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Abstract

This paper focuses on the design of an effective method that computes
the measure of circularity of an open or closed digital curve. Thanks to
its geometric interpretation, an algorithm that only uses classical tools
of computational geometry is derived. Even if a sophisticated machinery
coming from linear programming can provide a linear time algorithm, its
O(n log n) time complexity is better than many quadratic methods based
on Voronoi diagrams. Moreover, this bound can be improve in the case
of convex digital curves to reach linear time.

1 Introduction

Accurately locate circles and accurately measure deviation with a circular tem-
plate are common problems in many fields of science and engineering. The
fields of application are as diverse as geology [1], archeology [2], physics [3],
computer vision such as raster-to-vector conversion [4] or video processing [5],
computational metrology to test the quality of manufactured parts [6, 7, 8, 9, 10,
11, 12, 13], image processing and discrete geometry to recognize digital circles
[14, 15, 16, 17, 18, 19, 20, 21].
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This paper focuses on the design of an effective method that computes the
measure of circularity of an open or closed digital curve previously extracted
from a digital image. The circularity measure of a given digital curve is a
quantity that increases with deviation from a piece of digital circle, called a
digital arc. The reader may find in the literature terms as diverse as compactness
[22, 14], roundness [23, 7, 9, 10, 11, 12], out-of-roundness [6, 7, 24], but we
prefer “circularity” [25, 8] because it recalls the template with which the data
are compared to, that is the circle.

Although plenty of papers present methods for assessing the circularity of
a set of points, as far as we know, only one paper dealt with the circularity of
digital curves, more than twenty years ago. In [14], a digital disk recognition
algorithm in O(n2) is presented in the first part, and a digital compactness
evaluation algorithm for digital convex objects in O(n3

√
n) is presented in the

second part (where n is the number of pixels of the digital curve). The digital
compactness measure is defined as the ratio between area A of the shape and
area A′ of the smallest enclosing digital disk (where “the smallest” is expressed
in area unit, that is in number of pixels). As a smallest enclosing digital disk
may not be unique and as the smallest enclosing euclidean disk may not be a
smallest enclosing digital disk, areas of many digital disks have to be compared.
This is why the computational cost is rather high. This first attempt shows
that the problem is not trivial. Moreover, naive methods that consist to find an
easy-to-compute point that is expected to be the center of a circle separating
the foreground from the background are only approximative. For instance, in
[26], the barycenter of a set of pixels is assumed to be the center of a separating
circle, but Fig. 1 shows that if the barycenter of a set of pixels is computed,
pixels that do not belong to the set may be closer to the barycenter than pixels
that belong to the set, even if it turns out that the set of pixels is a digital disk.

A well-known circularity measure in the Euclidean plane is 4πA/P 2 where
A is the area and P the perimeter. The digital equivalent of this circularity
measure was introduced by [22], but even with a convergent perimeter estimation
based on digital straight segment recognition (see [27] and [28]) the measure is
theoretically unsatisfactory: digital circles may have different values that are
always strictly less than 1. Moreover, this kind of measure has several other
drawbacks in practice: (i) it is not perfectly scale invariant, (ii) it is not easy
to interpret (iii) it is computable neither on discontinuous perimeter, nor on
unordered sets of points and (iv) it is not able to provide the parameters of
a circle that is close to the data. This measure may be used for a coarse and
quick approximation of the circularity of a digital curve, but in the general case,
another measure is needed.

Three kinds of methods may be found is the literature:

1. Methods based on the circular Hough transform [29, 30, 31] allow ex-
traction, detection and recognition of digital arcs. Even if these methods
are robust against shape distortions, noise and occlusions, they require
massive computations and memory, and thresholds tuning. As the digital

2



3.2

3.2

2.8 2.73 3 3.55

2.42 2.861.85 1.73 2.14

2.4 3.37

3.71

4.363.83

2.8 1.85 1 0.77 1.47

2.31

2.63

3.24

4.01 4.65

4.01

3.53

3.32.73

3

3.55

4.26

1.73

2.14

0.77 1.320.41

1.47 1.32 1.82

2.86 2.4 2.31 2.63

3.71 3.37 3.3 3.53

Figure 1: (a) A digital disk is depicted with pixels. In each pixel, the distance of
its center to the barycenter of the digital disk (located with a cross) is written.
Some pixels that do not belong to the disk are closer (3.2) to the barycenter
than some pixels that belong to the disk (3.24)

curve is assumed to be extracted from the digital image in this paper, the
following methods are more appropriate.

2. Methods based on the separating circle problem in discrete and computa-
tional geometry [15, 16, 17, 18, 19, 20, 21] allow the recognition of digital
arcs. However these algorithms need to be extend to measure the extent
of the deviation with a digital arc.

3. Methods based on circle fitting are widely used (i) in computer vision
[32, 33, 34, 11, 4, 5] where a circle is fitted to a set of pixels with the least
square norm, as well as (ii) in computational metrology [6, 23, 7, 8, 24, 13]
where a circle is fitted to a set of points sampled on the boundary of a
manufactured part by a Coordinate Measurement Machine (CMM) gener-
ally with the least L∞ norm (or Chebyshev or MinMax norm) because it is
recommended by the American National Standards Institute (ANSI stan-
dard, B89.3.1-1972, R2002), but sometimes with the least square norm,
like in [35]. It is clear that the cost of such a circle fitting with either the
least square norm or the Chebyshev norm could be a quite good circularity
measure.

In this paper, a preliminary work presented in [36] is extended. Given a digital
curve, the objective is to compute a circularity measure fulfilling some properties
that will be enunciated in Section 2, as well as the parameters of one separating
circle if it is a digital arc or the parameters of the closest circle otherwise. The
proposed method is original because it is applied on digital curves like the one
of [14] and it links both methods based on the separating circle problem and
methods based on circle fitting.
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We formally define our new circularity measure in Section 2. Thanks to its
geometric interpretation, an algorithm that only uses classical tools of computa-
tional geometry is derived in Section 3. Even if it is shown that a sophisticated
machinery coming from linear programming can provide a linear time algorithm,
its O(n log n) time complexity is better than many methods based on Voronoi
diagrams [16, 17, 6, 23]. Moreover, the method is exact contrary to many meth-
ods that use ad hoc heuristics [8] or meta-heuristics like simulated annealing
[11, 13]. We show in Section 4 that this bound can be even improve in the case
of convex digital curves to reach linear time. Some experiments are done on syn-
thetic ideal, noisy digital curves and on real-word digital images in Section 5.
The paper ends with some concluding words and future works in Section 6.

2 Definition of a circularity measure for digital
curves

2.1 Data

A binary image I is viewed as a subset of points of Z2 that are located inside a
rectangle of size M ×N . A digital object O ∈ I is a 4-connected subset of Z2

(Fig. 2.a). Note that a digital object may be defined as a 8-connected subset of
Z2 as well. Its complementary set Ō = I\O is the so-called background. The
boundary C of O, defined as the 8-connected circular list of digital points having
at least one 4-neighbor in Ō, is a closed digital curve (Fig. 2.b). A connected
subset of C is an open digital curve (Fig. 2.c).

A digital disk is defined as a digital object whose points are separable from
the background by an Euclidean circle (Fig. 2.d). A digital circle is defined as
the boundary of a digital disk (Fig. 2.e) and a connected part of it is defined as
a digital arc (Fig. 2.f).

The goal of the following subsection is to define a measure of how much a
given open digital curve is far from a digital arc. We assume that the digital
closed curve from which the open digital curve is extracted is known, so that
the points that do not belong to the curve are labelled as foreground on one
side and labelled as background on the other side.

2.2 Circularity measure

In metrology, the circularity of an arbitrary set of points S in the plane is defined
as the cost of fitting a circle to S given a certain norm. The most often used
norm is either L2 (least square norm) or L∞ (MinMax or Chebyshev norm).
Moreover, for both norms, the quantity that is minimized is either the sum of
the radial distances or the sum of the areal distances. The general problem of
fitting a circle to a set of points is stated in [8] as follows: Given a metric m and
a norm l, the cost of fitting a circle to a set of points P ∈ S that characterizes
the spread of the set of points around the circle of center O and radius r is given
by:
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) A digital object is depicted with black disks. The set of squares
depicts a closed (b) and an open (c) digital curve. (d) A digital object that is
a digital disk. (e) A closed digital curve that is a digital circle. (f) An open
digital curve that is a digital arc.
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m,l 2 ∞
1 mean square error minimum width annulus

[32, 34, 35] [6, 23, 7, 8, 10, 11, 13]
ANSI standard, B89.3.1-1972 (R2002)

2 modified mean square error minimum area annulus
[33] [6, 24]

Table 1: Some references for the four most used instances of the problem of
fitting a circle to a set of points

Figure 3: Given the minimum area annulus enclosing a set of points, the circu-
larity measure is defined as the squared ratio between its radii.

COSTm,l(O, r) =
∑
P∈S
||(|| ~OP ||2)m − rm||l (1)

The four instances of the problem of fitting a circle to a set of points (l
equals either 2 or ∞ and m equals either 1 or 2) have been thoroughly studied
for a long time as it is shown in Tab. 1.

Notice first that the case (l = ∞, m = 1) (also known as the measurement
of Out-Of-Roundness) is recommended by the American National Standards In-
stitute in metrology applications. Although the norm depends on the statistical
error model, in such applications, experiments have shown that L∞ fits provide
good results ([8], for example). Moreover, the connectivity of the digital curves,
even affected by noise, guarantees that there is no outlier and that L∞ fits may
be an interesting approach in the case of digital data. Notice then that for
either l = 2 or l = ∞, setting m to 2 is a trick that makes the computation
easier because the objective function may be transformed into a problem that
can be explicitly solved. As a consequence, the case (l =∞, m = 2) (Fig. 3) is
a trade-off between accuracy (l = ∞) and efficiency (m = 2). That is why, we
have chosen to adapt this measure to the case of digital curves.

A circularity measure for digital curves is naturally expected to fulfil the
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(a) (b)

Figure 4: Two digital curves are depicted with gray squares. S (resp. T ) is the
set of black disks (resp. white disks). In (a), the minimum area annulus has an
area of 4 and the circularity measure equals 8.5/12.5 = 0.68. However in (b), it
has a null area and the circularity measure equals 1, because the digital curve
is a digital arc.

following properties:

1. be invariant to translation, rotation, scaling.

2. range from 0 to 1, equal 1 for a digital arc.

3. be intuitive. For instance, it is naturally expected to increase as the
number of sides of regular polygons increases or as the eccentricity of
ellipses decreases or as the amount of noise decreases. It is also expected
that the measure is robust: for example, the measure of a noisy digital
circle has to be higher than the measure of a digital triangle, or a digital
square.

Fitting a circle to the points of a digital curve does not lead to a satisfactory
measure because the property 2 does not hold. However, as this kind of methods
may fulfil properties 1 and 3, we have chosen to extend the case (l =∞, m = 2)
to digital curves in the following way: instead of computing an annulus that
encloses a set of points, we compute an annulus such that the outer disk contains
all the points of the curve and the inner disk does not contain any background
point (Fig. 4).

Let S and T be two finite sets of points of Z2. Let us compute the minimum
area annulus A(O, r1, r2) of center O(Ox, Oy), inner radius r1, outer radius r2
(with 0 ≤ r1 ≤ r2) and area π(r22 − r12), under the following constraints:{

∀S ∈ S, (Sx −Ox)2 + (Sy −Oy)2 ≤ r22

∀T ∈ T , (Tx −Ox)2 + (Ty −Oy)2 > r1
2 (2)

Now, we define our circularity measure as the ratio between the squared
inner and the squared outer radii:
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circ(S, T ) =
r1

2

r22
(3)

It is clear that circ(S, T ) fulfills the properties enunciated above: it does
not contradict our intuition, it is invariant to translation, rotation and scaling,
it equals 1 for a digital arc and is less than 1 otherwise (Fig. 4).

Notice that if S = T , the computation of A is like a L∞ fit where the
quantity to minimize is the area of A, which is the case (l =∞, m = 2). Thus,
the problem we deal with is more general than the usual problem of finding a
minimum area annulus enclosing a set of points.

2.3 Linear programming problem

Developing equation 2, we get:{
∀S ∈ S,−2aSx − 2bSy + f(Sx, Sy) + c2 ≤ 0
∀T ∈ T ,−2aTx − 2bTy + f(Tx, Ty) + c1 > 0

where

 a = Ox, b = Oy,
c1 = (a2 + b2 − r12) c2 = (a2 + b2 − r22)
f(x, y) = x2 + y2

(4)

Instead of characterizing a circle by its center and its radius, we charac-
terize a circle by its center and the power of the origin with respect to the
circle. Thanks to this change of variables, solving (2) is equivalent to solving
the following linear program with four variables and |S|+ |T | constraints:

Minimize d
subject to
−2aSx − 2bSy + f(Sx, Sy) + c2 + d ≤ 0,
−2aTx − 2bTy + f(Tx, Ty) + c2 > 0,

where d = (c1 − c2)

(5)

This kind of reformulation into a linear programming problem has been
done, for instance, in computational geometry for the smallest enclosing circle
[37] or the smallest separating circle [15], in discrete geometry for digital circle
recognition [20] and in engineering for the quality control of manufactured parts
[24].

Many techniques are known to solve such linear programming problems:
for instance, the well-known simplex method, the prune and search techniques
[38], the incremental randomized techniques [39]. The simplex method has a
worst-case time complexity very large whereas the last two methods are linear
in time in the number of points to proceed. However, these methods have some
drawbacks: they are not easy to implement, they are off-line, the constant is
large and is exponential in the dimension, which is equal to 4 here.

In the following sections, we will see how to solve the problem in a space of
dimension 3 only, thanks to usual tools of computational geometry, and next,
how to choose the points of S and T to reach a linear time complexity for convex
digital curves.
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3 Geometric interpretation and algorithm

As an annulus is a pair of concentric circles that are characterized by three
parameters each, we interpret equation 4 in a 3D space that we call abc-space.
Notice that c1 and c2, having the same meaning (power of the origin with respect
to the outer circle and inner circle respectively), are both represented in the c-
axis. From now, in addition to the original plane, called xy-plane, containing
the points of Z2, we work in the abc-space as well as in its dual space, called
xyz -space.

3.1 abc-space vs xyz -space

As 0 ≤ r1 ≤ r2, a2 + b2 ≤ c, the abc-space is a copy of R3 from which the
interior of the paraboloid of equation c = a2 + b2 has been excluded. A point
on the paraboloid maps to a circle of null radius in the xy-plane. A point that
is out of the paraboloid maps to a circle whose radius is equal to the vertical
distance between the point and the paraboloid in the xyz -plane (Fig. 5.a). It
is clear that two points with the same projection in the ab-plane corresponds
to two concentric circles in the xy-plane. Minimizing the area of an annulus
bounded by such a pair of concentric circles is tantamount to minimize the
vertical distance between the two corresponding points in the abc-plane.

However, Equation 4 involves different interpretations of the triplet (a, b, c),
either as the coordinates of a point in the abc-space or as the coefficients of a
plane in the xyz -space. In the xyz -space, all the points of Z2 are lifted along
an extra axis (the z-axis) according to the bivariate function f . Let S ′ =
{S′(S′x, S′y, S′z)} (resp. T ′ = {T ′(T ′x, T ′y, T ′z)}) be the set of points of S (resp.
T ) that are vertically projected onto the paraboloid of equation z = f(x, y) =
x2 + y2. The xyz -space and the abc-space are dual, according to the classical
definition of duality in computational geometry [40, 41], that is a point in the
former space maps to a plane in the latter space and conversely. Any plane
in the xyz -space passing through some points of S ′ or T ′ cuts the paraboloid.
The projection on the xy-plane of the intersection between the plane and the
paraboloid is a circle that passes through the corresponding points of S and
T (Fig. 5.b). The intersection between the paraboloid and a pair of parallel
planes projects to a pair of concentric circles on the xy-plane. Minimizing the
area of an annulus bounded by such a pair of concentric circles is tantamount to
minimize the vertical distance between the two corresponding planes in the xyz -
plane. This kind of transformation is well known in computational geometry
[40, 41] and has already been used in [37] to solve the smallest enclosing circle
or in [15, 20] to solve the separating circle problem.

Each inequality of Equation 4 is a half-space in the abc-space that implicitly
defines the whole set of circles enclosing or not a point. The intersection of
|S| half-spaces on one hand and of |T | half-spaces on the other hand form two
unbounded convex polyhedrons that intersect each other if and only if S and T
are circularly separable.

The understanding of the constraints is more straightforward in the xyz -
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Figure 5: (a) A point outside the paraboloid of equation c = a2 + b2 in the
abc-space corresponds to a circle in the xy-plane and conversely. (b) A plane
that cuts the paraboloid of equation z = x2 + y2 in the xyz -space corresponds
to a circle in the xy-plane and conversely.

plane and that is why we will preferably work in this space in the following
subsections. Indeed, a circle that encloses (resp. does not enclose) a set of
points in the xy-plane is nothing else than a plane that is above (resp. below)
the corresponding set in the xyz -plane.

3.2 Convex hulls

Let us recall that we have to compute a pair of parallel planes such that the
upper plane is above the points of S ′ and the lower plane is below the points of
T ′ in order to solve equation 4 and derive a circularity measure.

Obviously, S ′ and T ′ may be reduced to their convex hull denoted by CH(S ′)
and CH(T ′). In addition, the property of convexity makes the next step that
consists in minimizing the vertical distance between the two parallel planes of
support (see [40] or Section 3.3) more efficient.

We do not detail the classical convex hull computation algorithm that may
run in O(m log(m)), where m = |S ′|+ |T ′| [40, 41].

The upper (resp. lower) convex hull of S ′ (resp. T ′) projects onto the
farthest-points (resp. closest-points) delaunay triangulation of S (resp. T ) on
the xy-plane, denoted by GS (resp. GT ). Let us recall that the closest-points
(resp. farthest-points) delaunay triangulation is such that the circumcircle of
each triangle does not contain any point (resp. contains the whole set of points)
(Fig. 6).
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(a) (b) (c) (d)

Figure 6: (a) The farthest-points delaunay triangulation of a set of four points
(the origin is located by a cross) and its corresponding upper convex hull. (b)
The closest-points delaunay triangulation of the same set of points and its cor-
responding lower convex hull.

Similarly, the dual graph, that is the closest-points (resp. farthest-points)
voronoi diagram of S (resp. T ) is the projection on the xy-plane of the intersec-
tion of the first |S| half-spaces (resp. the last |T | half-spaces) that is the dual
of the upper (resp. lower) convex hull of S ′ (resp. T ′). The interested reader
may refer to [40, 41] for further details.

As a consequence, instead of computing the convex hull of S ′ and T ′, an al-
ternative way is to compute and lift along the z-axis the closest-points delaunay
triangulation of T and the farthest-points delaunay triangulation of S. Once
the upper (resp. lower) convex hull of S ′ (resp. T ′) are computed, it is possible
to efficiently compute the pair of parallel planes of support that minimize their
vertical distance.

3.3 Pair of parallel planes

An elementary way to compute the pair of parallel planes of support minimiz-
ing their vertical distance is to compute the intersection depth between the two
polyhedra CH(S ′) and CH(T ′) denoted by h = min Height(CH(S ′), CH(T ′)).
Height(CH(S ′), CH(T ′)) is a function that returns the distance between the
two polyhedra computed along the z-axis for each point of the domain of the
function. Notice that Height(CH(S ′), CH(T ′)) is not defined everywhere. In-
deed, the domain of this function is the intersection of the projection on the
xy-plane of CH(S ′) and CH(T ′), that is CH(S) ∩ CH(T ).

To compute h, the brute force algorithm consists in computing the planar
graph G∗ that is the intersection between GS and GT (Fig. 7). If |G∗| = 0,
then CH(S)∩CH(T ) = ∅. In this degenerate case, S ′ and T ′ are separable by
a plane that is orthogonal to the xy-plane, S and T are separable by a circle
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(a) (b) (c)

Figure 7: S (black disks) and T (white disks) are separable by straight line in
(a) by a circle in (b) and are not separable by a circle in (c). Note that G∗,
which is the intersection between GS (in dashed lines) and GT (in dotted lines),
has respectively 0, 4 and 3 nodes in (a), (b) and (c).

of infinite radius, that is a straight line, so the digital curve from which S and
T have been computed is a digital straight segment (Fig. 7.a). If |G∗| > 0,
it remains to compute the height function for each vertex of G∗ and take the
minimum.

The brute force algorithm runs in O(m2) since G∗ has at most m2 vertices.
However, it is possible to take advantage of the convexity of the height function
to get an algorithm in O(m log(m)).

This paragraph does not intend to fully describe the algorithm but only to
give an insight and the basic ideas. The reader can refer to [40, pages 310-315]
to have proofs and more details about this algorithm. The first step begins
with the sort of the points of S with respect to their x-coordinate. At each
x-coordinate, the height between CH(S ′) and CH(T ′) may be computed in
O(|S|+ |T |). Thanks to convexity, a binary search is performed on the sequence
of x-coordinates to bound the abscissa of the point where the minimum vertical
distance between CH(S ′) and CH(T ′) is located, so that only O(log |S|) x-
coordinates are considered. In a second step, the set of edges of S that intersect
the range of x-coordinates found in the first step is sorted. By working in
the plane passing through each of these edges and orthogonal to the xy-plane,
the height between CH(S ′) and CH(T ′) may be computed in O(|T |). Again,
thanks to convexity, a binary search is performed on the sequence of edges to
compute h, so that only O(log |S|) edges are considered. It turns out that the
overall complexity is O(m log(m)).

Since h is the signed area of the annulus A, if h ≤ 0, S and T are separable
by a circle and circ(S, T ) = 1 but if h > 0, S and T are not separable by a
circle and circ(S, T ) = r1

2

r22 , where r12 and r2
2 are derived from the coefficients

of the pair of parallel planes.
Although our algorithm is more general than a simple digital circle test,

its complexity in O(m log(m)) is better than the quadratic complexity of the
methods presented in [16, 17, 21]. These methods cannot be efficient because
they only deal with 2D projections of 3D polyhedrons.
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Moreover, in the next section, we will explain which points are necessary in
S and T to compute circ(S, T ), so that m is of order n2/3, which yields to a
linear algorithm for convex digital curves.

4 Optimization

The current section presents an optimization that expands the work of [21]
in order to run the core of the algorithm (Section 3) on a small input set.
For sake of clarity, we only consider the case of closed digital curves, but the
extension to the case of open digital curves is straightforward. First of all, since
all circles are convex, no circle can enclose the vertices of the convex hull of
the digital curve without enclosing all its points. So S, the set of foreground
points, may be reduced to the vertices of the convex hull of the digital curve. In
the following subsections, the more difficult problem of reducing T , the set of
background points, is locally analyzed and solved in the case of convex digital
curves (Fig. 11).

4.1 Reducing T in the case of circles whose radius is infi-
nite

Let us consider two consecutive vertices of the convex hull of the digital curve
that are denoted by si and sj . Without loss of generality, let us consider the
segment [sisj ] in the first octant. Let us consider the arithmetic description
of [sisj ] with a vector ~u = (a, b)T with a, b ∈ Z and gcd(a, b) = 1, such that
(sj − si) = g.~u with g ∈ Z (g and ~u may be computed by applying Euclid’s
algorithm to the slope of [sisj ]).

Definition 1. A Bezout point bk of a segment [sisj ] is defined as a point above
[sisj ] such that ~sibk = ~v + k~u with k ∈ Z, ~v = (c, d)T and det(~u,~v) = 1 (~v is
given by the Bezout’s identity that may be found thanks to the extended Euclid’s
algorithm).

The number of Bezout points that are associated to the segment [sisj ] is
equal to g. Notice that definition 1 is slightly different than the one of [21]
(Definition 1), where the closest point to the middle of [sisj ] is only called
Bezout point.

Lemma 1. A circle of infinite radius that encloses [sisj ] but does not enclose
any Bezout point bk, does not enclose any other point above [sisj ].

Due to the definition of the Bezout points and due to the well-known Minkowski’s
theorem or Pick’s formula in number theory [42], for any k, the triangle (si, bk, sj)
does not contain any other digital points and for any point t that is above [sisj ]
but is not a Bezout point, the triangle (si, t, sj) contains at least one Bezout
point. So any straight line that separates [sisj ] from the Bezout points, also
separates [sisj ] from all the points above [sisj ].
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~v

~u
si

sj

(a)

~v

~u
si

sj

(b)

Figure 8: Definitions of Bezout points given in this paper (a) and in [21] (b)

This lemma and its proof may be found in other papers such as [21] and
are the basement of the digital straight line recognition algorithm [28] because
any lower leaning point of an 8-connected digital straight segment in the first
octant that is vertically translated up by 1 is a Bezout point associated to this
segment.

However, it seems that only a small part of them, located near the bisector
of [sisj ], are really necessary. In [21] (Definition 1), the closest point to the
middle of [sisj ] is arbitrarily chosen. Fig. 9 shows that only taking into account
the closest point to the middle of [sisj ] is not sufficient.

~v

~usi

sj

pj

b0

b1

b2

b3

pi

Figure 9: This figure shows that the closest Bezout point to the middle of [sisj ],
denoted by b1, is not sufficient, because there is a circle that separates b1 from
si and sj but encloses b2, which is another Bezout point.

4.2 Reducing T in the case of circles whose radius is finite

In this subsection, we will see that at most two Bezout points have to be taken
into account. For each edge of the convex hull, let us consider two extra points
defined as the points pi and pj such that pi = si − ~u and pj = sj + ~u (Fig. 9).
pi and pj are background points, since [sisj ] is an edge of a convex hull. The
circles that enclose [sisj ] but do not enclose any background point cannot have
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an infinite radius because they must not enclose neither pi nor pj .
Let us introduce the following new definition:

Definition 2. (Fig. 10) The middle Bezout point(s) associated to the segment
[sisj ] is(are) defined as:

1. the unique Bezout point b0, if g = 1.

2. the Bezout point bg/2 in the special case where g > 1, g is even and ~u.~v = 0.

3. the two consecutive Bezout points bk and bk+1, such that k = [g/2] (where
[.] is the integer part), if g > 1, ~u.~v > 0 or (~u.~v = 0 and g is odd).

~v

~usi

sj

b1

b2

(a)

si sj~u

~v

b2 b3

(b)

si sj~u

~v

b2

(c)

Figure 10: (a)(b) case (3) of Def. 2 ; (c) case (2) of Def. 2.

Then, we state the following proposition:

Proposition 1. A circle that encloses [sisj ] but does not enclose neither the
middle Bezout points associated to [sisj ] nor the extra points pi and pj, does
not enclose any other Bezout points.

In the sequel, we only consider the case of a circle that encloses [sisj ] but
neither pj nor the closest middle Bezout point to pj . The other case is symmetric
and the two cases will be put together to conclude the proof.

Let us consider a circle passing through si and pj . If such a circle encloses
sj but does not enclose any Bezout point, then any circle passing through si

and intersecting [sjpj ] (of whatever radius) separates sj from any Bezout point
too.

The first point b that is touched by a circle passing through si and pj of
decreasing radius is such that the angle between ~bsi and ~bpj is maximized. To
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maximize such an angle in the range [π/2, π] is equivalent to maximize the
tangent of the angle that equals:

det( ~bsi, ~bpj)
~bsi. ~bpj

However, det( ~bsi, ~bpj) is constant and equal to g+ 1 = h. Then, only taking
into account the denominator, we look for the integer k that minimizes:

f : Z 7→ Z
f(k) = (−~v − k~u).(−~v + (h− k)~u)

Developing, we finally get:

f(k) = k2(||~u||2) + k
(
2(~u.~v)− h(||~u||2)

)
+
(
||~v||2 − h(~u.~v)

)
The derivative is:

f ′(k) = (2||~u||2)k + 2(~u.~v)− h(||~u||2)

Since 2||~u||2 ≥ 0, f is convex and has a global minimum at the value of
k for which f ′(k) is closer to 0 than for the other values of k. The minimum
seems to be reached around k = h/2 because f ′(h/2) = 2(~u.~v) ≥ 0. Since k
has to be an integer, the parity of h involves two different cases that need to be
independently discussed.

Let us consider that h is even. We show that k equals h/2 because f(h/2) ≤
f(h/2 + 1), f(h/2) ≤ f(h/2− 1). Indeed, f ′(h/2 + 1) = 2||~u||2 + 2(~u.~v), which
is positive and greater than 2(~u.~v). Similarly, f ′(h/2 − 1) = −2||~u||2 + 2(~u.~v).
Now, 2||~u||2 − 2(~u.~v) > 2(~u.~v) ⇔ ||~u||2 > 2(~u.~v). That equation being always
true, we can conclude that k equals h/2.

Let us consider that h is odd. It is clear that the minimum is reached at
h/2 − 1/2 or h/2 + 1/2. On the one hand, f ′(h/2 + 1/2) = ||~u||2 + 2(~u.~v) and
on the other hand, f ′(h/2 − 1/2) = −||~u||2 + 2(~u.~v). If ~u.~v = 0, the minimum
is reached at both h/2− 1/2 and h/2 + 1/2, but if ~u.~v > 0, it is clear that the
minimum is only reached at h/2− 1/2.

Finally, the first point b that is touched by the circle of decreasing radius and
passing through si and pj is the closest middle Bezout point to pj according to
Def. 2. Tab. 2 summarizes the previous results whereas Tab. 3 gives the results
of the symmetric case. Merging the two tables, the three cases of Def. 2 appear
and this concludes the proof of Proposition 1. The last two items of Def. 2 are
illustrated in Fig. 10.

Finally, for each edge of the convex hull, only two background points at most
must be kept in T . Fig. 11 shows that, thanks to this arithmetic approach, the
number of points of T is highly reduced in comparaison to the naive approach.
The order of the reduction as well as the overall complexity of the algorithm is
given below.
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~u.~v h g k Def. 2 Fig. 10
≥ 0 even odd h/2 = g/2 + 1/2 = [g/2] + 1 (3) (b)
0 odd even h/2− 1/2 = g/2 = [g/2] (2) (c)

h/2 + 1/2 = g/2 + 1 = [g/2] + 1
> 0 odd even h/2− 1/2 = g/2 = [g/2] (3) (a)

Table 2: Results for the case of a circle that encloses [sisj ] but neither pj nor
the middle Bezout point the closest to pj (with g > 1).

~u.~v h g k Def. 2 Fig. 10
≥ 0 even odd h/2− 1 = g/2− 1/2 = [g/2] (3) (b)
0 odd even h/2− 1/2− 1 = g/2− 1 = [g/2]− 1 (2) (c)

h/2 + 1/2− 1 = g/2 = [g/2]
> 0 odd even h/2− 1/2− 1 = g/2− 1 = [g/2]− 1 (3) (a)

Table 3: Results for the symmetric case of a circle that encloses [sisj ] but neither
pi nor the middle Bezout point the closest to pi (with g > 1).

(a) (b)

Figure 11: Naive (a) and arithmetic (b) approach for the choice of the points of
T (white disks).
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4.3 Complexity

The core of the algorithm is in O(m logm) where m = |S + T | (Section 3), but
the cardinality of S and T determine the overall complexity.

Definition 3. Let C be an open digital arc of n points that is counter-clockwise
oriented (Section 2.1). C is convex (resp. concave) if there is no digital point
between the polygonal line linking all the digital points of C and the shortest
polygonal line linking the first and last digital point of C, such that C is located
on its left (resp. right) side, denoted by Lright(C) (resp. Lleft(C)).

Theorem 1. If C is convex, the circularity of C equals to circ(S, T ), where
S is the set of vertices of Lright(C) and T is the set of middle Bezout points
associated to the edges of Lright(C). Computing circ(S, T ) only takes linear
time.

As C is convex, no background point is between the polygonal line linking
all the digital points of C and Lright(C). It is clear that the solution does not
change if only the set of vertices of Lright(C) is considered in S. Lemma 1
and Proposition 1 show that the solution does not change either if only the set
of middle Bezout points associated to the edges of Lright(C) is considered in
T . Furthermore, circ(S, T ) is computed in O(m logm) (Section 3), but m is
bounded by O(n2/3) because |S| is bounded by O(n2/3) according to known
results [43] and |T | is at most twice bigger than |S| according to Proposition 1.
As S and T are both computed in linear time (thanks to Melkman’s algo-
rithm [44] and extended Euclid’s algorithm) and as circ(S, T ) is computed in
O(n2/3 log n), that is in linear time, the overall complexity of the algorithm is
O(n).

If C is not convex, there is at least one concavity: a subpart of C between
two consecutive vertices of Lright(C), denoted by Cij , that is not convex. No
local rules enables to consider only a few background points lying on a concavity.
An alternative approach would be to bound from below the radius of the inner
circle and only keep the background points that are vertices of the corresponding
α-hull (α being set to the lower bound) like in [45], but this approach does not
seem to be able to remove enough points to reach linear time in the worst
case. As a consequence, in each concavity, all background points having at
least one 4-neighbor in Cij are considered in T , which corresponds to the naive
approach illustrated Fig. 11.a. Hence, the overall complexity of the algorithm
is in O(n log n) in the case of not convex digital curves.

To sum up, Algorithm 1 sketches the algorithm including the preprocessing
step.

5 Experiments

By definition, the circularity measure that is proposed in Section 2 is on the
one hand invariant under similarity transformations and on the other hand
maximum and equal to 1 for any digital circle whatever its center or its radius.
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Algorithm 1 CircularityComputation(C)
Input: C, a digital curve
Output: circ(S, T )
1: Compute Lright(C)
2: for each edge [sisj ] of Lright(C) do
3: Add sj to S
4: if Cij is convex then
5: Add the middle Bezout point(s) of [sisj ] to T
6: else
7: Add all background points having at least one 4-neighbor in Cij to T
8: Compute S ′ and T ′ from S and T
9: Compute CH(S ′) and CH(T ′)

10: Compute the pair of parallel planes of support
11: Derive r1 and r2 from the coefficients of the planes
12: if r1 ≤ r2 then
13: return r1

2/r2
2

14: else
15: return 1;

In this section the behavior of the measure is probed with respect to either
synthetic images or real-world images.

5.1 Synthetic images

The measure is computed on different classes of objects, either noise-free objects
that are not circles, such as ellipses and regular polygons or noisy circles (Fig. 12)
and compared with the ground truth, which is computed from the smallest area
annulus enclosing the continuous objects.

ellipse regular 7-gon noisy disk noisy disk
a = 25, b = 50 p = 1325 r = 30, α = 1 r = 30, α = 15

Figure 12: Gauss digitization of an ellipse, a regular 7-gon and two disks. The
visual size of the shapes does not reflect their true size. The amount of noise
that is added to the two latter shapes according to the degradation model of
[46] depends of parameter alpha (Eq 6). The digital curves that we are called
upon to measure are the 8-connected boundaries of these digital objects.

19



First, one hundred digital polygons were generated (Gauss digitization of
regular polygons of fixed perimeter). Their number of sides is ranging from
3 to 103, whereas their perimeter p is approximatively equal to 1325 (pixels).
A so large perimeter enables to observe light variations of circularity within
a wide range of number of sides. Fig. 13 shows that the measure is close to
the ground truth. As expected, the circularity increases with the number of
sides and converges towards 1. The bigger the number of sides, the more the
polygons look like a circle and the more the circularity is close to 1. Note that
the circularity of the k-gons where 30 ≤ k < 85 is alternatively equal to 1 and to
a value that is slightly less that 1, namely approximately 0.99. Furthermore, the
k-gons where k ≥ 85 are digitized into a same digital object whose circularity
is 1.
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Figure 13: One hundred regular polygons of perimeter approximatively equal
to 1325. Circularity is plotted against the number of sides.

Next, hundreds of digital ellipses (Gaussian digitization of continuous el-
lipses) were generated with various parameters : a (resp. b), small (resp. great)
semi-axis, θ, the angle between the main axis of the ellipse and the x-coordinate
axis, Ox and Oy the coordinates of the ellipse center. Fig. 14 shows that the
measure behaves very well and is nearly confounded to the ground truth.

Finally, hundreds of noisy circles are generated. In order to study the impact
of the amount of noise onto circularity, we implemented a degradation model
very close to the one investigated in [46]. This model was proposed and vali-
dated in the context of document analysis and assume that: (i) the probability
to flip a pixel (that is, label ‘foreground’ or ‘1’ a pixel previously labelled ‘back-
ground’ or ‘0’, and conversely) depends of its distance to the nearest pixel of
the complement set and (ii) blurring may be simulated with a morphological
closing. Thus, in practice:
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Figure 14: One hundred of digital ellipses were generated according to the
following rules: O(0, 0), θ = 0, b = 50 and a is ranging from 10 to 50. Circularity
is plotted against a/b, the eccentricity of the ellipses.

• we perform a squared Euclidean distance transform [47];

• we process each pixel according to formula 6, which is a simplified version
of only one parameter of the model investigated in [46]:

p(0|1)Pij
= p(1|0)Pij

= exp (−SEDT (Pij)
α

) (6)

where SEDT (Pij) is the squared Euclidean distance that is stored at pixel
Pij in the distance map and α is a parameter that controls the amount of
noise;

• we apply a morphological closing with a circular structuring element whose
radius is 5, which makes the object connected again.

Figure 12 gives two examples of results of the degradation algorithm applied to
a digital disk. Figure 15 shows that the circularity decreases with the amount of
noise, but with sawtooth because the pixels are flipped at random. The noisier
the digital circle, the more it looks different from a digital circle. Furthermore,
even with rather noisy digital circles (α = 15), the circularity is above 0.8, which
approximately corresponds to the circularity of a 7-gon. Hence, the measure is
sufficiently robust to discriminate noisy circles given by the noise model of [46]
at α = 15, from k-gons where k < 7, such as squares or triangles. Note that
the comparison makes sens in spite of the difference of perimeter because the
measure is size invariant.
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Figure 15: One hundred digital circles of radius 30 are generated with more and
more noise. Parameter alpha ranging from 1 to 15 controls the amount of noise
(Fig. 12). Circularity is plotted against parameter alpha.

The accuracy of the measurements on digital arcs of various length is now
investigated. Fifty noisy circles are generated (r = 30, α = 15) (Fig. 12).
For each circle and for each length from 20 to approximately 180 pixels, one
digital arc is randomly extracted. The circularity measure is computed from
these approximately 7500 digital arcs. Fig. 16 shows that from 20 to 45 pixels
of length (90 degrees), measurements are not accurate, because the confidence
range at 95% is wide (until more than 0.1). Though, the confidence range
shrinks while the arc length increases and the measurements done on digital
arcs of more than 45 pixels of length (90 degrees) may be consider accurate.
Obviously, the smallest angle for which measurements are accurate depends on
the noise and the size of the digital circles. The smaller α is, the smaller the
angle is. In the special case where α = 0, measurements are perfect for all
digital arcs. Moreover, the higher the radius is, the less the noise added by the
model at a given α affects the shape, the smaller the angle is.

5.2 Real-world images

We are currently working in collaboration with geographers. They want to
perform a set of measurements that describes the shape of pebbles sedimented
in river beds. The underlying assumption is that pebbles size and shape are
determined by lithology, distance of transport, abrasion, etc. The objective is
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Figure 16: Fifty noisy circles were generated (r = 30, α = 15) (Fig. 12). For
each circle, for each length from 20 to approximately 180 pixels, one digital arc
is randomly extracted. The average of the circularity measure of the digital arcs
(solid line) is plotted against the length with error bars at 95%.
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to reduce the subjectivity and the time spent in the field thanks to digital image
analysis.

The circularity measure proposed in this paper is used in order to study
the shape of pebbles from digital images, collected in the bed of the Progo, an
Indonesian river located on Java Island near Yogyakarta. Approximately 1300
pebbles were randomly sampled in the bed, with 2 photos being taken on 12
stations located at various distances from the source. Fig. 17 shows two photos
taken near the source.

Figure 17: Zoom in photos taken on the first (left) and second (right) stations.

First, we detected pebbles with clustering methods in the HSV (hue, satura-
tion, value) color-space. Next, we extracted the digital curves that bound each
pebble by contour tracking. Finally, the circularity measure was computed for
all the digital curves.

In Fig. 18, the average of the circularity measure of the pebbles is plotted
against the distance from the source of the stations where the pebbles have
been collected. Circularity is valuable for geographers because experiments
shows that it increases in the first 20 kilometers, while the pebbles get rounder
(like a roundness index [1]), but has a complex pattern after, with no clear
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trend, which raises the possibility of a substitution of macro-scale to micro-
scale shape changes downstream. Note that Fig. 17 shows photos taken on
two stations that have statistically significant difference of circularity: the first
station (Fig. 17, left) and the second one (Fig. 17, right). Obviously, other size,
form and shape parameters, like diameter, elongation, convexity and various
roundness indices, add to circularity to provide multidimensional data of great
interest for geographers.
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Figure 18: The average of the circularity measure of the pebbles is plotted
against the distance from the source of the 12 stations where the 1300 pebbles
have been collected.

In the left photo of Fig. 17, two pebbles are badly detected because they
touch each other. In such a case, it is possible to cut the digital curve in two,
thanks to an algorithm that robustly decomposes a digital curve into convex and
concave parts [48], and independently deal with the two open digital curves. As
the missing part is very small, the circularity measure is very close to the one
that could have been computed on the unknown closed digital curve.

6 Conclusion and perspectives

In this paper, a circularity measure has been defined for open or closed digital
curves. An existing circularity measure of a set of discrete points, which is some-
times used in computational metrology, is extended to the case of digital data.
Once the minimum area annulus, such that the outer disk contains all the points
of the digital curve and the inner disk does not contain any background point
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is computed, the circularity measure is defined as the squared ratio between
the inner and outer radii (Section 2). Because we consider two sets of points,
the problem we deal with is more general than the usual problem of finding a
minimum area annulus enclosing one set of points [6, 23, 7, 8, 10, 11, 13].

Thanks to the geometric interpretation of this computation, an algorithm in
O(n log n) that only uses classical tools of computational geometry is derived
(Section 3). Moreover, an optimization using only local rules is proposed so
that the worst-case complexity reach O(n) in the case of convex digital curves
(Section 4).

The measure fulfils the following properties:

• it may be applied on either closed or open digital curves.

• it is invariant to rigid transformations.

• it increases as the number of sides of a regular polygon increases (Fig. 13),
as eccentricity decreases (Fig. 14), and as noise decreases (Fig. 15).

• it ranges from 0 to 1 and is equal to 1 for any digital circle or arc.

• it provides the parameters of a circle whose digitization is the measured
digital curve if the circularity measure is 1 and the parameters of an ap-
proximating circle otherwise.

The kind of measure and algorithm proposed in this paper is general enough
to be applied in order to recognize or measure the deviation with other quadratic
shapes like parabolas or ellipses. In the first case, the extension is straightfor-
ward: it is enough to modify function f , so that f(x, y) equals x2, instead of
x2 + y2. The points of the xy-plane are vertically projected onto a parabolic
cylinder instead of an elliptic paraboloid, but the algorithm is exactly the same.
In the latter case, the extension is not straightforward because ellipses are char-
acterized by at least five parameters, which correspond to a point in a parameter
space of dimension 5. The problem of finding two ellipses of same center, orien-
tation and elongation enclosing a set of points may be formulated into a linear
programming problem of dimension 6. Therefore, the best thing to do seems to
use any well-known linear programming algorithm. Nevertheless, an alternative
way could be to modify function f , so that f(x, y) = αx2 +βxy+γy2, where α,
β, γ are given by the user if orientation and elongation are fixed or estimated
from the inertia matrix of the digital curve.

To conclude, it would be quite valuable to make the algorithm on-line (with-
out increasing its complexity as far as possible). Such an algorithm could effi-
ciently and robustly decompose a digital curve into primitives like digital arcs
or pieces of digital parabolas. At each adding, the measure would be updated.
By thresholding the measure, the open digital curve would be considered as a
digital arc or a piece of digital parabola, within a certain tolerance depending
on the noise. Though, it seems to be a difficult challenge and as far as we know,
it is an open problem.
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