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Abstract

We propose a linear in time and easy-to-implement
algorithm that robustly decomposes a digital curve into
convex and concave parts. This algorithm is based on
classical tools in discrete and computational geometry:
convex hull computation and Pick’s formula.

1 Introduction

This paper focuses on the problem of decomposition
of a digital curve into convex and concave parts. The
main motivation is that convex and concave parts of ob-
jects coarsly determine their meaningful parts [8, 2].

Even though the concept of digital convexity has
been thoroughly studied the forty past years (see [11]
for a deep bibliography on the topic), such decomposi-
tions into convex and concave parts have not been stud-
ied as much. The few previously proposed methods for
decomposition into convex and concave parts are either
sensitive to noise [1] or approximative [4].

The main objective of the paper is to design a fast al-
gorithm that is able to robustly perform such a decom-
position. In [8], robustness is reached by applying the
discrete contour evolution on the digital curve viewed
as a polygonal line. This kind of structural methods are
powerful for shape matching but cannot return simple
indices such as the number of convex and concave parts.

We propose an original measure-based approach. A
measure that decreases with deviations from convexity
is assigned to a digital arc. By thresholding the mea-
sure, the arc is said convex or concave within a certain
tolerance depending on the noise.
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As the success of the whole process depends on the
quality of the measure, we would like it to: (i) be invari-
ant by translation, rotation and scaling; (ii) be ranging
from 0 to 1, 0 for convexity; (iii) be increasing accord-
ing to the amount of concavities or noise.

In section 2, we define the concept of convex and
concave parts of a digital arc with a measure of digital
convexity. In section 3, we show that the computation
of this measure may be very efficient. An on-line algo-
rithm that enables to robustly detect a convex or con-
cave part is proposed in section 4. Finally, we explain
in section 5 how to decompose a digital curve by itera-
tively running the latter algorithm. The paper ends with
some conclusion and future works.

2 Digital convexity

A binary imageI is viewed as a subset of points of
Z

2 called digital points, located inside a rectangle of
sizeM × N . A digital objectO ∈ I is a 4-connected
subset ofZ2. Its complementary set̄O = I\O is the
so-called background. The boundaryC of O, defined
as the 8-connected circular list of digital points having
at least one 4-neighbor in̄O, is a digital curve. A con-
nected subsetP of C is a digital arc.

In the Euclidean plane, convexity is well defined.
However several definitions of digital convexity exist
(see [11] or [3]). Our definition is equivalent to the ones
given, for instance, in [12]:

Definition 1 (Fig. 1.a) LetCH(O) be the set of digital
points located inside the Euclidean convex hull ofO,
CH(O). O is digitally convex if and only ifCH(O)
only contains digital points belonging toO.

Given a digital objectO, the measure of digital convex-
ity is defined as the number of points inCH(O) but not
in O, normalized by the size ofCH(O) (a missing pixel
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Figure 1. O (black disks) is bounded by C
(squares). (a) The solid line that encloses
CH(O) depicts CH(O). (b) P ∈ C is digi-
tally convex. (c) P ∈ C is neither digitally
convex nor concave.

does not have the same influence on the convexity for a
small and a large object).

convexity(O) =
A(CH(O)) − A(O)

A(CH(O))
. (1)

where functionA is defined as follows:

Definition 2 The digital areaA(O) of a digital object
O is the number of digital points belonging toO.

Thanks to these definitions of digital convexity (Eq. 1)
and of digital area (Def. 2), it is clear that, (i)
convexity(O) depends on the area of the concavities,
(ii) convexity(O) = 0 if and only if O is digitally
convex and0 < convexity(O) < 1 otherwise, (iii)
the measure is convergent while the resolution increases
(sinceA(O) andA(CH(O)) are convergent [7]), (iv)
the measure is invariant under rigid transformations at
infinite resolution and quasi-invariant otherwise.

Def. 3 is the analog of Def. 1 for digital arcs and
defines convex and concave arcs.

Definition 3 (Fig. 1.c) LetP be an oriented digital arc.
The polygonal line linking all digital points ofP is de-
noted byP and the shortest polygonal line linking the
first and last digital point ofP , such thatP is located
on its left (resp. right) side is denoted byL(P ) (resp.
R(P )). P is digitally convex (resp. concave) if there is
no digital point betweenP andL(P ) (resp.R(P )).

Suppose thatP is part of the boundaryC of a digital
objectO. Moreover, suppose thatP is oriented such
thatO is on the left ofP . Let Pleft (resp. Pright) be
the set of digital points located betweenP andL(P )
(resp.R(P )). In Fig. 1.b,P is digitally convex because
no digital point is betweenP (bold) andL(P ) (super-
imposed toP): Pleft = 0. In Fig. 1.c,P is neither
digitally convex (Pleft = 1) nor concave (Pright = 2).

Eq. 2 is the analog of Eq. 1 for digital arcs.

convexity(P ) = A(Pleft)/A(CH(O))
concavity(P ) = A(Pright)/A(CH(O)) .

(2)

Notice that the normalization byA(CH(O)) ensures
the scale-invariance of this measure. Definition 4 re-
laxes this definition introducing a parameterα. We will
see in section 4 that this definition leads to a robust de-
composition algorithm.

Definition 4 P is α-digitally convex (resp. concave) if
convexity(P ) ≤ α (resp.concavity(P ) ≤ α).

Forα = 0, Def. 4 is equivalent to Def. 3.

3 Efficient computation of Eq. 1

The input is a digital curveC that bounds a digital
objectO. The algorithm runs in two steps before using
Eq. 1: (i) computation ofCH(O), (ii) computation of
A(O) andA(CH(O)).

Since CH(O) is the digitization ofCH(O), the
problem is to compute such convex hull. In classical
computational geometry, the convex hull computation
of n points requires aO(n log n) time . However, in the
digital grid, we may take profit of the intrinsec order of
the digital points [5] or of its arithmetical properties [1]
in order to compute such a hull in aO(n) time.

As C andCH(O) may be represented by a polygon
whose vertices are digital points, Pick’s formula [10] is
used to efficiently computeA(O) andA(CH(O)):

InAndOn(S) = A(S) + On(S)/2 + 1 . (3)

S is a polygon the vertices of which are digital points.
FunctionsInAndOn() returns the number of digital
points located on or strictly insideS andOn() returns
the number of digital points located onS. Function
A(S) returns the Euclidean area ofS. In Fig. 1.a,
AO = 14.5 + 15/2 + 1, ACH(O) = 16.5 + 13/2 + 1.

Then,convexity(O) = (24−23)
24 = 1

24 .
The whole process is linear in time, because com-

puting CH(O) is linear in time, computingA(O) and
A(CH(O)) as well as the number of vertices of the cor-
responding polygons is linear in time, and finally, ap-
plying Eq. 1 and Eq. 3 is constant in time.

4 On-line algorithm

From a digital arcP , we incrementally compute
three polygonal lines:P , L(P ) andR(P ). In Fig. 2,
these three polygonal lines are depicted with solid lines.
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Figure 2. A(Pleft) and A(Pright) are com-
puted by triangulation (dotted lines) when
convexity is restored.

In the same time, we maintainA(Pleft) andA(Pright),
thanks to Pick’s formula (Eq. 3).

Algorithm 1 lists operations done when a digital
point is added toL(P ). A similar algorithm may be
sketched when a digital point is added toR(P ). The
data structure that enables to incrementally maintain the
L(P ) (resp. R) is made up of a double-ended queue
(deque) called LDeque (resp. RDeque), that has several
methods running in constant time: back(), pushback(),
pop back() to respectively read, put, remove a point at
the back of the deque and size() to get the number of
points in the deque (like in [9]). Algorithm 1 correctly
updatesL(P ) (resp. R(P )) as well as the Euclidean
area of the polygon bounded byP and L(P ) (resp.
R(P )), because (i) it garantees that each triplet of con-
secutive vertices is counter-clockwise (resp. clockwise)
oriented (ii) if not, vertices are removed from the deque
and the area of the concavity is incremented until the
convexity is restored (Fig. 2). Algorithm 1 is not con-
stant at each adding, but is of orderO(n) after n in-
sertions, because one point is added and removed once
at most. In order to computeA(Pleft) andA(Pright),

Algorithm 1 : addPoint2LDeque(p, n)
Input : p, end point of a digital arcP of n points
Output : A(Pleft)
last = LDeque.back();1

LDeque.popback();2

prev = LDeque.back();3

a = A(prev, last, p);4

while (a < 0) do5

leftArea +=|a|;6

last = prev;7

LDeque.popback();8

prev = LDeque.back();9

a = A(prev, last, p);10

LDeque.pushback(p);11

return leftArea - ((n-LDeque.size())/2);12

we apply Pick’s formula (Eq. 3) on each non degenerate
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Figure 3. The approximated measure is
less sensitive to noise [6] than the exact
measure.

polygon. After a simple calculus, the last line of algo-
rithm 1 is derived. Doing this, we assume that method
size() of LDeque (resp. RDeque) returns all the vertices
of L(P ) (resp. R(P )), which is not always true: all
the digital points not belonging toP and located on an
edge ofL(P ) or R(P ) are not taken into account. The
measure may be made exact with some computations of
greatest common divisor, which increases the complex-
ity. But in practice, this approximated measure is used,
because it is both very close and slightly less sensitive
to small concavities (Fig. 3).

5 Shape Decomposition Process

The digital points are processed one by one along
C in a counter-clockwise orientation. The core of the
shape decomposition process runs in two steps: (i) the
digital points that follow a starting pointp, are pushed to
the back of LDeque and RDeque untilconvexity(P ) >
α. Let us denote byq the last point ofP , such thatP
is α-digitally convex. In order to makeP maximal (P
cannot remain digitally convex when a point is added
in front or behindP ), we perform the following second
step: (ii) the digital points that precedep are pushed to
the front of LDeque and RDeque untilconvexity(P ) >
α. When the latter expression is true, the growth of
P as anα-digitally convex part stops. This algorithm
is reinitialized atq and begins the detection of anα-
digitally concave partP ′, updatingconcavity(P ′) as
long as an insertion to the back, then to the front of
LDeque and RDeque is possible, and so on.

Since a digital point is processed twice at most, the
whole decomposition is done inO(n), wheren denotes
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Figure 4. Letters “A” and “S” ( α = 0)

the number of digital points belonging toC.
Figures 4 and 5 illustrate this shape decomposition

process respectively with synthetical digital curves and
real-world images. For visualization purpose,∀P L(P )
andR(P ) are drawn. For “A” [3, 2] and “S” (Fig. 4)
idealized digital shapes, the natural convex and concave
parts are perfectly retrieved withα = 0. In real-world
images, a lot of meaningless convex and concave parts
are retrieved withα = 0 (Fig. 5.a). Slightly increasing
α enables to get the expected convex and concave parts
(Fig. 5.b).

6 Conclusion and Perspectives

An original, linear in time and easy-to-implement al-
gorithm that robustly decomposes a digital curve into
convex and concave parts is presented. The two main
perspectives are the following: on the one hand, we
think that our algorithm may be used to robustly de-
tect digital straight line of any thickness, since a digital
straight line is expected to be both digitally convex and
concave, and on the other hand, we think that the mul-
tiresolution approach allowed by running our procedure
for various values ofα in a given range would be of
great interest for shape representation.
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