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Abstract. In this paper, we investigate a practical framework to com-
pute a 3D shape estimation of multiple objects in real-time from silhou-
ette probability maps in multi-view environments. A popular method
called Shape From Silhouette (SFS), computes a 3D shape estimation
from binary silhouette masks. This method has several limitations: The
acquisition space is limited to the intersection of the camera viewing
frusta; SFS methods reconstruct some ghost objects which do not con-
tain real objects, especially when there are multiple real objects in the
scene; Lastly, the results depend heavily on quality of silhouette extrac-
tion.
In this paper we propose two major contributions to overcome these
limitations. First, using a simple statistical approach, our system re-
constructs objects with no constraints on camera placement and their
visibility. This approach computes a fusion between all captured images.
It compensates for bad silhouette extraction and achieves robust vol-
ume reconstruction. Second, a new theoretical approach identifies and
removes ghost objects. The reconstructed shapes are more accurate than
current silhouette-based approaches. Reconstructed parts are guaranteed
to contain real objects. Finally, we present a real-time system that cap-
tures multiple and complex objects moving through many camera frusta
to demonstrate the application and robustness of our method.

1 Introduction

Capturing dynamic 3D scenes in real-time allows many applications like gesture
recognition, crowd surveillance, behavior analysis, free-viewpoint 3D video, new
human-computer interfaces, etc. The users should be unconstrained: the capture
system should be robust, markerless and there must be a large acquisition space.
Furthermore, to be of most use, the system should work with multiple persons
and in real-time. Shape from Silhouette (SFS) methods provide a good approach
as they are robust, markerless, operate in real-time and are easy to implement.

SFS methods compute the visual hull of an object relative to a viewing
region. The visual hull is defined as the intersection of silhouette’s cones from
camera views, which capture all geometric information given by the image sil-
houettes[1]. A silhouette’s cone is given by the back projection in 3D space of
the silhouette contours through the associated cameras’s center. Intuitively, the
visual hull is the maximum volume that result in the same silhouettes of real
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objects from the given viewpoints. The Visual Hull is said Silhouette-Consistent
[2]. However, the volumes produced from a SFS reconstruction suffer from many
drawbacks:

(a) (b)

(c)

Fig. 1. The main drawbacks of SFS algorithms: (a) the acquisition space (in green) is
limited to the strict intersection of the camera’s viewing frustum. (b) shows a typical
SFS configuration where ghost objects appear. (c) underlines that SFS reconstruction
accuracy depends on silhouette’s extraction quality. When holes and noise appear in
the silhouette images, SFS reconstructs a corrupted shape.

Camera Placement: the objects that we can capture must lie in the strict
intersection of the field of views of the cameras. Objects that are partially hidden
in a certain view, will be cut; the capture volume decreases as the number of
cameras increases (see Fig. 1(a)).

Influence of Silhouette Extraction on Reconstruction Accuracy: the
extracted silhouette can become incomplete or of bad quality. Missing infor-
mation in one or more silhouettes has a negative impact over the whole SFS
reconstruction. (see Fig. 1(c))

Ghost Objects: In some cases of visual ambiguities, SFS can reconstruct
empty regions as objects which are consistent with silhouettes (see Fig. 1(b)).
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Ghost objects can greatly interfere with many applications of SFS, especially
when they are based on shape analysis, for example markerless motion capture,
crowd surveillance, free-viewpoint rendering, etc.

Contribution This paper describes two contributions to overcome these
limitations having computation still achievable in real-time.

The key idea to address the first limitation is to use a subset of cameras when
deciding if a 3D point represents a foreground object as opposed to SFS which
use the complete set. To deal with the second problem, we adopt a probabilistic
approach to confront information issued from all the images. To circumvent the
third limitation, we propose a formalism to describe and remove ghost objects.
The key idea is that if a pixel inside a silhouette is derived from exactly one 3D
connex part then that connex part must belong to a real object.

2 Previous Work

There are mainly two ways that SFS algorithms estimate the shape of objects:
Surface-based approaches and Volumetric-based approaches.

Surface-based approaches compute the intersection of silhouettes’ cones. First,
silhouettes are converted into polygons. Each edge in the silhouette is extruded
away from the camera to form a 3D polygon. The intersection of these extrusions
are assembled to form an estimation of the polyhedral shape (see [3, 4]).

Volumetric approaches usually estimate shape by processing a set of voxels
[5–8]. The object’s acquisition area is split up into a 3D grid of voxels (volume
elements). Each voxel remains part of the estimated shape if its projection in all
images lies in all silhouettes.Volumetric approaches are well adapted for real-time
shape estimation and robustness to noisy silhouettes.

From the methods that compute a 3D model, we note that the classical
SFS algorithms require the intersection of all viewing frusta.This intersection
describes the capture volume of the system (see Fig. 1(a)). If parts of the subject
leave this capture volume they will not be reconstructed. One solution to increase
the capture volume is to increase the number of cameras. Additional cameras
would have to be placed farther away to increase the field of view, and would have
to have a higher resolution. To overcome the limitations on camera placement,
Franco and Boyer[9] use a probabilistic 3D representation of scene contents and
an occupancy grid. This method can reconstruct part of the objects seen by a
subset of cameras and is resistant to badly segmented silhouettes. The drawback
is that the Bayesian formulation is time consuming (more than 10 seconds to
process one frame) thus unsuitable for the proposed applications. Michoud et
al. [8] propose a deterministic extension of the classical SFS to allow parts of the
object to exit the intersection of all cones. Their implementation works in real-
time. The first limitation of their approach is that if one cameras sees nothing,
no object is reconstructed. The second limitation is that if there are multiple
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objects in the scene, the proposed method removes non-ghost objects that are
outside of the strict intersection of cameras frusta.

The problem of removing ghost objects (see Fig. 1(b)) from a SFS recon-
struction has not been adequately addressed in previous research. One solution
to decrease the reconstruction of ghost objects is to increase the number of
cameras, nevertheless artifacts still occurs. [10] propose heuristics on size and
use temporal filtering to remove ghost objects. This approach can be unreliable
with dynamic scenes with small and large objects. [11] defines the concept of Safe
Hulls. This is a per-point approach to remove ghost parts. Their algorithm is
not guaranteed to produce a completely correct result, right picture of the Fig. 4
shows an example where this approach fails. However it is fully automatic and
do not require any additional information such as object correspondence. [12]
obtain ghost object removal but require additional information like Depth-maps
or correspondence between the silhouettes. Depth-maps come from particular
sensors, and correspondence impose that each view see each object, and labeling
processing can be unstable with similar objects. Their approach is unsuitable
for our applications. [13, 14] can obtain reconstructions without ghost objects
using additional information like color cues. Unfortunately, these methods rely
on computationally intensive statistics, and sometimes need pixel matching and
correspondences, which are expensive operations and are far from real-time, thus
unsuitable for our needs.

In this paper, we propose a framework to robustly reconstruct multiple 3D
objects in real-time from multiple views. Using a simple statistical approach our
system is able to reconstruct object parts with no constraints on camera place-
ment and visibility. Our method identifies and removes ghost objects. Recon-
structed parts are guaranteed to contain real objects. The reconstructed shapes
are more accurate than current silhouette-based approaches.

This paper is organized as follows. In the next section, we present the Shape
From Silhouette’s Probability Maps which removes the constraints on camera
placement. Section 4 presents our approach to detect and remove ghost objects.
Section 5 demonstrates our algorithm under real scenarios. We summarize our
contribution and give the perspectives in Section 6.

3 Shape From Silhouette Probability Maps

In this section we describe a novel approach which computes a fusion between
all captured images which can compensate bad silhouette segmentation. We use
the silhouette information in a probabilistic setting. Our method extends the
acquisition space because it relaxes the camera placement constraints. Robust
volume reconstruction is achieved.

SFS algorithms deduce the shape of an object from its silhouettes given
by multiple cameras. It is a concept based on the visual hull of objects. The
visual hull (V H) is defined as the maximum volume consistent with the observed
silhouettes. A 3D point will be classified as ”belonging to real object” or occupied
if all of its projections into each camera lie in silhouettes.
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This approach has many limitations and generates artifacts. One of the most
important limitation is related to the acquisition space or capture volume. The
objects to be captured must lie in the strict intersection of the field of views of all
cameras. Objects that leave this space will be cut. The placement and the video
resolution of the cameras will determine the granularity and precision of what
can be reconstructed. The capture volume decreases as the number of cameras
increases.

Our approach decides that a 3D point is inside the V H from the subset of
cameras which can see this 3D point, not from the complete set (as supposed in
SFS).

Another limitation is that the SFS method is not robust with badly seg-
mented silhouettes. If a pixel is wrongly classified as background, the projection
of 3D points that lie in this pixel will be classified as non-object points. This re-
sults in a incomplete reconstruction. Several reasons account for badly segmented
silhouettes, in particular perturbations due to camera sensor noise, ambiguities
between foreground objects and background color, changes in the scene’s light-
ing (including shadows of foreground objects). Controlling all these factors at
the same time is no easy task.

Our key observation, is that a 3D point can be rejected by one badly seg-
mented silhouette, thus our approach delays the occupancy decision to an upper
stage of the system to confront information issued from all the images. It is
possible to compensate a noisy silhouette by information from other images.

Notations

For a better comprehension, we introduce the following notations:

– Ci is one of the n cameras with i ∈ [1, · · · , n],
– πi is the image plane of Ci,
– Ii is the image seen by Ci,
– Si is a point subset of Ii, which are inside the silhouette of the foreground

objects,
– Projπi(x) is the projection of the point x on the image plane πi.
– To be concise, we adopt the same notation for the projection of set E on the

image plane πi Projπi(E).

SFS computes the set of 3D points whose projections lie inside all the sil-
houettes. According to the above notation, the reconstruction based on SFS
using n cameras can be written as:

SFS(n) = {x ∈ R3,∀i ∈ [1, · · · , n], P rojπi(x) ∈ Si} (1)

The SFS reconstruction is consistent with the silhouettes if all scene’s objects
are inside the strict intersection of the field of views of all the cameras. If a 3D
point is out of sight of even one camera, SFS cannot accept it.

However, if we want to extend the acquisition space, a 3D point x could be
visible by less than n cameras.
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Fig. 2. 2D representation of a ESFS reconstruction of one object (in red) using nmin =
2 and n = 5. Please note that the intersection of all camera frustum views is empty, and
that usual SFS is unable to reconstruct the V H. The acquisition space is defined as
the union of space where nx ≥ nmin (in gray). With this configuration ESFS creates
some ghost objects.

.

Let V Sx the subset of cameras which can see the point x, then:

V Sx = {i ∈ [1, · · · , n], P roji(x) ∈ Ii} (2)

nx is defined by:
nx = Card(V Sx). (3)

To reconstruct 3D points in volumes space seen by less than n cameras we
introduce ESFS, an extension of SFS, defined by:

ESFS(n, nmin) = {x ∈ R3, nx ≥ nmin,∀i ∈ V Sx, P rojπi(x) ∈ Si} (4)

where nmin is a threshold that represents the minimum number of cameras.
Points in space which are not potentially visible by at least nmin cameras, will
never be reconstructed. The acquisition volume can then be controlled by this
parameter at the expense of accuracy and resolution. The value nmin is impor-
tant to prevent some infinite parts in the V H. Usually nmin ≥ 2. The Figure 2
underlines reconstruction of the V H using our ESFS approach.

This contribution extends the volume where 3D points can be tested, then re-
constructed. But the reconstruction is not more robust to bad (noisy) silhouette
than the usual SFS approach. To overcome this constraint we need to compute
V H from the probabilities that each pixel represents a foreground object.

The silhouette information is generally deduced from statistical background
modeling (see [15, 16]) using:

∀y ∈ Si, Pfg(y) > T. (5)
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Fig. 3. The left picture shows 2D representation of PV H(x) values with back color cor-
responds to 0 and white stands for 1. Right picture underlines SFSPM reconstruction
with Tiso = 0.8.

.

where T is a threshold and Pfg(y) denotes the probability that the 2D point y
of πi comes from a foreground object; Pfg(y) is given by:

Pfg(y)

{
∈ [0− 1] if y ∈ Ii

= 0 otherwise
(6)

hence we introduce the probability maps of the camera Ci as the set of Pfg(p)
with p ∈ Ii. We use the information issued from all probability maps to decide
if a 3D point is inside the V H. Silhouette segmentation can be noisy on one or
multiple views. This notion can be defined as the probability that a 3D point x
is consistent with all the possible silhouettes. Let PV H(x) be this probability:

PV H(x) =


1
nx

n∑
i=1

Pfg(Projπi
(x)) if nx ≥ nmin

0 otherwise
(7)

Finally we define the Shape From Silhouette Probability Maps (SFSPM)
by:

SFSPM(n, nmin, Tiso) = {x ∈ R3, PV H(x) ≥ Tiso} (8)

The parameter Tiso is a threshold on the probability value, it defines the accuracy
of the reconstructed shape. Figure 3 shows 2D representations of PV H(x) values
(on the left) and the corresponding SFSPM reconstruction (on the right).

3D reconstructions of the V H with SFSPM are underlined on Fig .6. To use
the confrontation scheme to decide if x is in the V H or not, the approach need
that nmin ≥ 2. Values of Tiso and nmin will be discussed in Section 5. For a 3D
point x, higher values for nx allows better correction of bad silhouette extraction
using SFSPM .

In this section we described a novel approach to compute the Visual Hull of
multiple objects in the scene, with only one constraint to the camera placement:
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objects will be reconstructed if they are inside at least nmin fields of view of cam-
eras. Our reconstruction is always silhouette-consistent if all objects are seen by
at least nmin cameras. Furthermore, SFSPM can be used to improve silhouette
extraction in our input images, by back projecting, using point information from
other input views.

Usual SFS approaches suffer from ghost objects reconstruction. As we relax
the camera placement constraint, SFSPM can create more ghost object than
SFS (see Fig.2 and Fig.6). In the next section we propose an approach which
automatically removes all ghost objects of the V H. Our solution does not require
any additional information such as the number of real objects or correspondence
between silhouettes. In the rest of the paper we suppose that SFSPM has been
used for silhouette correction and visual hull estimation.

4 Ghost Object Removal

We are interested in removing ghost objects, this section attempts to give a
formal definition to characterize a ghost object and underlines several qualitative
and quantitative properties. For reading convenience, some of these properties
are explained in informal but pragmatical fashion.

Fairly simple and straightforward, if there is a single object in the scene, the
silhouette’s cones, intersect themselves exactly over the object (e.g. there is no
ambiguity)

However, if there is more than one object in the scene, the regions of intersec-
tion of cones vision generated by the silhouettes can admit component outside
the box encompassing objects. So this intersection includes empty boxes. We call
these regions ghost objects.

In the following we describe an approach which guarantees that kept parts,
are not ghost objects (i.e. contain real objects).

We recall that the visual hull (V H) is the largest volume to be consistent
with silhouettes, then ⋃

i

Projπi
(V H) =

⋃
i

Si (9)

Our goal is to compute the subset of the connex components (connected
components) of V H that contain real objects. In the following we note CCj one
of the connex component of the V H with

m⋃
j=1

CCj = V H (10)

with m the number of connex components in V H.

Definition 1. A connex component CCj of V H is a ghost object if CCj does
not contain a real object.
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Proposition 1. Let p ∈ Si be a pixel belonging to the silhouette Si

If
there exists only one CCl ⊂ V H with p ∈ Projπi(CCl)

Then
CCl is not a ghost object.

Proof. According to definition of the silhouettes, ∀p ∈ Si there exists a least a
real object Obj such that p ∈ Projπi(Obj).
If there exists a unique connex component CCl ⊂ V H, such that p ∈ Projπi

(CCl)
then there exists real object (Obj):

Obj ⊂ CCl and ∃P ∈ Obj , Projπi(P ) = p

Because the uniqueness of connex component CCl ⊂ V H whose projection con-
tains pixel p it becomes clear that CCl contains at least the object Obj.

To remove ghost objects, our algorithm checks the connex component of the
V H which satisfy the Proposition 1.

We introduce the notion of Real Shape Hulls (RSH) as the union of these
connex components:

RSH =
⋃

CCl ⊂ V H,∃p ∈ Projπi(CCl), p /∈ Projπi(CCk) (11)

with p ∈ Si, CCk ⊂ V H and ∀CCk 6= CCl.
One important property of RSH, is that it contains no ghost object.
Furthermore RSH is easy to implement with new GPU capabilities, thus

obtaining a real-time implementation.
With our approach, we guarantee that real objects which are inside connex

components of V H satisfying the Proposition 1, are contained in RSH. In other
words, real objects which are inside connex components of V H are contained in
RSH, if there is no other connex component of V H which completely occlude
these connex components in all views. With multiple objects in the scene with
similar sizes and different shapes, it is unlikely that RSH will miss any real
object.

Limitations: RSH does not guarantee that all the real objects are repre-
sented. This limitation comes from the fact that it exists a non-finite number of
configurations of real objects that produce the same silhouettes, thus the same
Visual Hull (see the paper [2] for a precise study). Then the goal of removing all
ghost objects without removing any real objects, is not attainable without strict
hypothesis on real object configuration, placement, number, etc. Our algorithm
will not reconstruct a real object if it lies completely inside the silhouettes of
other objects; in practice, this is rarely or never the case.

In term of keeping real objects, our approach is more accurate than the one
proposed in [11]. Our approach can be rewritten in the following way: A 3D
connex component of V H is kept if it exist a ray coming from a silhouette’s
pixel in a least one camera, which intersect this 3D connex component only. [11]
defines the Safe Hulls concept: A 1D connex component of V H is kept if it exist
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(a) (b)

Fig. 4. 2D reprensentations of RSH results. The real objects are represented in red.
(a) Configuration presented in Fig.2. The black connected component is kept because
it satifies the Proposition 1. Green parts indicate where connected components will
be accepted (exactly one object is projected in these regions). Ghost objects (Blue)
components are rejected. (b) RSH keeps the black connected components; it conserves
connected component of the V H which contains real objects. With this configura-
tion, the Safe Hulls reconstruction proposed by [11] results as the intersection of V H
connected components, and green parts. Their method fails to keep all real parts.

.

a ray coming from a silhouette’s pixel in a least one camera, which intersect this
1D (interval) connex component only. Our formulation is less restrictive and the
right illustration of the Fig.4 outlines an example where our approach keep all
real objects, and the [11] approach removes some parts of real objects.

5 Results

This section presents results which demonstrate the robustness and effectiveness
of SFSPM and RSH methods.

The capture setup is composed of five firewire cameras capturing at 30fps
with a resolution of 640x480 pixels. Each camera is connected to a computer
that does the silhouette map extraction using the approach proposed by [15],
and sends the information to a server. Intrinsic and extrinsic parameters were
estimated using a popular calibration method [17]. To enforce coherence between
the cameras, color calibration is done using the method proposed by N.Joshi [18].
Reconstruction (SFSPM) and ghost removal (RSH) steps are computed on a
ATHLON X2 5600+ with a Nvidia 7900GTX graphics card.

5.1 SFSPM

In the first experiment (see Fig. 5), we compare the standard SFS and our
approach. There are five cameras, two of which only have a partial view. The
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(a) (b)

Fig. 5. Comparison of SFS and SFSPM reconstructions of a chair. Two cameras (right
two frames of each figure) have a partial view of the object. Classical SFS clips parts
that lie outside the strict intersection of viewing frusta. Note that with exact and
accurate background substraction, ESFS and SFSPM give the same results.

.

(a) (b) (c)

Fig. 6. Different results using the SFSPM approach with nmin = 2 and Tiso = 0.8. (a)
A human shape is reconstructed from some partial silhouettes. The color indicates the
number of cameras that see a 3D point. (b) SFSPM achieves a robust reconstruction
from very noisy silhouettes (notice the holes in the silhouettes). (c) SFSPM (without
RSH) is also able to reconstruct a complex scene composed of four chairs, but ghost
objects appear (green parts).

.

traditional SFS breaks down because it cannot reconstruct anything outside the
strict intersection of the camera’s viewing frusta. In contrast, in spite of partial
views, our algorithm computes the correct visual hull.

Figure. 6 presents the results of SFSPM with nmin = 2 and Tiso = 0.8.
Figures 6(a) and 6(b) show that SFSPM filters noisy silhouettes to provide a
corrected 3D V H. Figure 6(c) outlines V H estimation from a complex scene
with noisy silhouettes, nevertheless ghost objects are constructed.

In our experiments we set nmin = 2. This parameter controls the minimum
number of cameras that must see a point in order to be reconstructed. A. Lau-
rentini [2] has shown that the higher the number of cameras seeing a point,
the more accurate the estimation of V H is. To maximize the capture volume,
nmin should be close to 1. Setting it to 1 is discouraged as it allows an infinite
volume. Setting nmin close to n the camera number, will yield a more accurate
reconstructions, albeit with a smaller capture volume.
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(a) using only SFSPM . We note the presence of ghost objects (green parts).

(b) using SFSPM and RSH

Fig. 7. RSH results: First row (a) represents the V H estimated with SFSPM . Second
row (b) shows the V H cleaned of ghost objects using the RSH concept. Each column
represent on particular frame. In the second and the third columns, color is shown for
a better comprehension (voxels whose color cannot be deduced are shown in purple).

.

The second parameter Tiso of SFSPM defines the accuracy of the silhouette
segmentation. This is threshold on the probability that a 3D point lies inside the
V H. We use Tiso = 0.8. This accepts a small error on the silhouette extraction
without adding too much noise. Our implementation of SFSPM works in real-
time. We chosen to sample V H with a 3D regular grid, to use GPU processing
power. With a grid of 1283 and n = 5 cameras, our implementation computes
more than 100 reconstruction per second.

5.2 RSH

Having accurate silhouettes is not enough to filter out ghost objects. Figures 7(a)
and 8(a) shows the reconstruction of different frames use only SFSPM . Al-
though the silhouettes are less noisy, there are many ghost objects. In contrast,
Figures 7(b) and 8(b) using RSH removes all the ghost parts of V H. And as we
can see in the camera views (small frames on the sides), the silhouettes of the
objects can overlap.

We emphasize that RSH removes ghost objects for a given V H and is inde-
pendent of SFSPM . Thus RSH can be used with all other SFS methods.

Our implementation of RSH processes in real-time with more than 25 cor-
rections per second. RSH is slower than SFSPM because of computing associ-
ations between connex components, and silhouette pixels. The complete process
(SFSPM and RSH) works at more than 20 frames per second. Computation
time linearly depends on the n (number of cameras) parameter.
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(a) using only SFSPM . Ghost objects are generated.

(b) using SFSPM and RSH. Ghost objects are removed.

Fig. 8. RSH results: represents the V H of a complex scene with multiple persons,
estimated with SFSPM . Second row (b) shows the V H cleaned of ghost objects using
the RSH concept (voxels whose color cannot be deduced are shown in purple).

.

6 Conclusions

In this paper we have presented two major contributions to overcome three of
the usual drawbacks of Shape From Silhouette algorithms. Our approach is able
to reconstruct the visual hull (V H) of a scene even if cameras see only part or
even no part of the object. While most previous approaches assume that the com-
plete silhouette has to be visible, this system is much more flexible in the camera
placement, and therefore allows extending the acquisition space. We proposed
a statistical approach which make the reconstruction of the V H more robust
to bad silhouette extraction. Our method compensates for noisy silhouette with
information from other images. As our new approach computes the V H, the
reconstruction is always silhouette equivalent. The other major contribution we
have presented is a theoretical approach to remove ghost objects which result
in scenes with multiple objects. Our solution does not require any additional
information such the number of real objects or correspondence between silhou-
ettes. This greatly enhances the uses for SFS algorithms, and with SFSPM it
achieves great results.

In the future, we plan to add temporal coherence to increase the efficiency and
accuracy of the system. We would also like to address a minor limitation of the
system: RSH guarantees that there are no ghost objects in the reconstructions,
but it is theoretically possible to miss the reconstruction of a real object, even
if we have never seen this in practice. This can be addressed by color matching,
temporal coherence among other methods.
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