no prior description of the 

environment either: but before navigation can be carried out 

the system must create a map. In this category we include: 



2.2 Visual navigation: a possible classification  19 

optical flow based navigation, appearance-based matching 

navigation and object recognition based navigation.  

a. Optical flow based navigation [23,24,25]. Santos-

Victor et al. [23] have developed an optical-flow based 

system that mimics the visual behavior of bees. It is 

believed that the predominantly lateral position of the 

eyes in insects favors a navigation mechanism using 

motion-derived features rather than using depth 

information. In insects the depth information that can 

be extracted is minimal due to extremely narrow 

binocular field they process. On the other hand, motion 

parallax can be much more useful especially when the 

insect is in relative motion with respect to the 

environment. Also, the accuracy and the range of 

operation can be altered by changing the relative speed. 

For example, features such as “time-to-crash” (which is 

dependent on the speed) are more relevant than 

distance; when it is necessary to say, jump over an 

obstacle. In robee, as the robot in [23] is called, a 

divergent stereo approach was employed to mimic the 

centering reflex of a bee. If the bee is in the centre of a 

corridor, the difference between the velocity of the 

range seen with the left and the velocity of the image 

seen with the right eye is approximately zero, and the 

bee stays in the middle of the corridor. However, if the 

velocities are different, the bee moves toward the side 
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whose image change with smaller velocity. With regard 

to the robotic implementation, the basic idea is to 

measure the difference between image velocities 

computed over a lateral portion if the left and right 

images and use this information to guide the robot. For 

that the authors computed the average of the optical 

flows on each side.  

b. Appearance-based matching navigation [26,27]. 

Another way of achieving autonomous navigation in a 

map-less environment is to “memorize” this 

environment. The idea is to store images or templates 

of the environment and associate those images with the 

commands or controls that will lead the robot to its 

final destination. An images database is created that the 

system uses to verify if the robot is in a situation 

already faced, if yes the navigation goes on 

“remembering” the results acquired during past 

elaborations.  

c. Object recognition [7,28]. Object recognition is the 

basic idea to another approach to navigation. With such 

an approach commands as “move to the desk in front of 

you” are given to the robot. In this case the command is 

very important for the system as it carries information 

within itself. For example “move to the desk in front of 

you” says to the robot that the landmark is a desk and 

that it is situated in front of it. 
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 As with indoor navigation, outdoor navigation usually involves 

obstacle-avoidance, landmark detection, map building/updating, and 

position estimation. However, as in the research reported so far in 

outdoor navigation, a complete map of the environment is hardly ever 

known a priori and the system has to cope with the objects as they 

appear in the scene, without prior information about their expected 

position. Nevertheless, outdoor navigation can still be divided in two 

classes according to the level of structure of the environment: outdoor 

navigation in structured environments and in unstructured 

environments. 

1. In general, outdoor navigation in structured environments 

requires some sort of road following [29,30]. Road following 

means an ability to recognize the lines that separate the lanes 

or separate the road from the berm; the texture of the road 

surface and the adjoining surfaces; etc. In systems that carry 

out road following, the models of the environment are usually 

simple, containing only information such as vanishing points, 

road and lane widths (lane detection), etc. Road-following for 

outdoor robots can be like hallway-following for indoor 

robots, except for the problems caused by shadows, changing 

illumination conditions, changing colours, etc. 

2. With regard to unstructured outdoor navigation 

[32,33,34,35,36,37], we define an outdoor environment with 

no regular properties that could be perceived and tracked for 

navigation as an unstructured environment. In such cases, the 

vision system can make use of at most a generic 
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characterization of the possible obstacles in the environment. 

Unstructured environment arise in cross-country navigation, as 

for example in planetary (lunar/Martian-like) terrain 

navigation [35,36,37]. Sometimes in these sorts of 

applications, the robot is supposed to just wander around, 

exploring the vicinity of the robot without a clean-cut goal. 

  

 We can also design a relation between the degree of autonomy of a 

robot and the environment knowledge as shown in Figure 2. 

 
Figure 2: A relation between the degree of autonomy of a robot and the 

environment knowledge 

As it is clear from Figure 2, the degree of autonomy of a robot is in 

inverse relation to the knowledge of the environment. Moreover, it is 

heavily dependent on the hypothesis and goals section, shown in 

Figure 1. Therefore the previous relation can also be read in a 3D 

space as shown in Figure 3, where the degree of autonomy of a robot 
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is in relation with the environment knowledge and the hypothesis and 

goals.  
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Figure 3: A relation between the degree of autonomy of a robot and the 
environment knowledge and the hypothesis and goals. 

 We are particularly interesting into the Obstacle Detection and 

Map-less Indoor. In both the contexts, we do not have a large 

knowledge of the environment, so that a robot has to understand what 

happens around itself, which objects are to avoid and which ones to 

follow. In the next section, we will explain several approaches for 

Obstacle Detection, that are also good for Map-less Indoor context. 

The only difference between  the two aims is that in case of indoor 

applications we can use a low environment information related to the 

memorization or the recognition of some objects, highly present in the 

environment. Finally, in the outdoor context, the lighting changes, 

shadows and the strongly interaction with other objects require a 

higher level of attention to the robustness. 
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2.3 Obstacle detection and avoidance 

Obstacle detection and avoidance consists of obstacle detection in 

order to find the safety path to follow during the autonomous 

navigation of a mobile platform.  

 An obstacle could be a moving or a motionless object, it could 

belong to a precise set of objects (for example other robots or 

vehicles, people), or it could be a generic and unexpected object. 

Afterwards, a system for obstacle detection depends on what an 

obstacle means. For example, if we are interested in automatic 

guidance, we could assume only moving obstacles (no one stops on 

the road) and vehicles and people being the only kind of obstacle. 

Moving from these hypothesis, the obstacle detection is easy and can 

be resolved with a simple template matching [38,39]. In cases of 

exploration, instead, a robot works in an open environment (without a 

road or a line to follow) and different kinds of obstacle can be present.  

 We can address the problem related to obstacle detection and 

avoidance, in general, using two different paradigms (see Figure 4): 

 

• 3-D motion estimation 

• 3-D space reconstruction 
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Figure 4: Obstacle detection and avoidance 

 The first one is the traditional problem of “structure from motion” 

[40,41,42], that is to find methods of recovering the 3-D motion 

parameters and the structure of the objects from dynamic images. The 

way the problem has been addressed was first to compute the exact 

position to which each point in the image has moved. In cases of small 

motion the vector field that represents the change of every point in the 

image, the so-called optical flow field, is computed from spatio-

temporal derivatives of the image intensity function. This requires the 

employment of additional constraints, such as smoothness. In cases 

where the motion is large, features such as points, line or contours in 

images taken at different time instants are corresponded. From the 

derived optical flow field or the correspondences between features the 

3-D motion is then determined. From measurements on the image we 

can only compute the relative motion between the observer and any 

point in the 3-D scene. Consequently, we can recover the so-called 

egomotion, that is the 3-D motion vector of the observer, looking at 

the static part of the scene, and a 3-D object motion relative to the 

observer. There exist many reasons for the limitations of optical flow 

approach in real applications. To begin, the computation of optical 
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flow is an ill-posed problem, i.e., unless we impose additional 

constraints, we cannot estimate it. Thus, the 3-D motion estimation is 

highly sensitive to small changes in the data. Finally, because of the 

computation of a relative motion between objects and observer, the 

objects with a motion similar to the observer could be ignored as 

obstacles. 

 The 3-D space reconstruction approaches [43,44] face the problem 

of obstacle detection looking at a certain representation of the 

environment. Instead of a comparison between images in a time 

sequence in order to have motion vectors, it is addressed as a spatial 

relationship between more images of the same scene in the same 

instant from different points of view. The most common approach is 

the stereo vision, where two cameras are used to have depth 

information of the environment. The advantage of this technique is 

that a quasi full description of the scene can be done, so that an 

obstacle is precisely identified and also recovered as a solid object, 

maybe useful for recognition aims. Unfortunately, even this technique 

presents some problems in real contexts. It is usually time-consuming, 

then it can be lacking in robustness in cases of small changes between 

the different view point images, and it requires strong calibration 

between images. 

 In this thesis, we address the obstacle detection and avoidance 

problem as a 3-D reconstruction problem. We use stereo vision to 

detect motion-less objects, in the 3-D space. If these objects have 

some dangerous characteristics, i.e. they are big objects and/or close 

to the robot, we label them as obstacles. We choose to face the 
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problem using a 3-D space reconstruction approach, instead of the 

structure from motion approach, because we prefer a more detailed 

description of the scene, we want to detect also obstacles with the 

motion similar to the robot, and finally because the spatial coherence 

is less sensitive to the changing of the acquiring condition of the 

environment. 

 Both optical flow and stereo vision are used to analyze the motion 

of obstacles in relation to the mobile platform. In this way we can 

distinguish motionless from moving obstacles, and perform a tracking 

of the moving ones. 

 

2.4 A schema for a Robotic Vision System 

In this section we are going to analyze a possible structure for a vision 

system. Even if each project has ad hoc solutions in order to face 

different necessities, we can focus on the common features shared by 

the different system obtaining a scheme useful in many vision 

applications. In Figure 5 this schema is given. This is a bottom-up 

model in which the elaboration is from the image to the command sent 

to the robot. The very first level, always present in a vision system, is 

the image acquisition level.  
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Figure 5: A vision system model 

 Pre-elaboration level can include different techniques depending 

from the application such as: thresholding, edge detection, distortion 

removing, IPM.  These techniques can or cannot be applied to the 

acquired image according to the extraction features algorithm adopted. 

For example, in grey values images usually a filter with threshold is 

used. The result of the entire process is critically dependent from these 

stages. Low definition cameras, unnecessary filtering algorithms, can 

produce a failure of the entire system. In the feature extraction we 

elaborate the images after the filters application. The elaboration in 

this step can be very different. Usually, we search for particular region 

of the image easily recognizable by its shape; this is the case of the 
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signs on the floor based navigation. 

 Other approaches are also followed. For example, in ALVINN 

(Autonomous Land Vehicle In a Neural Net) [45,46,47] the images 

are processed by a neural network. Moreover, signs on the wall can be 

extracted not only based on their shape but also on their color or 

contrast among the different elements. Sometimes, the elements that 

make an unstructured environment a structured one are artificially 

inserted; in other cases they are “naturally” present in the scene as, for 

example, the line between the wall and the floor in a room. 

 After the features extraction, we evaluate the position of the 

vehicle in the scene (self localization). In this stage we calculate the 

difference between the optimal and the real position of the robot. 

Different errors can be taken in account: offset error, i.e. the distance 

between the barycentre of the vehicle and the point in which it was 

supposed to be, orientation error, i.e. the angle between the vehicle 

axis and the tangent to the ideal trajectory, curvature error that is the 

difference between the ideal and real bending radius. 

 Once errors are calculated, we can have a control strategy to 

cancel or minimize them. In this step we take in account not only the 

errors just evaluated but also the interaction floor-vehicle, the delay in 

the actuators “steering” capacity, etc., so we have different strategies 

according to the context. As it is shown in Figure 5 the control 

strategy step directly influences the first step of image acquisition (as 

a feedback). In fact we refer to an active vision system [48], 

considering that the observer (the robot, for example) actively affects 

the visual system. 
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Chapter 3 
 

Our System Architecture 
“… Love guides me in the dark, as the trail of an albatross guides  

a desperate trembling crew, lost in a black and empty night. …” 

“… L’amore mi fa strada nel buio come l’albatro segna la scia 

alla tremante ciurma disperata, persa nel vuoto nero della notte. …" 

A.L. 

3.1 Introduction 

This chapter is devoted to describe the architecture of the whole 

system for obstacle detection and avoidance. An architecture for 

computer vision can follow several methodologies, or better different 

philosophies. In fact, the computer vision is an hard field because a 

visual image is inherently ambiguous and perception is essentially a 

matter of resolving ambiguities by using knowledge from the external 

world. For this reason, the kinds of information we consider and the 

way how this information is used inside the system characterize one 

approach from each other. Therefore, in the next section we present a 

brief survey on computer vision methodologies. Then our system 

architecture is described (Section 3) with reference to the chosen 

methodology and the constraints imposed on the problem.
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3.2 A Vision Architecture: methodologies and 
issues 

In general, there are many way to manage the development of a 

computer vision architecture. Vision is an under constrained problem 

and therefore that it is necessary to find or develop new constraints in 

order to make the problem solvable. The used methodologies are 

different depending on the different sources of constraints they 

consider. Then, what happens if someone asked “what is vision?” ? 

Several answers can be given: It is an information process to achieve a 

representation of the external world from a visual sensor; It is the 

capability for a machine to actively interact with its surrounding; It is 

an instrument to reach some purposes in different contexts; It is the 

three answers together. This is a possible classification of different 

methodologies in Computer Vision as reported in [1]: 

• Recovery Approach 

• Active Vision 

• Goal-directed Vision 

• Systemic Approach 

 

Recovery Approach 

The recovery approach is mainly due to the contribute of David Marr. 

The philosophy of Marr is detailed in the presentation of Vision [2] 

and is known as the recovery school. In fact, according to this theory, 

the main goal of vision is to derive a representation of the external 
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world. Marr conceives a general system in which there are not a priori 

knowledge on the goal and there are no constraints on the observer. In 

this approach, to render a vision system solvable, Marr propose the 

introduction of constraints on the nature of observed scene (for 

example hypothesis on the nature of the surfaces, etc.). So, in terms of 

source of constraints, we can say that in recovery approach we do not 

have any constraints on the goal and on the observer and we have only 

constraints on the observed scene. The goal of this methodology is to 

create a general observer that construct en efficient symbolic 

descriptions from images of the world. There are not any goal of 

creation of new objectives neither any goal of change of the scene. It 

is assumed that any further goal can be achieved from the data stored 

in the representation of the external world. Another characteristic of 

this approach is the fact that the observer is mainly passive. 

 

Active Vision 

The concept of active vision has been proposed by Aloimonos et al. 

[3] in order to overcome most of problems with which the visual 

recovery approach has to deal. The main idea is that “perceptual 

activity is exploratory and searching”. The authors want to understand 

how an active observer interacts with its environment. The active 

vision approach adds general constraints on the observer (e.g. the 

observer moves with a know motion). Furthermore the active vision 

provide specifics objectives (e.g. obstacle avoidance in robotic 

vision).  In any case the objective goal is still to extract structure from 

a scene or a sequence of scene. So the goal of the methodology, as the 
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recovery approach, is to create a general observer without any change 

at the scene and without any creation of new objectives.  

 

Goal-directed Vision 

An introduction to this approach to vision is due to Bajcsy [4] and can 

be summarized by “we do not just see, we look”. Therefore, the focus 

of this approach is to act toward the external world in order to achieve 

a particular goal. So the purpose of vision can no longer be reduced to 

description of scenes, but it tries to directly solve a set of visual tasks 

using appropriate information, representations, algorithms, etc. This 

approach can be seen as a generalization of the active vision, where  

new constraints, extracted from the goal, have been added in order to 

make the vision problems more tractable. 

 

Systemic Approach 

This methodology was introduced for the first time in the field of 

Computer Vision in 1994 from Jolion [1]. The general idea is to 

consider constraints from all types of sources. In this approach we 

consider constraints coming from the scene, from the objective and 

from the observer. In particular, the nature of the observer 

(architecture type, memory capacity, processing time, etc.) is taken 

into account to choose the technique of processing. Furthermore 

systemists argue that we can found other source of constraints by 

looking the system as a global entity. The properties of this entity, in 

fact, should hopefully make solvable the subtasks. Besides in this 

approach great emphasis on the communication network between 
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system components; and other constraints can be inferred from 

analyzing the set of relations embodied in the system.  

3.3 Our System Architecture 

Our goal is to guarantee an autonomous navigation of a mobile 

platform in an unknown environment. We face this general problem 

investigating several subtasks and defining some constraints on the 

scene, the observer and the objective. For this reason our system can 

be classified as a systemic approach. We can divide the whole system 

into three most significant tasks (see Figure 1): a suitable 

representation of the environment; image analysis in order to detect 

obstacles; image understanding for obstacle avoidance and behavioral 

analysis.  

 Our system is also an active system, in fact, the mobile platform 

interacts with the external environment so the system is able to change 

its parameters according to the change of the real world or according 

to the behavioral analysis. For example, if an interesting object is in 

the scene the system can acquire images with an higher resolution or 

can refine the representation of the scene only around that object. For 

this reason in Figure 1 a feedback loop is shown. 
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Figure 1: Our system architecture: representation of the environment; obstacle 

detection; obstacle avoidance and behavioral analysis. 

As said in chapter 2, the obstacle detection can be faced using two 

different paradigms: 3-D motion estimation and 3-D space 

reconstruction. The first one is the most traditionally used, because 

easy and fast. Only in the last years, the researchers have started to use 

the second approach. A 3-D space reconstruction is a more heavy task 

than 3-D structure from motion, so that it can seem redundant for 
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autonomous navigation. Anyway, an opportune space representation 

allows a deeper knowledge of the environment, and some constraints 

can be considered in order to reduce computation time and to adapt 

the 3-D representation for our aims. The major contribution of the 

thesis concerns this “perceptive” representation of the environment, 

that it is not a “passive” representation, but related to the final goal of 

autonomous navigation. Now, we will describe briefly the different 

modules, and in the following chapters, we will explain in details the 

steps of 3D scene representation and obstacle detection (motion-less 

and moving obstacle detection). 

Video Acquisition 

The inputs of the system are the frames from a camera. The camera 

can be both an analog or a digital camera, anyway the input of the 

system has to be a digital frame: an array of pixels represented in 

some coding. In our case we use RGB values for each pixel. We work 

with uncompressed frames data. The acquisition of a frame happens as 

follow: the camera captures a frame from the scene and sent it to the 

system; an hardware for the acquisition of images (i.e. frame grabber) 

is provided in the system and it is responsible for storing the data in a 

video memory; the system takes the images from video memory and 

process it. The camera does not capture any other images from the 

scene until the system finish the processing. So, if the processing is 

too slowly we should lost some interesting events occurred in the 

scene. In particular, we use a stereo camera in a parallel focuses 

configuration. In fact, the 3-D scene representation is achieved using 

the stereo vision paradigm. The two cameras are supposed to have the 
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same physical proprieties, as resolution, focal length, lighting 

sensitivity, etc. However, the stereo vision approach is highly 

sensitive to any changes between the left and right image. Our system 

overcomes this difficulty during the phases of 3-D representation and 

obstacle detection. 

3-D scene representation 

Stereo cameras are built to simulate the way biological Human Vision 

System (HVS) works to obtain depth information from the captured 

images. By calculating the vertical displacement of each point 

between the two captured images, stereo cameras can tell how far the 

point is from the observer. We immediately anticipate (it will be more 

clear in the chapter about 3-D representation) that a punctual 

reconstruction of the scene is out of our aims. We are not interested in 

the depth of a point, but it is enough to segment the image into several 

regions of interest and recover depth information on them. In this way, 

the 3-D representation of the scene is suitable to navigation aims. 

Moreover, this representation guarantees a higher robustness in real 

contexts, that is in cases of small changes in the data between left and 

right image.  

Obstacle detection 

The obstacle detection task can be divided into motion-less obstacle 

detection and moving obstacle detection. In the first case a simple 

connected components analysis [5] of regions with the same value of 

depth can segment an entity that represents an obstacle for the mobile 

platform. The moving obstacles are detected using both 3-D 

representation and optical flow information. In this way, one 
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information tries to limit the uncertainties coming from the other one, 

and vice versa. Then the moving objects are followed along time 

(object tracking) only to understand the dynamic of the objects in the 

scene. At the end of this phase we have a certain understanding of the 

scene, so we are ready to move. 

Obstacle avoidance and behavioral analysis 

Starting from a representation and understanding of the scene it is 

possible to guide a mobile platform through a safety path. Moreover, 

some application tasks can be defined, as follow a particular object in 

the scene, or just move around for exploration aims avoiding 

obstacles. This last part of the system is out of the focus of this thesis. 

3.4 Our constraints 

As we told before our system belongs to the systemic vision approach. 

Here we show the constraints we have to consider to achieve the 

described goal (obstacle detection). 

As regard the scene: 

• The scene does not have to be too complex: normally in the 

autonomous navigation framework it is true, the scene is 

characterized  by few objects (5-10) and a low dynamism (the 

speed of the objects is comparable with the speed of the 

mobile platform). 

• The light should be almost uniform in the scene and in time: 

the stereo vision and optical flow are sensitive to changes in 

the data, even if our system guarantee a good robustness in 
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cases of  small changes. 

 These constraints are considered and positively used for the 3-D 

space representation (see Figure 1). 

As regard the goal: 

• The obstacle detection task has to be scalable in time: the 

mobile robot has to quickly react to the external events, so the 

real-time requirement is needed. However, a finer but slower 

investigation of the environment can be made by our system, 

in fact a robot could decide to stop to look better and then 

move again.  

• The obstacle detection task has to be scalable in performance: 

it is the same of above, but with reference to the details of the 

3-D representation and of the detected obstacles. 

 As shown in Figure 1, these constraints are considered before the 

obstacle detection phase and during the navigation. 

As regard the observer: 

• Good quality cameras are taken into account: a good input 

image is necessary for a good representation of the scene. We 

consider a couple of standard CCD cameras with a resolution 

at least 384x288 pixels and a frame rate at least 15 fps (frame 

per sec). Different focal lengths are used in order to test our 

system with different angles of view. The cameras are 

calibrated only in the start-up of the system. 

• The mobile platform moves slowly. Each adjacent couple of 

frames in the image sequence has to be overlapped for about 

80%. Therefore, the speed of the mobile platform and the 
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frame rate of the cameras have to guarantee this constraint. 

• The motion vector of the mobile platform is known from other 

sensor data. The required incertitude depends on the scene 

dynamics. 

• Mechanical vibrations of the cameras are limited: the stereo 

vision and optical flow are sensitive to local and global 

perturbations in the images. Our system is enough robust in 

cases of  small vibrations. 
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Chapter 4 
 

Stereo Vision 
“… Where are my doubts?  

Affected motions of the Soul, rebelling against banal life of the mortals. …” 

“…Dove sono andati i dubbi miei? 

Commossi moti dell’animo che alla banale vita dei mortali si ribella. …" 

A.L. 

4.1 Introduction 

This chapter is devoted to describe the state of art in Stereo Vision 

paradigm. Many authors have expressed their conviction that a robotic 

vision system should aim at reproducing the human vision system, and 

so should be based on stereo vision. The greatest advantage of stereo 

vision with respect to other techniques (e.g. optical flow) is that depth 

can be inferred with no prior knowledge of the observed scene (in 

particular the scene may contain unknown moving objects and not 

only motionless background elements). Several methods are proposed 

in the literature sometimes to improve the efficiency and sometimes to 

improve the accuracy of the solution.  
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4.2 Stereopsis 

Stereopsis refers to the ability of assigning a depth to the objects in the 

scene. Human brain can percept in a single image the two different 

images coming from the eyes. In these images we can see the same 

object from two different points of view: stereoscopic vision uses 

these two different views to get a 3D vision of reality. Computational 

stereopsis is the process in which we get depth information about the 

scene observed by a cameras pair. The cameras give images of the 

scene from two different points of view. Two main problems arise in 

this context: 3D reconstruction and correspondence calculus. 

Correspondence problem refers to the research in the two images of 

points that are projection of the same point in the scene (see Figure 

1); such points constitute a conjugate pair. Correspondence problem 

can be solved since the two images are only slightly different. We will 

see that we need some constraints in the conjugate pair research since 

it is possible to have many false pairs. Usually the most important of 

these constraints is the horizontal epipolar constraint which says that 

the correspondent point in an image can be found on the same 

horizontal line (the epipolar line) on the other image. Using this 

constraint we, dramatically, reduce the complexity of the 

correspondence problem since this constraint reduces the search space 

from two-dimensions to one-dimension. In chapter 5 we will also see, 

on the other hand, how such constraint can not be included in the 

autonomous navigation context and we shall introduce our solution to 

evaluate the depth of the objects in the scene relaxing this constraint.  
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4.2.1 3D Reconstruction 

Once we have found conjugate pairs in the two images, it is possible 

to get the depth of the correspondent points in the scene if we know: 

the mutual position of the cameras (extrinsic parameters) and the 

sensors parameters (intrinsic parameters). 
 In Figure 1 we have two cameras parallel to each other, with 

coinciding retinal planes (i.e. fixation points at the ∞). 

 
Figure 1: stereoscopic reconstruction. 

It is easy to understand that the disparity is only on the x-axis (i.e. is a 

horizontal disparity), that is why Figure 1 is two-dimensional. If we 

consider the reference frame as the left camera, we can write the 

following equations: 
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obtaining that: 

'vv
bfz
−

=  
(2) 

so if we know the system geometry (b and f in this example) and the 

disparity (v-v’) we can calculate the depth by using the last equation. 

Please note that the baseline b works as a scale factor in our problem: 

a point disparity is proportionally dependent on the baseline. Once we 

get the z-coordinate we can infer the real x and y coordinates by using 

the following equations: 

f
zxx l=          

f
zyy l=  

(3) 

where xl and yl are the correspondent coordinates on the projective 

plane. 

 It should be noted that all these equations assume no incertitude 

but, in real conditions, they must be rewritten in order to take 

incertitude into account.  

 

4.2.2 Correspondence Calculus 

We now deal with the main problem of stereo vision: the 

correspondence calculus (also called stereo matching). Let the 

disparity be the difference (vector) between pixels belonging to a 

conjugate pair when the two images are overlapped. Correspondence 

calculus refers to the ability of evaluate disparity for points in the 

reference image (all the points or a meaningful subset). The result is 

the disparity map (dense or sparse disparity map). 
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 In this evaluation we make the assumption that the two images 

acquired from the left and right are not so different, i.e. it is possible 

that a given point in the scene is present in both the images. Using 

similarity concepts, a point in the image 1 can be seen as 

correspondent to many points in the image 2: this is the problem of 

false correspondences, it makes harder to solve this task. Moreover, 

other problems arise in this context; here it follows a short summary 

of them: 

• Occlusions. Since the cameras take the images from different 

points of view, there will be some points in an image that are 

not going to have a correspondent in the other one. Obviously, 

no disparity can be calculated for such points [1]. 

• Photometric distortion. Since the surfaces are not perfectly 

diffusing (i.e. they are not exactly Lambertian), their 

brightness change according with the angle from which they 

are viewed, so cameras will acquire a pretty different value for 

the same points of the scene. 

• Projective distortion. Due to perspective projection, an object 

is projected in a different way in the two images. 

 In order to minimize false matches, some matching constraints 

have been imposed. Below is a list of the commonly used constraints:  

• Similarity (or compatibility - Grimson, 1981 [2]). The 

matching pixels must have similar intensity values (i.e. differ 

lower than a specified threshold) or the matching windows 

(defined in some area-based methods as said later) must be 

highly correlated.  
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• Uniqueness (Marr and Poggio, 1979 [3]). Almost always, a 

given pixel from one image can match no more than one pixel 

from the other image. This constraint can fail if transparent 

objects are present in the scene. Furthermore, given a pixel m 

in one image, its “corresponding” pixel may be occluded in the 

other image. In this case, no match should be assigned to m. 

• Continuity (Marr and Poggio, 1979 [3]). The cohesiveness of 

matters suggests that the disparity of the matches should vary 

smoothly almost everywhere over the image. This constraint 

fails at discontinuities of depth, for depth discontinuities cause 

an abrupt change in disparity.  

• Ordering (Baker and Binford [4]). If and 

and if m is to the left of n then m' should also be to the left of n' 

and vice versa. That is, the ordering of pixels is preserved 

across images. 

• Epipolar. Given a feature point m in the left image, the 

corresponding feature point m' must lie on the corresponding 

epipolar line. As said before, this constraint reduces the search 

space from two-dimensions to one-dimension. 
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4.3 Stereo matching methods: State of Art 

We will present a brief description of the most important methods for 

stereo matching; for more details, there is a good taxonomy proposed 

by Scharstein and Szeliski [5], and a survey on stereo vision for 

mobile robots by Zhang [6]. Moreover, we will describe, in the 

following section, some important algorithms we also used during the 

experimental phase to compare our results.  

 We can divide the methods for the correspondence calculus in two 

main categories [5] [6] [7]: 

Feature-based: these algorithms try to extract features from the two 

images (i.e. point or set of points of interest). Matching is applied to 

the features attributes. These algorithms produce a sparse map that can 

become a dense one after an interpolation step. They critically depend 

on the feature extraction stage. 

Area-Based: these algorithms consider a window of pixels in an 

image searching for the most similar in the other one. A correlation 

measure among intensity values (or a function of them) is used. This 

process is iterated for each point (so we have a window, at each 

iteration, centred in the considered pixel), the result is a dense map. 

Uniform textured regions are a problem for this kind of algorithms; 

moreover the intensity value of a pixel acquired by a camera is 

dependent on the point of view (photometric distortion). 
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4.3.1 Feature based methods 

The majority of the feature based algorithms consist of two steps: 

Feature detection: salient and distinctive objects (closed-boundary 

regions, edges, contours, line intersections, corners, etc.) are 

manually, or, preferably, automatically detected. For further 

processing, these features can be represented by their point 

representatives (centers of gravity, line endings distinctive points) 

who are called control points (CPs) in the literature. 

Feature Matching: in this step, the correspondence problem between 

the features in the sensed image and those detected in the reference 

image is established. Various feature descriptors and similarity 

measures along with spatial relationships among the features are used 

for that purpose. 

 The implementation of each registration step has its typical 

problems. First, we have to decide what kind of features is appropriate 

for the given task. The feature should be distinctive objects, which are 

frequently spread over the images and which are easily detectable. 

Usually, the physical interpretability of the features is demanded. The 

detected feature sets in the reference and sensed images must have 

enough common elements, even in situations when the images do not 

cover exactly the same scene or when there are object occlusions or 

other unexpected changes. The detection methods should have good 

localization accuracy and should not be sensitive to the assumed 

image degradation. In an ideal case, the algorithm should be able to 

detect the same features in all projections of the scene regardless of 
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the particular image deformation. 

 In the feature matching step, problems caused by incorrect feature 

detection or by image degradations can arise. Physically 

corresponding features can be dissimilar due to the different imaging 

conditions and/or due to the different spectral sensitivity of the 

sensors. The choice of the feature description and similarity measure 

has to consider these factors. The features descriptors should be 

invariant to the assumed degradations. Simultaneously, they have to 

be influenced by slight unexpected feature variations and noise. The 

matching algorithm in the space of invariants should be robust and 

efficient. Single features without corresponding counterparts in the 

other image should not affect its performance.  

 

4.3.2 Area based methods 

We can divide the area based approaches in: local (window-based) 

and global approaches. The local area-based approaches [8,9,10] 

provide a correspondence for each pixel of the stereo pair. They 

assume that each pixel is surrounded by a window of pixels having 

similar disparity; these windows are matched using correlation or a 

similar technique. They produce a dense disparity map (i.e. a map 

providing a disparity for each pixel). They can be quite unreliable, not 

only in homogeneous regions, but also in textured regions for an 

inappropriately chosen window size. On the other side, the global 

area-based approaches (that also yield a dense map) try to propagate 

disparity information from a pixel to its neighbours [11,12], or they 
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define and minimize some energy function over the whole disparity 

map [13,14,15]. They have a better performance in homogeneous 

regions, but they frequently have parameters which are difficult to set, 

and are highly time-consuming. The area based methods usually make 

implicit smoothness assumptions 

4.4 Stereo matching algorithms 

The algorithms we will describe in this section are area based ones. 

They make the assumption that the epipolar lines are horizontal, so 

conjugate pairs are on the same x-axis. Using this constraint we, 

dramatically, reduce the search space from two-dimensions to one-

dimension (as said before). It is a very strong constraint in our context 

(autonomous navigation) because of the mechanical vibrations of the 

cameras. Moreover, there is no consequence if you work with 

continuous signal but this is not the case with discrete image and non 

horizontal epipolar lines are related to bad discrete geometry 

properties. 

 

4.4.1 SSD 

Given a pixel (u,v) in the I1 image we consider the correspondent pixel 

(u+d,v) in I2, then we have a window centred in (u,v) of (2n+1)(2m+1) 

dimensions; this window is then compared with a window of the same 

dimensions taken in I2 at the same x-axis. Since the images are 

rectified (i.e. horizontal epipolar line) we consider (u+d,v), d ∈ 
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[dmin,dmax]. The disparity is the offset corresponding to the max 

similarity between the grey values of the window. 

 The adopted metric is the so-called SSD (Sum of Squared 

Differences): 

[ ]∑ +++−++=
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where k ∈ [-n,n], l ∈ [-m,m] and I(u, v) is the grey level of the pixel 

(u,v). 
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In order to evaluate the stereo matching algorithm with SSD, please 

have a look at the following two figures. 

 
Figure 2: The rectified stereo pair. 

The output is shown in Figure 3 in two different ways disparity map 

and height map. 
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Figure 3: SSD stereo matching based algorithm output. 

 Depth information acquired by an area based algorithm has not the 

same reliability for each pixel in the entire image. For example, there 

is no information available in the textureless and occluded regions. 

This incomplete information can be integrated using information 

coming from other sensors; in this case we will need a reliability 

estimation of the stereo matching algorithm. 

 

4.4.2 Dynamic Programming 

I. Cox et al. in [17] refer to an approach that consists in assigning a 

weight to each bad pair (for example, two pixels with very different 

grey values). The grey values differences follow a Gaussian 

distribution, with regards to the occlusion the weight is a constant one. 

If we make the assumption of a known occlusion probability, cost 

function can be defined on a max similarity criterion. 
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Figure 4: High correlation is expressed by a fair colour 

 Dynamic programming approach is shown in Figure 4. Correlation 

functions about the two epipolar line are computed and stored in a 

DB. Fair areas express a high correlation, dark area a poor one. 

Solution is given by a “best path” dynamic program problem (i.e. we 

solve the so called Travelling Salesman Problem). 

 Furthermore, we can apply to the cost function the ordering and 

smoothness (continuity) constraints. For example, we can consider the 

Birchfield and Tomasi cost function [18] [19] : 

∑
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where Nocc e Nm are the occlusion and matching numbers, kocc is the 

occlusion weight, kr is the constant due to a reliable matching and 

d(x,y) is the dissimilarity function between x and y, such a function 

could be the SSD. 

 The execution time (see Figure 5) is, for a 640*480 resolution, on 
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a workstation Indy by Silicon Graphics, of about 9 seconds with a 

max disparity equal to 14. Optimizing the implementation, the 

complexity becomes acceptable. 

 
Figure 5: Execution times with different disparities, according to two different 

implementations: dotted line is not optimized. 

4.4.3 Graph Cut 

A problem arises in the previous approaches: each epipolar line is 

independently processed. Solutions obtained in such a way can change 

a lot and have great artefacts. The graph cut algorithm [16] [1] 

globally optimizes the solution. The coherence constraint takes the 

place of the ordering constraint. The coherence constraint forces 

locally similarity of the disparities in each direction. For this reason, 

epipolar lines are grouped in a correlation cube as in Figure 6. 
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Figure 6: Matching in the entire image. All the epipolar lines l is grouped in a 

correlation cube. The aim is to find the best surface s.t, the coherence constraint that 
minimizes the total cost 

 Problem can be now seen as a max flow over a graph. If we add a 

source and a sink node and we consider all the points in the cube with 

integer coordinates as vertices in the graph, then the max-flow, 

between source and sink node, corresponds to the best disparity map. 

 This algorithm provides good results in fact it is a global approach 

that minimizes an energy function in the overall image. The main 

disadvantage is the execution time, (for a 640*480 resolution, on a 

notebook Intel P4 1.5 GHz 512 Mb RAM, of about 100-500 seconds 

depending on the maximum value of disparity), so that this algorithm 

can’t be used in a real-time system. 
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Chapter 5 
 

Our Approach 
“… Where is the bitter smile, caused by the Leopardian pain?  

What about the tormenting anxiety, the wild tempest 

That prevent my heart from loving? …” 

“…Dove ho represso l’amaro sorriso che il leopardiano patir mi suscitava? 

Cosa è stato dell’inquietudine struggente, della tempesta infuriata 

che impediva al cuore mio d’amare? …" 

A.L. 

5.1 Introduction 

In the literature there are a lot of approaches that process the depth 

information starting from a couple of images acquired from a stereo 

camera, but many times these approaches need a strong pre-processing 

phase, i.e. rectification or calibration process. Furthermore a good 

depth map is typically time consuming so that it can not be used in 

real-time environment as Automated Guided Vehicles (AGV) and 

Autonomous Mobile Robots (AMR). This chapter is devoted to show a 

new approach for stereo matching in AMR and AGV applications. In 

this framework an accurate but slow reconstruction of the 3D scene is 

not needed; rather, it is more important to have a fast localization of 

the obstacles to avoid them. All the methods in the literature are based 

on a punctual correspondence, but they are inefficient in realistic 

contexts for the presence of uniform patterns, or some perturbations 
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between the two images of the stereo pair. Our idea is to face the 

stereo matching problem as a matching between homologous regions, 

instead of a point matching. We propose two different approaches: 

graph based method and correlation based method. The last section is 

devoted to explain as the disparity map (environment representation) 

can be used for moving object and obstacle detection aim. 

5.2 Why a new approach 

A pair of images acquired from a stereo camera implicitly contains 

depth information about the scene: this is the main assumption of 

stereo vision, based on the binocular parallax property of the human 

visual system. The main difficulty is to establish a correspondence 

between points of the two images representing the same point of the 

scene; this process is called disparity matching. The set of 

displacements between matched pixels is usually indicated as 

disparity map. The following figure presents a stereo pair from the 

Tsukuba data set.  

   
Figure 1: The reference image (on the left) and the ground truth of the disparity 

map (on the right), from Tsukuba data set. A point, in the disparity map, has a higher 
grey level (corresponding to a high disparity between the two images) the closer it is 

to the camera. 
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The second image in Figure 1 represents the ground truth of the 

disparity map. An object has a higher grey level (corresponding to a 

high disparity between the two images) the closer it is to the camera, 

i.e. the lamp is in front of the statue that it in front of the table, etc. 

 The local area-based algorithms (see chapter 4) provide a 

correspondence for each pixel of the stereo pair. They produce a dense 

disparity map, redundant for AMR aims. Furthermore, they can be 

quite unreliable not only in homogeneous regions, but also in textured 

regions for an inappropriately chosen window size. On the other side, 

the global area-based approaches try to propagate disparity 

information from a pixel to its neighbors, so they have a better 

performance in homogeneous regions, but they frequently have 

parameters which are difficult to set, and are highly time-consuming. 

Finally, the feature-based approaches detect and match only “feature” 

pixels (as corner, edges, etc.). These methods produce efficient results, 

but compute sparse disparity maps (only in correspondence to the 

feature points). Therefore, AMR applications require more details, in 

fact some information about the size; also a rough shape of the objects 

is needed for guiding a robot in the environment or for basic 

recognition tasks (e.g. in industrial applications, or for platooning of 

robots). 

 All the proposed methods, as is clear, look for a punctual matching 

in the stereo pair. Therefore, some constraints both on the scene and 

on the input images have been introduced, since the first works on the 

stereopsis by Marr and Poggio [1,2], in order to guarantee good results 

and to reduce the complexity. To guarantee these constraints, the 
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stereo pair is supposed to be acquired from a sophisticated system, so 

that the energy distributions of the two images are as similar as 

possible. Moreover, a pre-processing phase is needed, before the 

correspondence finding step, to compensate the hardware setup 

(calibration phase), or to assume an horizontal epipolar line (epipolar 

rectification). Unfortunately, in realistic applications of mobile robot 

these constraints are not easy to guarantee. The two images of the 

stereo pair could have a different lighting, the motion of the mobile 

platform on a rough ground should produce mechanical vibrations of 

the cameras, and consequently local or global perturbations between 

the two images, that could undermine the initial phases of calibration 

and rectification.  

 We want to relax some constraints on the input images in order to 

consider a more realistic acquiring system, and consequently we add 

some constraints on our goal. We propose an extension of the 

disparity property, namely we define a disparity value for a whole 

region of the scene starting from the two homologous views of it in 

the stereo pair. The main reason of this extension is that a punctual 

approach is redundant for AMR and AGV applications. In fact, in this 

framework, it is not very important to have a good reconstruction of 

the surfaces, but it is more important to identify adequately the space 

occupied by each object in the scene (as soon as possible to avoid 

collisions), even by just assigning to it a single disparity information. 

Moreover the punctual approaches are lacking in robustness in some 

realistic frameworks, especially for video acquired from a mobile 

platform. Most of the algorithms available in off-the-shelf systems 
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[3,4] are unable to deal with large uniform regions or with vibration of 

the cameras. On the other hand, some efforts have been done in the 

literature to improve the robustness of the algorithms, but at the price 

of a significant increase of the running time. Our method estimates the 

average depth of the whole region by an integral measure, and so has 

fewer problems with uniform regions than other methods have. The 

estimate of the position of the regions is sufficiently accurate for 

navigation, also in the mentioned cases, and it is fast enough for real 

time processing.  

5.3 The Rationale 

In this thesis we propose, as said before, an extension of the disparity 

concept. The main idea is to determine a unique disparity value for a 

whole region of the scene and not for a pixel. In fact, even if we can 

suppose a unique correspondence between each pixel in the left and 

right images from an optical point of view (as said by the uniqueness 

constraint), in some cases we can not have enough information to find 

this correspondence looking just at a single pixel. Let us consider 

three kinds of situations:  

 

Pixels inside homogeneous areas 

As shown in Figure 2, it is a very hard task to compute the disparity 

value for a pixel inside a textureless region. In fact, the features-based 

algorithms are unable to find an appropriate feature in this case. The 

local area-based techniques must define a big correlation area in order 
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to pick enough information for the matching. Finally, the global area-

based methods produce a propagation of the error depending on the 

energy minimization.     

 
 

 
Figure 2: On the top of the figure a stereo pair with only one textureless object. On 

the bottom, the result of the algorithm by Boykov et al. [5], that is a global area-
based method using graph cut. This algorithm produces a propagation of the error 

depending on the energy minimization. 

 

Local and global perturbation of the stereo pair depending on the 

vibration of the mobile platform 

The motion of the robot produces mechanical vibrations of the 

cameras with a consequent loss of the horizontal epipolar line 

constraint, which is assumed from all the methods in the literature.  

??
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Figure 3: On the left side the result of the local area-based algorithm by Fusiello 

and Roberto [6] on a stereo pair with the horizontal epipolar line hypothesis. On the 
right side the result of the same algorithm after an horizontal misalignment of 2 

pixels (upon 228 pixel of height) between the left and right images. 

 
A different energy distribution between the left and right images 

In a realistic framework the stereo pair could have some pixels 

suffering from perspective or photometric distortions, with a 

consequent loss of the compatibility constraint. Moreover, the two 

cameras could have different acquiring parameters, i.e. focus, or 

exposure, etc. In Figure 4 there is an example of two images with 

different lighting. In ideal conditions all the pixels belonging to the 

same depth level have two energy patterns between the left and right 

images with a unique horizontal displacement (disparity value). In real 

condition (i.e. lighting differences) the two energy patterns are no 

longer a simple horizontal translation of each by one, consequently a 

punctual matching could be unsuitable.   
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Figure 4: An example of a different energy distribution between the left and right 
images. On the top of the figure, the stereo pair. The two graphs show the energy 
pattern (for the selected area) in ideal and real conditions. In ideal conditions each 
pixel has the same horizontal displacement, instead in real conditions (a different 

lighting between the left and right images, as in the example) a vertical 
misalignment of energy causes the lost of the punctual correspondence. 

  
 A region-based algorithm is proposed to face up the limitations of 

the punctual stereo matching approaches. The corresponding entity is 

no longer the pixel, but a region; the matching of regions provides a 

lowering of resolution, but an increasing of robustness in a realistic 

environment. In fact, a uniform area is considered as a unique segment 

?
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for the matching, as like the local and global perturbations of the 

stereo pair less influence the solution. Finally, an integral matching,  

on a whole region, is able to mitigate the lack of homogeneity 

between the left and right images. Therefore, a good tread-off, 

between an efficient solution (to guarantee an autonomous navigation) 

and the robustness in a realistic framework, is investigated. Moreover, 

the real-time requirement is guaranteed. 

5.4 A graph based definition 

In this section, the graph based method is presented. The stereo 

matching is based on a region segmentation of the two images and a 

graph representation of these regions, to face the matching problem as 

a graph matching problem. The computational process is simple and 

fast, because we consider only some significant regions, i.e. big areas, 

or some areas selected by a specific target.  

 

5.4.1 Overview of the method 

The main idea of our approach is to obtain a disparity map looking at 

the distance between homologous regions (instead of pixels) in the 

stereo images. Let these regions be called blobs. In this way the 

computation of the disparity map is carried out on a set of pixels 

having the same spatial and color properties, producing a more robust 

performance with respect to local and global perturbations in the two 

images.  
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Figure 5: A scheme of our approach. The left and right images are segmented and 
each area identifies a node of a graph. A bipartite graph matching between the two 
graphs is computed in order to match each area of the left image with only one area 

of the right image. By calculating an horizontal displacement between the 
corresponding areas, a depth is found for those areas of the reference image (i.e. left 
image). The list of the don’t care areas, instead, could be processed in order to refine 

the result. 

 
 It should be noted that a blob is not an object; objects are 

decomposed into several blobs, so the overall shape of the object is 

however reconstructed, except for uncommon pathological cases. An 
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example of pathological case can be a uniform object almost along the 

line of sight, but it has been satisfactorily dealt with only by global 

criteria optimization, which is extremely time consuming. 

 In our approach (see Figure 5), the left and right images are 

segmented and each area identifies a node of a graph. The 

segmentation process is simple and very fast. In fact, we are not 

interested in a fine segmentation, because we do not pursue a 

reconstruction aim. Anyway, we need similar segments between the 

left and right images in order to correctly find homologous regions. 

This objective is possible, in fact the stereo images are likely similar 

because they represent two different view points of the same scene. 

Moreover, the segmentation process does not influence the rest of 

algorithm, because a recursive definition of the matching and a 

performance function (see following) guarantee a recovery of some 

segmentation problems. A bipartite graph matching between the two 

graphs is computed in order to match each area of the left image with 

only one area of the right image. This process yields a list of reliably 

matched areas and a list of so-called don’t care areas. By calculating 

an horizontal displacement between the corresponding areas, a depth 

is found for those areas of the reference image (i.e. left image). The 

list of the don’t care areas, instead, could be processed in order to 

refine the result. 

 As it is clear, this approach is robust even in case of uniform 

texture and it does not need a strong calibration process because it 

looks for area correspondence and not pixel correspondence. On the 

other hand, an effort is required in graph matching to assure real-time 



   Chapter 5 – Our Approach 78 

requirements. The application time is reduced using some constraints 

for a quicker computation of the bipartite graph matching. Our method 

can be classified as a systemic approach [7], in fact we consider 

constraints coming from the scene, from the objective and from the 

observer. In particular, with regard to scene constraints, we assume a 

strong continuity constraint for each selected region, and the 

compatibility and the uniqueness constraints are applied on the whole 

region and not longer on each pixel. The horizontal epipolar line 

constraint is generalized in a horizontal epipolar band (see 5.4.2), to 

take the nature of the mobile observer into account. Moreover, the 

observer is supposed to move in an indoor environment and not too 

fast. Finally, the objective is considered to be real-time and highly 

related to the AMR applications. Therefore, all these constraints are 

taken into account to achieve our goal. 

 

5.4.2 The algorithm 

The algorithm is composed of three phases: Segmentation and Graph 

representation, Graph Matching and Disparity Computation. 

 

Segmentation and Graph representation 

The first phase of the algorithm is the segmentation of the stereo 

images and their graph representation. We need a very fast 

segmentation process that produces similarly segmented areas 

between the left and right images. We have used a simple multi-

threshold segmentation. It is essentially based on the quantization of 
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the histogram in some color ranges (of the same size). The left and 

right segmentations are very similar, considering an adaptive 

quantization for each image according to its lighting condition. A 

connected component detection procedure is applied on each 

segmented image to obtain 4-connected areas of the same color. Each 

connected area (blob) is then represented as a node of an attributed 

graph. Each node has the following attributes: 

 

• colMean: the RGB mean value of the blob (m_r, m_g, m_b); 
• size: the number of pixels in a connected area; 
• coord: the coordinates of the box containing the blob (top, left, 

bottom, right); 
• blobMask: a binary mask for the pixels belonging to the blob.  
 

It is easy to understand that a segmentation yielding many segments 

can be more accurate but creates lots of nodes, consequently requiring 

a more expensive graph matching process. On the other hand, a 

rougher segmentation process generates matching nodes that are very 

dissimilar in size and shape. As a compromise, we consider a 

segmentation process tuned to over-segment the image, and 

subsequently we filter the image in order to discard small noisy areas. 

 

Graph Matching 

Formally our matching algorithm can be described in the following 

way. A number of nodes is identified in each frame (left and right 

images) and a progressive label is associated to each node (blob). Let 

GL = {N0
L,…,Nn

L} and GR = {N0
R,…,Nm

R} be the two graphs 

representing the left and right images respectively (region adjacency 
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graph). The solution of the spatial matching problem, between two 

stereo frames, is an injective mapping between a subset of GL and a 

subset of GR. The problem at hand can be represented by using a 

matrix whose rows and columns are respectively used to represent the 

nodes of the set GL, and the nodes of the set GR (correspondence 

matrix). The element (i,j) of the matrix is 1 if we have a matching 

between the element Ni
L with the element Nj

R, it is 0 otherwise. Each 

row contains no more than one value set to 1. If the j-th row or the i-th 

column contains only zeros, it means that it is a don’t care node. The 

bijective mapping τ: GL  GR solves a suitable Weighted Bipartite 

Graph Matching (WBGM) problem. A Bipartite Graph (BG) [8] is a 

graph where nodes can be divided into two sets such that no edge 

connects nodes in the same set. In our problem, the first set is GL, 

while the second set is GR. Before the correspondence is determined, 

each node of the set GL is connected with each node of the set GR, thus 

obtaining a Complete BG. In general, an assignment between two sets 

GL and GR is any subset of GL × GR, i.e., any set of ordered pairs 

whose first elements belongs to GL and whose second elements 

belongs to GR, with the constraint that each node may appear at most 

once in the set. A maximal assignment, i.e. an assignment containing a 

maximal number of ordered pairs is known as a matching (BGM) [9]. 

A cost function is then introduced, so that each edge (Ni
L, Nj

R) of the 

complete bipartite graph is assigned a cost. This cost takes into 

account how similar are the two nodes Ni
L and Nj

R. The lower is the 

cost, the more suitable is that edge. If the cost of an edge is higher 

than a threshold (thrMatch), the edge is considered unprofitable and is 
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removed from the graph (its cost is considered to be ∞). 

Let us now introduce the cost function: 
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where width and height are the dimensions of the frame. The matching 

with the lowest cost among the ones with maximal cardinality is 

selected as the best solution. The problem of computing a matching 

having minimum cost is called Weighted BGM (WBGM). This 

operation is generally time-consuming; for this reason the search area 

(that is the subset of possible couples of nodes) is bounded by the 

epipolar and disparity bands (see Figure 6).  
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Figure 6: Epipolar and disparity bands: some constraints to optimize the WBGM. 

The epipolar band is a generalization for epipolar line, that is the maximum vertical 
displacement of two corresponding nodes. Disparity band, instead, is an horizontal 

displacement related to the maximum value of disparity. 

These constraints come from stereo vision geometry, but in our case 

they represent a generalization. The epipolar band is a generalization 

for epipolar line, that is the maximum vertical displacement of two 

corresponding nodes (generally its value can be a few pixels). 

Disparity band, instead, is an horizontal displacement, so a node of the 

right image can move on the left almost of α*maxdisparity pixels 

(with α a small integer). These two displacements are computed with 

respect to the centers of the bounding box  of the two blobs. 

 The graph matching process yields a list of reliably matched areas 

and a list of so-called don’t care areas. The matched areas are 
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considered in the following section for the disparity computation. The 

list of the don’t care areas, instead, is processed in order to group 

adjacent blobs in the stereo pair and consequently reduce split and 

merge artifacts of the segmentation process. Finally, a new matching 

of these nodes is found. The recursive definition of this phase assures 

a reduction of the don’t care areas in few steps, but sometimes this 

process is not needed because don’t care areas are very small. 

 

Disparity Computation 

The disparity computation is faced superimposing the corresponding 

nodes until the maximum covering occurs. The overlapping is 

obtained moving the bounding box of the smallest region into the 

bounding box of the largest one; precisely, the bounding box with the 

minimum width is moved horizontally into the other box, and the 

bounding box with the minimum height is moved vertically into the 

other box. The horizontal displacement, corresponding to the best 

fitting of the matched nodes, is the disparity value for the node in the 

reference image (left image).  

 
Figure 7: Some examples of matched regions. In grey color the region from the 

right image and in white color the region from the left image. 
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Figure 8: The overlapping process minimizes the mismatching between the two 

matched regions. On the right side, it is shown an appendix depending on the 
different segmentation between left and right images. 

A lot of objects have some appendices (see Figure 8) depending on 

the different segmentation between left and right images. However, 

this process finds the correct value for the disparity, minimizing the 

mismatching between the two matched regions. Moreover, we propose 

a performance measurement for the disparity computation in order to 

consider also some cases with larger errors coming from both 

segmentation and matching process. 

),max(
max

sizeRsizeL
Fittingeperformanc =  (2) 

It is the percentage value of the best fitting area size (maxFitting) with 

respect to the maximum size of the two matched regions (sizeL and 

sizeR). 

 
Figure 9: On the left side our disparity map; on the right side a graphical 

representation of the performance function (a brighter region has the upper value of 
performance). 
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 The result of our algorithm can be represented in a graph, the so-

called disparity graph, and, as it is clear from the Figure 9, the nodes 

of this graph can have a don’t care attribute or, alternatively, the 

couple of disparity and performance attributes. Therefore, we could 

select a minimum performance value, and label the regions below this 

value as don’t care. All these don’t care areas could be processed 

again in the WBGM, as said in section 5.4.1, if we should need to 

refine the result. Anyway, in our experimental results, we use a simple 

post-filtering in order to reduce don’t care regions. Each 4-connected 

don’t care area is labeled choosing the most frequent among the 

disparities of the adjacent regions. This assumption comes from the 

continuity constraint, but it is clear that it is applicable only inside a 

region and not between two different regions, so it is checked that 

most of the adjacent regions have the same disparity value. An 

example of the post-filtering use is shown in the Figure 10. 

  
Figure 10: On the left side the original disparity map; on the right side the result 

after applying the post-filtering. 
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5.5 A correlation based definition 

The graph based method has a lot of interesting features. For example, 

it completely avoids the strong epipolar constraint and this makes it 

suitable for AMR applications. On the other hand, some problems 

arise with this approach, especially in the segmentation phase of the 

algorithm. As it was explained before, the segmentation algorithm 

must be as fast as possible (in order to be suitable for real time 

applications) but it also has to ensure a “symmetric” segmentation in 

both the reference and sensed images. By “symmetric” I mean a 

segmentation that gives in the two images, as output,  the same 

number of blobs which share the same semantics of the real scene. For 

this reason in this section we propose an other algorithm that starts 

from the same motivations of the graph based method, but 

overcoming its limitations. 

 

5.5.1 Overview of the method 

Let us consider Rl and Rr, as the projection of the region R of the 

scene into the stereo pair {Il , Ir} (see Figure 11). As shown in the 

figure, we assume the well-known pinhole model. It is composed of 

an image plane (I), also called retina plane, and of an optical centre 

(C), spaced f (focal length) from the plane. The line passing through C 

point and orthogonal to R is called optical line. 
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Figure 11: Projection of the region R in the stereo pair 

 Some projection errors could occur. The homologous regions can 

suffer from perspective distortion, as bigger as further are the cameras 

each by one, or photometric distortion, because of no perfectly 

lambertian surfaces. The mechanical vibration of the mobile platform 

can introduce other errors, undermining the epipolar rectification. 

Finally, the digitalization process (also depending on the acquiring 

parameters) can produce border errors. We determine the disparity 

value for the whole region as the horizontal displacement between the 

regions. The detection of the homologous regions is, of course, a 

difficult problem. In fact, a same segmentation method, separately 

applied on the left and right images, should divide in different parts 

the same region of the scene, or should produce border errors, 

undermining a correct detection of the disparity for the whole region. 

In our algorithm a segmentation of the left image (reference image) is 

performed and each region of the reference image, selected from each 
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segment, is overlapped on the sensed image (right image). The 

disparity value of the region is the horizontal displacement, 

corresponding to the minimization of a best fitting  function between 

the two regions. This integral measurement of the disparity can 

mitigate some null integral border errors, as segmentation, 

digitalization, and photometric errors. An approximation can be 

obtained for the border errors from perspective distortion, that is not 

right with null integral. 

 

5.5.2 The algorithm 

 
Figure 12: A schema for our algorithm of region-based stereo matching. The 
segmentation of the reference image is performed in order to detect interesting 

regions in the image. Each segment is used as a selection mask on the left and right 
images in order to select the homologous regions. The disparity is the horizontal 

displacement corresponding to the best fitting of the homologous regions. A region 
is rejected if the performance index is lower than an imposed tolerance (P(R)<σp). 
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As shown in Figure 12 the algorithm is composed of four steps: 

 

Segmentation of the reference image 

Several segmentation methods (mean shift, pyramid, multi-threshold) 

have been tested. The algorithm has a similar behavior towards all the 

methods, taking care not to under segment the image. In fact, an under 

segmentation could merge regions belonging to different depth level. 

The over segmentation has not a big influence in our method, because 

the best fitting function is enough accurate. Anyway, a multi-threshold 

segmentation method has been used in the algorithm. It is essentially 

based on the quantization of the histogram in some color ranges (of 

the same size). 

 

Region Detection 

A connected component analysis is performed to detect connected 

segments. Looking at the experimental results, a 4-connected analysis 

has been enough for our aim. This step is also devoted to select a 

subset of regions among all. The selection is made using some 

constraints on the goal (goal constraints). Namely, a minimal 

knowledge about the obstacle (i.e. the maximum size of an obstacle is 

an upper-bound for the maximum size of a region; color information if 

any) or the desired resolution of the result (i.e. the minimum size of 

the region). In this way, the computation time can be reduced.  

 

Disparity Computation 

Each segment from Region Detection step is used as a selection mask 
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on the left and right images in order to select the homologous regions. 

The selection of the right region is displaced from 0 to the maximum 

value of disparity. The disparity is the horizontal displacement 

corresponding to the best fitting of the homologous regions. Formally, 

let EL(x,y) be the energy value for each pixel (x,y) on the left image, 

and ER(x,y) be the energy distribution of the right image. Let GL(x,y) 

and GR(x,y) be the gradient map of the left and right images. Finally, 

let Ri be the generic segment from step 2, the following equations are 

defined: 
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The best fitting function uses color and gradient information of the 

homologous regions, in order to consider the energy distribution of 

pixels inside each region and also texture information. The values for 

the weights α and β are experimentally found.  
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The best fitting color function, ( )dcol
iε , is normalized on the mean color 
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( L
iµ , R

iµ ) of the region Ri on the left and right images. In this way a 

good matching is found also in case of a no homogeneous distribution 

of energy between the left and right images. 

 

Performance Evaluation 

The previous step provides the disparity value for each region Ri, but 

also a performance index for the matching, p(Ri). In fact, for each 

region the minimum value of the fitting function has been used as 

matching error, ε(Ri), and the reliability index is: 
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A region is rejected if the performance index is lower than an imposed 

tolerance (p(R)<σp). This is an other goal constraint because we can 

choose a reliability level depending on the requested efficacy of the 

solution. Therefore the disparity map is a semi-dense map with some 

don’t care regions. 

 

As said in chapter 3, our method can be classified as a systemic 

approach [7], in fact we consider constraints coming from the scene, 

from the goal and from the observer (as shown in Figure 12). In 

particular, with regard to scene constraints, we assume a strong 

continuity constraint for each selected region, and the compatibility 

and the uniqueness constraints are applied on the whole region and not 
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longer on each pixel. Moreover, the observer (mobile platform) moves 

slowly so that only little vibrations of the cameras are possible. 

Finally, the obstacle detection task (our goal) is scalable in time and 

performance: a robot, having more time, can carry out a finer 

investigation of the environment, asking to the system a better 

solution.

5.6 Moving Object and Obstacle Detection 

What is an obstacle for a mobile platform? What about moving 

objects? A motionless obstacle can be identified as a connected 

regions that belong to a chosen range of distances, in fact an obstacle 

is an object so close to the mobile platform to forbid the navigation. 

Therefore a good 2D ½ representation of the scene can be enough to 

detect motionless obstacles and to suggest a safety path for the 

navigation.  

 Stereo vision can provide an adequately accurate 2D ½ map of a 

scene, but does not produce an estimate of the trajectories of the 

objects in the scene, which is important if those objects are to be 

followed or avoided. For this reason a robot vision system must 

include a moving obstacle detection phase (as it is shown in the whole 

system, see chapter 3). As regards moving object detection, in the 

literature there are three main approaches: temporal differencing [10], 

background subtraction [11], and optical flow approaches [12,13,14].  

 The first two approaches are best suited to a fixed camera 

hypothesis. On the other hand, an optical flow approach can be 
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suitable for either a fixed camera hypothesis or a moving camera in a 

fixed scene hypothesis. We propose a system in which optical flow is 

combined with the disparity information for determining both object 

and robot motion. The main advantage is that the method works in 

contexts with a moving camera in a scene with multiple moving 

objects whose shape is not known a priori allowing the determination 

of the trajectory of these objects. 

 

5.6.1 The Entire System 

In AGV and AMR applications the scene cannot be simply segmented 

into a static background with moving foreground objects. The system 

must be able to detect both autonomous moving objects and 

motionless objects, which have to be considered in a different way. 

The problem is difficult because the camera is moving in the 3D 

environment, so the motion vectors alone are not sufficient to 

recognize the moving objects. However, using together the optical 

flow and the disparity map it is possible to separate the motion of the 

camera (ego-motion) from the motion of the objects. An overview of 

our system for Moving Object and Obstacle Detection (MOOD) is 

shown in Figure 13. 
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Figure 13: Our Moving Object and Obstacle Detection System (MOODs). Using 
together the optical flow and the disparity map it is possible to separate the motion 

of the camera (ego-motion) from the motion of the objects. 

 The first step is a re-sampling and a quantization of the disparity 

map (computed according to our algorithm - see 5.5.2). This step is 

needed to respect the resolution chosen for the solution (the same 

resolution is used for the optical flow). A median filtering is 

performed before the quantization.  
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the optical flow computed with an area-based algorithm [15]. Namely, 

given two images I1(x,y) and I2(x,y) captured in consecutive frames, 

the motion vector (vx , vy) of  point (x, y) is obtained minimizing the 

function (Sum of Absolute Differences -SAD): 
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where –m/2≤i≤m/2; -m/2≤j≤m/2 and m is the size of the correlation 

window. Actually, to make this computation more robust we average 

the value of SAD over three adjacent frames. In the minimization 

phase we use a threshold on the SAD value to reject spurious motion 

vectors. Furthermore, we perform a quantization of  (vx , vy) to reduce 

the computational cost. We have used a median filter, in post-

processing phase, to attenuate local differences of the vectors, after 

Horn and Schunk [13] hypothesis of space continuity of the optical 

flow. At the end, sharpness and distinctiveness constraints are also 

enforced for disambiguating the minimum [16, 17]. 

 Therefore, combining optical flow with the disparity information 

we can detect moving objects. In fact, assuming that the velocity 

vector of the camera is known, we can predict the displacement 

(between adjacent frames) of each point in the disparity map under the 

hypothesis that the point is motionless. This displacement is a 3D 

vector; the projection of this vector on the image plane gives a 

prediction of the motion vector in the optical flow. Of course, if the 

point belongs to a moving object, its observed motion vector (vx , vy) 
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will differ from the predicted one (v’x , v’y). We compute the 

difference of the modules and phases between these two vectors and 

compare them with a module threshold and a phase threshold.  
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The points that exceed one of the thresholds are marked as anomalous 

motion vectors and are used for the last step, moving object detection. 

This step uses a standard algorithm for detecting the connected 

components in an image. Each component is considered a detected 

moving object and described by means of its bounding box (see 

Figure 14).  

    
  a)     b) 
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c) 

Figure 14: Some output of our system: a) Predicted Optical Flow; b) Observed 
Optical Flow; c) Moving Obstacle Detection.  

 
 
Some detected moving objects are discarded by a post-processing 

filter, that evaluates constraints based on object size, uniformity, 

distance and  position with respect to the ground level [18]. 
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Chapter 6 
 

Experimental Results 
“… Now a new tempest – of passion and flame and thunder – dispels  

The dark sky of the heart, that tender and tired of fighting,  

Flops in the quiet tremor of a shaking harmonious warmth.  …” 

“…Tempesta d’altra natura – di passione e fiamme e tuoni – squarcia ora 

il cielo buio del cuore che tenero e stanco di lottare 

si abbandona al tremore calmo di uno sconvolgente armonico tepore. …" 

A.L. 

6.1 Introduction 

In this chapter, we report the experimental results of our method for 

moving object and obstacle detection (that we have called MOOD 

system). The following section is devoted to the obstacle detection 

using stereo vision paradigm. The results of our method for stereo 

matching are shown in a comparison with the best algorithms in the 

literature. It is also proposed a quantitative measurement for 

performance evaluation, with a reference to our specific goal of the 

obstacle detection in autonomous navigation framework. The last 

section presents the results of the moving object detection. A synthetic 

database has been created to precisely evaluate our system. 
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6.2 The Obstacle Detection: The Results 

In the literature, the tests for stereo matching algorithms are usually 

performed with standard databases composed of static images, well-

calibrated and acquired in uniform lighting. The Middlebury web site 

by Scharstein and Szeliski [1] is a good reference for some stereo 

images and to compare some stereovision algorithms.  

 In this section we want to show our qualitative results and discuss 

some errors of the best algorithms in the literature, when applied to 

real cases. Nowadays, in AMR and AGV applications it is not defined 

a quantitative measurement for performance evaluation. It is proposed 

a quantitative performance evaluation for disparity map by Scharstein 

and Szeliski [2], but in case of reconstruction aims. For this reason in 

this thesis, it is also proposed a quantitative method to compare stereo 

algorithms when the goal is the obstacle detection and no longer the 

3D reconstruction of the scene.  

 We have reported the results of the correlation based algorithm 

because more accurate and efficient than the graph based algorithm, in 

a lot of cases.  

 The following figure presents a stereo pair from the Tsukuba data 

set.  
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Figure 1: The reference image (on the left) and the ground truth of the disparity 

map (on the right), from Tsukuba data set. A point, in the disparity map, has a higher 
grey level (corresponding to a high disparity between the two images) the closer it is 

to the camera. 

 The second image in Figure 1 represents the ground truth of the 

disparity map. An object has a higher grey level (corresponding to a 

high disparity between the two images) the closer it is to the camera, 

i.e. the lamp is in front of the statue that it in front of the table, etc. 

The following Figure 2 shows our result on the Tsukuba DB and a 

comparison with other approaches. We have selected the best methods 

in the literature: squared differences (SSD), dynamic programming 

(DP) and graph cuts (GC) [2]. The first is a local area-based 

algorithm, the other two ones are global area-based algorithms. The 

experiments have been performed on a notebook Intel P4 1.5 GHz, 

512 Mb RAM, and we have considered a resolution of 384x288 

pixels. 
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Figure 2: A comparison with other approaches. 

The real-time requirement is guaranteed, in fact our execution time is 

comparable to the SSD algorithm that is the most used in real-time 

context.  

 We have used the following parameters and constraints (see the 

algorithm in section 5.5.2): 

Table 1: Parameters and constraints 

Description  Value 
Scene and observer constraints  Respected 
Numbers of ranges for segmentation  20 
Goal constraint for region detection  Not used 
[α , β] for disparity computation  [0.4, 0.6] 
Threshold for performance evaluation (σp)  0.8 

 

SSD: Time < 1 sec           DP: Time 2 sec

Graph Cut: Time 70 OOUURR:: TTiimmee 11..1144
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The goal constraint for region detection is not used in order to not 

compromise the comparison with the punctual approaches (that can’t 

use such constraint). The parameters are obtained by experimental 

evidences. 

 
Figure 3: SSD and Our approach after a vertical translation of 2 pixels. 

 
In Figure 3 it is clear the robustness of our approach in relation to the 

loss of the horizontal epipolar constraint (we have imposed a vertical 

translation of 2 pixels between the left and right images). The SSD 

algorithm has a lot of false detections, in fact some pixels are labeled 

with an higher disparity and other ones with a lower disparity. Our 

result is more robust, in fact we have just little changes in don’t care 

pixels.  

OOUURR::  TTiimmee  11..1144  sseecc 

After After

Before Before 

SSD: Time < 1 sec 
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Figure 4: Results on our stereo pair: it is characterized by only one homogeneous 

object. 

The presence of texture-less regions (very frequent in real contexts) 

    SSD: Time < 1 sec            DP: Time 2 sec 

Graph Cut: Time 50 sec OOUURR::  TTiimmee  00..77  sseecc  



6.3 The Moving Object Detection: The Results 107 

causes serious problems to the best algorithms of the literature as 

shown in Figure 4. 

 In order to consider a quantitative comparison of the algorithms 

for obstacle detection aim, we define a simple module that detects the 

obstacles from the disparity map. Each 4-connected region with the 

same disparity value is identified with a bounding box and its distance 

from the observer. We select the obstacles as the connected regions 

that belong to a chosen range of distances, in fact an obstacle is an 

object so close to the mobile platform to forbid the navigation. 

Therefore two performance index are defined in order to valuate: the 

capability of the algorithm to identify adequately the space occupied 

by each obstacle (occupancy performance); the correctness of depth 

computation for each obstacle (distance performance). For each frame 

of the video sequence acquired from the platform, let RG be the real 

obstacle regions (Ground Truth), let RD be the obstacle regions 

detected by the algorithm, and let RI be the subset of regions correctly 

detected as obstacles by the algorithm (RI = RG ∩ RD). The occupancy 

performance is evaluated with the measures of precision and recall: 

D

I

G

I

R
R

precision

R
R

recall

=

=

 

(1) 

The distance performance is evaluated with the following relative 

distance error (rde): 

distancereal
distance real - distance detected 

=rde  
(2) 
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The distance of an obstacle is related to its disparity value following 

the relation: 

distance disparity
lenghtfocalbaseline

k mpx
⋅

= /  
(3) 

where kpx/m is the conversion factor from pixel to meter. It should be 

noted that for each real obstacle (Ground Truth) could be more than 

one overlapped obstacle regions detected by the algorithm. The 

detected distance for that obstacle is supposed to be a weighted mean 

distance of all the overlapped regions. The weights are set up to the 

sizes of each overlapping area. We report some results obtained on a 

realistic video acquired from our mobile platform. The video sequence 

(100 frames) is characterized by camera vibration, light changing, 

uniform obstacles (see Figure 5).  

 
Figure 5: Some frames of the video sequence. 
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The proposed method is compared with the Small Vision System 

(SVS) by Konolige [4,5] that is the most popular system in off-the-

shelf systems. Namely, the SSD stereo matching algorithm has been 

implemented in SVS, taking care the real-time requirement and 

filtering the solution to reject false stereo matches. We consider two 

different version of that algorithm: SSD and SSD multi-scale. 

 

 

  
Figure 6: Disparity Map Results: On the top our method, on bottom left the SSD, 

and on bottom right SSD multi-scale . 

Table 2: Precision and Recall 

algorithm  recall precision 
our method 0.91 0.63 
SSD 0.21 0.48 
SSD multi-scale 0.45 0.35 
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Table 3: Relative Distance Error 

algorithm   relative distance error 
our method  0.11 
SSD  0.19 
SSD multi-scale  0.18 

 

The results in the previous tables show that our method is much better 

than the other two, especially for the occupancy performance. In fact, 

as it is clear from Figure 7 and Figure 8, our approach can better 

overlap the space occupied by the real obstacles, as like the SSD 

multi-scale algorithm has big opening areas inside the obstacles.   

  
 

  
Figure 7: Some results of our obstacle detection algorithm. 
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Figure 8: Some results of obstacle detection from SSD multi-scale stereo algorithm. 

 

6.3 The Moving Object Detection: The Results 

The Moving Object Detection subsystem (see section 5.6.1) has been 

performed using a synthetic database [6], created ad hoc using a 

rendering software (3D Studio Max). We have considered a resolution 

of 384x288 pixel2 and a frame rate of 8 fps. Cameras are placed in the 

scene with parallel focuses, with a baseline of 10 cm, and at 80 cm 

above ground. The objects in the scene move according to different 

trajectories and speeds ( from 0.5 m/s to 4 m/s). The robot follows 

both rectilinear and curvilinear routes at a speed of 0.5 m/s and 1 m/s. 

We have built a database of 34 video clips as Training Set and one 

larger video clip as our Test Set (see Figure 9). The Test Set contains 
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complex motion scenes, as a wall falling down, a pendulum, etc. The 

experiments have been performed on a notebook Intel P4 1.5 GHz, 

512 Mb RAM. 

  

 
Figure 9: Some examples of our database. 

 We use the occupancy performance defined in the previous 

section. In this case the bounding boxes are not related to the 4-

connected regions with the same disparity value, but are related to the 

anomalous vectors (as defined in section 5.6.1), that detect the moving 

objects. Furthermore, trying to get a single evaluation value to be 

optimized, a unique performance function has been defined, 

depending from precision and recall:  

recallprecisionp ⋅+⋅= 21 γγ  (4) 

This function gives a higher weight to recall (γ2>γ1), since in 
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autonomous navigation it is more important to find obstacles to avoid 

than a fine detection of them. We have tested different combinations 

of values for γ1 and γ2 and for each combination we have found the 

best parameters for our system. Afterwards, we have chosen the 

combination giving the best qualitative behavior of the robot in the 

environment (experimental values for γ1 and γ2 are set to 0.35 and 

0.65). Another evaluation term is the frame-rate (fps) for respecting 

our real-time goal. The parameters of our system that need training are 

the following: Correlation-window for optical flow; sampling step for 

optical flow; module and phase thresholds for detection of anomalous 

motion vectors; movie sampling.  

 We have chosen the best set of parameters by optimizing the 

performance function and the frame rate on the training set. We have 

reported the performance function with respect to disparity quantized 

into six levels (the larger the disparity, the closer is the object). In the 

following are shown some of the results on the Training Set, used to 

find the optimum value of the main parameters (see Figure 10).  
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Figure 10: Performance functions with respect to disparity quantized into six levels, 
for the training of the correlation window and the module and phase thresholds (on 

Training Set) 

A cumulative performance function is defined for assigning different 
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weighs to different disparity ranges (for rewarding central levels): 

∑ = ⋅= 5
0 )_(i icumul levelipwp  (5) 

 
We have used the following vector of weighs, obtained by 

experimental evidences: wi = {0, 0.125, 0.25, 0.25, 0.25, 0.125} 
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Figure 11: Cumulative Performance and Frame rate with respect to correlation 

window, to choose the best compromise 

 

In Figure 11 it is shown that a correlation window of  6 pixels gives 

the best cumulative performance at an acceptable frame rate. Figure 

12 shows Precision and Recall for each video clip. Notice that in some 

cases performance is not too high because of motion conditions that 

make more complex the moving object detection task, such as low 

speed and purely longitudinal trajectories.  
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Figure 12: Precision and Recall for each video clip (of the Training Test) for 

different trajectories of the robot and of the objects 

Finally the results on the Test Set are presented in Figure 13. 
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 Figure 13: Some results on Test Set with respect to disparity level 

It can be seen that our system has a good performance for objects that 

are at a low to medium distance from the robot, while degrades for far 

objects. This can be explained by the fact that the quantization and 

sampling noise become comparable to the disparity and optical flow 
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information.  In Figure 14 a visual display of the algorithm output is 

presented for some of the scenes in the Test Set. 

  

  

   

     
Figure 14: Some visual results. 
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Chapter 7 
 

Conclusions 
“… And so much fervently burns the Heart 

Tormenting the flame of Love.” 

“…E sì nell’ardore brucia il cuore 

tormentando la fiamma dell’amore." 

A.L. 

 

In this thesis we have proposed a new real-time video analysis system 

for autonomous navigation of a mobile platform. Our system presents 

several improvements as regards the state of the art of such systems. 

In particular we have addressed our attention to the challenging 

problem of the “Obstacle detection and avoidance” in unstructured 

environment, and we have analyzed the two phases of obstacle 

detection and moving object detection.  

 The obstacle detection problem, in the general framework of 

unstructured environment, is very hard to solve, in fact we do not have 

a large knowledge of the environment and of the objects in the scene, 

so that a robot has to build a wide understanding of the scene, in order 

to avoid obstacles. The motion of the camera, mounted on the robot, 

makes the video analysis very difficult and the most algorithms, in the 

literature, fail. Finally, an autonomous navigation needs a real-time 

elaboration to guide quickly the mobile platform through the safety 

path. 
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 The entire system has been described according to a precise 

methodology for vision system development, called systemic 

approach. In this way, our system has some using specifications and 

guarantees a good performance for the specified application domain 

(AMR and AVG). The video analysis has been faced thinking about 

the nature of the environment, the nature of the mobile platform and 

the kind of goal we suppose to reach. 

 The major contribution of this work concerns a “perceptive” 

representation of the environment, that it is not a “passive” 

representation, but related to the final goal of autonomous navigation. 

It is based on the stereo vision paradigm and detect obstacles and 

moving objects in the scene right according to the autonomous 

navigation goal, that is obtaining a result as fine as it is enough for our 

aims. Therefore, we define a scalable system that works with a 

required resolution in a specific context. 

 The greatest advantage of stereo vision with respect to other 

techniques (e.g. optical flow, or model-based) is that it produces a full 

description of the scene, can detect motionless and moving obstacles 

(without defining a complex obstacle model), and is less sensitive to 

the environmental changes (the major disadvantage of optical-flow 

techniques). The stereo vision provides a 3D representation (or at least 

an approximation like a 2D ½ representation) of the scene, producing 

information about objects in the environment that may obstacle the 

motion. In stereo vision, the main difficulty is to establish a 

correspondence between points of the two images representing the 
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same point of the scene (disparity matching). All the approaches, in 

the literature, are based on this pixel correspondence.  

 We have proposed an extension of that concept, namely we have 

defined a disparity value for a whole region of the scene starting from 

the two homologous views of it in the stereo pair. The main reason of 

this extension is that a pixel-matching approach is redundant for AMR 

and AVG applications. In fact, in this framework, it is not very 

important to have a good reconstruction of the surfaces, but it is more 

important to identify adequately the space occupied by each object in 

the scene. Moreover the pixel-based approaches are lacking in 

robustness in some realistic frameworks, especially for video acquired 

from a mobile platform. Our method estimates the average depth of 

the whole region by an integral measure, and so has fewer problems 

with uniform regions than other methods have. The estimate of the 

position of the regions is sufficiently accurate for navigation and it is 

fast enough for real time processing. 

 The results of our method for stereo matching have been shown in 

a comparison with the best algorithms in the literature. We have 

reported some results obtained on a realistic video acquired from our 

mobile platform. The video sequence is characterized by camera 

vibration, light changing, uniform obstacles, in order to underline the 

limits of the algorithms present by now in the literature that are pixel-

based. It is also proposed a quantitative measurement for performance 

evaluation, with a reference to our specific goal of the obstacle 

detection in autonomous navigation framework. The experimental 

results we carried out show that the proposed idea is very promising. 




