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Abstract
The preprocessing of large meshes to allow and optimize interactive visualization implies a complete reorganiza-
tion that often introduces a significant data growth. This isdetrimental not only to storage or network transmission,
but also to the efficiency of the visualization process itself because of the increasing gap between computing times
and external access times. In this article, we try to reconcile lossless compression and visualization by proposing
a data structure which radically reduces the size of the object while supporting a fast interactive navigation. In
addition to this double capability, our method works out-of-core and can handle meshes containing several hun-
dreds of millions vertices. Furthermore, it presents the advantage of dealing with any n-dimensional simplicial
complex, which includes triangle soups or volumetric meshes. The main current limit of the data structure lies in
its performances in term of real-time visualization: the obtained framerates are usually lower than those of the
best dedicated methods, even if the navigation remains practical in the heaviest of all tested models.

Categories and Subject Descriptors(according to ACM CCS):
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

Mesh compression and mesh visualization are two fields
of computer graphics particularly active today, whose con-
straints and goals are usually incompatible if not opposite.
Indeed, the reduction of redundancy often goes through a
complexification of the signal, because of prediction mech-
anisms whose efficiency is directly related to the depth of
the analysis. This additional logical layer inevitably slows
down the data access and is conflicting with the speed re-
quirements of a real-time visualization. Conversely, to allow
the efficient navigation through a mesh integrating dynam-
ically the user’s interactions, the signal must be carefully
prepared and hierarchically structured. This generally intro-
duces a strong redundancy, and sometimes comes with some
kind of data loss (in the methods where the original vertices
and polyhedra are approximated by some simpler geomet-
rical primitives). Besides the on-disk storage and network
transmission issues, the data growth implied by this kind of
preprocessing can be detrimental to the visualization itself
if the increasing gap between the processing times and the
access times from external memory is taken into account.

In this article, we propose to reconcile the two fields by
tackling the mesh visualization problem from a pure com-
pression approach. As a starting point, we have chosen an in-

core progressive and lossless compression algorithm intro-
duced by Gandoin and Devillers [GD02]. On top of its com-
petitive compression ratios, we propose to add out-of-core
and LOD capabilities, in order to handle meshes without size
limitation and allow local refinements on demand by loading
the necessary and sufficient data for an accurate real-time
rendering of any subset of the mesh. To reach these goals, the
basic intuitive idea consists in subdividing the original object
into a tree composed of independent meshes. This partition-
ing is realized by introducing a second hierarchical structure
(annSP-tree) in which the original data structures (a kd-tree
coupled to a simplicial complex) are embedded.

After a presentation of related works (Sec.2) with a spe-
cial focus on the compression method chosen as starting
point (Sec.3), our main contribution is detailed through two
complementary sections. First, the data structures and algo-
rithms used by the out-of-core compression are introduced
(Sec.4), then the visualization point of view is adopted to
complete the description (Sec.5). In Sec.6, more details
are provided about the implementation strategies that make
possible the real-time navigation. Finally, an adaptationof
the method is described that appreciably improves the visual
quality of the rendering (Sec.7), before the presentation of
commented results (Sec.8) and the conclusion (Sec.9).
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2. Previous Works

2.1. Compression

Mesh compression is a domain situated between computa-
tional geometry and standard data compression. It consists
in efficiently coupling geometry encoding (the vertex posi-
tions) and connectivity encoding (the relations between ver-
tices), and often addresses manifold triangular surface mod-
els. We distinguish single resolution algorithms, which re-
quire a full decoding to visualize the object, from multireso-
lution methods that allow to see the model progressively re-
fined while decoding. Although historically, geometric com-
pression began with single resolution algorithms, we have
chosen not to detail these methods here. Similarly, lossy
compression, whose general principle consists in working
into the frequential domain, is put apart from this study.

Progressive compression is based on the notion of refine-
ment. At any time of the decoding process, it is possible to
obtain a global approximation of the original model, which
can be useful for large meshes or for network transmission.
This research field has been very productive for about ten
years, and rather than exhaustivity, we have chosen to adopt
here some kind of historical point of view. Early techniques
of progressive visualization, based on mesh simplification,
were not compression-oriented and often induced a signif-
icant increase of the file size, due to the additional stor-
ing cost of a hierarchical structure [HDD∗93, PH97]. Af-
terwards, several single resolution methods have been ex-
tended to progressive compression. For example, Taubinet
al. [TGHL98] proposed a progressive encoding based on
Taubin and Rossignac algorithm [TR98]. Cohen-Oret al.
[COLR99] used techniques of sequential simplification by
vertex suppression for connectivity, combined with position
prediction for geometry. Alliez and Desbrun [AD01] pro-
posed an algorithm based on progressive removing of inde-
pendent vertices, with a retriangulation step under the con-
straint of maintaining the vertex degrees around 6. Con-
trary to the majority of compression methods, Gandoin and
Devillers [DG00, GD02] gave the priority to geometry en-
coding. Their algorithm, detailed in Sec.3, gives competi-
tive compression rates and can handle simplicial complexes
in any dimension, from manifold regular meshes to trian-
gles soups. Peng and Kuo [PK05] took this paper as a ba-
sis to improve the compression ratios using efficient predic-
tion schemes (sizes decrease by about 15%), still limiting
the scope to triangular models. Caiet al. [CLW∗06] intro-
duced the first progressive compression method adapted to
very large meshes, offering a way to add out-of-core capa-
bility to most of the existing in-core progressive algorithms
based on octrees.

2.2. Visualization

Fast and interactive visualization of large meshes is a very
active research field. The common idea of these works is to

select pertinent information to render: the algorithms aretold
out-of-core, meaning that only necessary and sufficient data
at any moment are loaded into memory. A tree or a graph is
often built to handle a hierarchical structure. Rusinkiewicz
and Levoy [RL00] introduced QSplat, the first out-of-core
point-based rendering system, where the points are spread
into a hierarchical structure of bounding spheres. These
spheres allow to handle easily levels of detail, and to per-
form visibility and occlusion tests. Several millions points
per second can thus be displayed using an adaptive render-
ing. Afterwards, Lindstrom [Lin03] developed a method for
meshes with connectivity. An octree is used to dispatch the
triangles into clusters and to build a multiresolution hierar-
chy. A quadric error metric allows to choose the representa-
tive points positions for each level of detail, and the refine-
ment is guided by visibility and screen space error. Yoonet
al. [YSG05] proposed a similar algorithm with a bounded
memory footprint: a cluster hierarchy is built, each cluster
containing a progressive submesh to smooth the transition
between levels of detail. Cignoniet al. [CGG∗04] used a hi-
erarchy based on the recursive subdivision of tetrahedra in
order to partition space and guarantee varying borders be-
tween clusters during refinement. The initial construction
phase is parallelizable, and GPU is efficiently used to im-
prove framerates. Gobbetti and Marton [GM05] introduced
the far voxels, capable to render regular meshes as well as
triangles soups. The principle is to transform volumetric sub-
parts of the model into compact direction dependent approx-
imations of their appearance when viewed from a distance. A
BSP tree is built, and nodes are discretized into cubic voxels
containing these approximations. Again, the GPU is widely
used to lighten the CPU load and improve performances.

2.3. Combined Compression and Visualization

Progressive compression methods are now mature (obtained
rates are close to theoretical bounds) and interactive visual-
ization of huge meshes has been a reality for a few years.
However, even if the combination of compression and visu-
alization is often mentioned as a perspective, very few papers
deal with this problem, and the files created by visualiza-
tion algorithms are often much larger than the original ones.
In fact, compression favors a low file size to the detriment
of a fast data access, whereas visualization methods focus
on rendering speed: both goals are opposing and compet-
ing. Among the few works that introduce compression into
visualization methods, Namaneet al. [NBB04] developed a
QSplat compressed version by using Huffman and differen-
tial coding for spheres (position, radius) and normals. The
compression ratio is about 50% compared to original QSplat
files but the scope is limited to point-based rendering. More
recently, Yoon and Lindstrom [YL07] introduced a triangle
mesh compression algorithm that supports random access
to the underlying compressed mesh. However their file for-
mat is not progressive and therefore inappropriate for global
views of a model since it would require to load the full mesh.
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3. Progressive Compression as Starting Point

In this section, we briefly present the method originally pro-
posed by Gandoin and Devillers [GD02] and slightly modi-
fied to fulfill our needs. The algorithm, valid in any dimen-
sion, is based on a top-down kd-tree decomposition by cell
subdivision. The root cell is the bounding box of the point
set and each cell subdivision is encoded withlog23 bits to
describe one of the 3 following events: the first half-cell is
non-empty, the second half-cell is non-empty, or the two
cells are non-empty. As the algorithm progresses, the cell
size decreases and the transmitted data lead to a more accu-
rate localization. The subdivision process iterates untilthere
is no more non-empty cell greater than 1 by 1, such that ev-
ery point is localized with the full mesh precision.

As soon as the points are separated, the connectivity of
the model is embedded and the splitting process is run back-
wards: the cells are merged bottom-up and their connectiv-
ity is updated. The connectivity changes between two suc-
cessive versions of the model is encoded by symbols in-
serted between the geometry codes. The vertex merging is
performed by the two following decimating operators:

• Edge collapse, originally defined by Hoppeet al.
[HDD∗93] and widely used in surface simplification, is
used to merge two adjacent cells under some hypotheses.
The two endpoints of the edge are merged, which leads
to the deletion of the two adjacent triangles (only one if
the edge belongs to a mesh boundary) by degeneracy (see
Fig. 1a).

• Vertex unification, as defined by Popović and Hoppe
[PH97], is a more general operation that allows to merge
any two cells even if they are not adjacent in the current
connectivity. The result is non manifold in general (see
Fig 1b) and the corresponding coding sequence is about
twice as big as an edge collapse one.

The way the connectivity evolves during these decimating
operations is encoded by a sequence that enables a lossless
reconstruction using the reverse operators (edge expansion
and vertex split).

(a) (b)

Figure 1: (a) Edge collapse, (b) Vertex unification

If this lossless compression method reaches competitive
ratios and can handle arbitrary simplicial complexes, it is
not appropriate for the interactive navigation through large
meshes. Not only its memory footprint makes it strictly im-
practicable for meshes over about one million vertices, but,
even more constraining, the intrinsic design of the data struc-
ture imposes a hierarchical coding of the neighborhood re-
lations that prevents any kind of local refinement: indeed,

given 2 connected verticesv andw in any intermediate level
of detail of the kd-tree, it is possible to find a descendantvi
of v that is connected to a descendantw j of w. So, in terms
of connectivity, the refinement of the cell containingv can-
not be done without refining the cell containingw. Conse-
quently, random access and selective loading of mesh sub-
sets is impossible: to visualize a single vertex and its neigh-
borhood at a given LOD, the previous LOD must be entirely
decoded. In the following, new algorithms and data struc-
tures are presented that are based on the same kd-tree de-
composition but remove these limitations.

4. Out-of-core Compression

In this section, we describe in detail the successive steps of
the compression process, whose purpose is to code the data
in a compact way while restructuring them to make possible
a real-time interactive rendering in the visualization stage.

4.1. Partitioning Space

Quantizing point coordinates: First, the points contained
in the input file are parsed. A cubic bounding box is ex-
tracted, then the points are quantized to get integer coor-
dinates relative to the box, according to the precisionp
(number of bits per coordinate) requested by the user. These
points are written to a raw file (RWP) using a classical raw
binary encoding with constant size codes, such thatith point
can be directly accessed by file seeking.

Definitions: An nSP-tree is a space-partitioning tree withn
splits per axis. Each internal node delimitates a cubic sub-
space callednSP-cell. Since our meshes are embedded in
3D, annSP-cell hasn3 children, and in our case, thenSP-
cells are uniformly split,ie. their n3 children always have
the same size.

Each nSP-cell c contains vertices whose precision can
vary according to the distance fromc to the camera. The
limit values of the vertex precision intoc are called minimal
and maximal precision ofc.

A top-simplex is a simplex (vertex, edge, triangle or tetra-
hedron) that does not own any parent,ie. that does not com-
pose any other simplex. In a triangle-based mesh, the top-
simplices are mainly triangles, but in a general simplicial
complex, they can be of any kind.

Principle: An nSP-tree is built so that each leaf contains the
set of the top-simplices lying in the corresponding subspace.
The height of thenSP-tree depends on the mesh precision
p (the number of bits per coordinate): the user can choose
the maximal precisionpr of the root, then the precisionpl
gained by each next level is computed fromn (pl = log2n).
For example, forp = 12 bits,pr = 6 bits andn = 4, thenSP-
tree height is 4. Another condition is applied: annSP-cell
can be split only if the number of contained top-simplices is
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at least equal to a thresholdNmin. Consequently, the mini-
mal precision of the leaves can take any value, whereas their
maximal precision is alwaysp. The content of the leaves
is stored in a raw index file (RWI) where thed + 1 vertex
indices that compose ad-simplex are written using a raw
binary format to minimize disk footprint while maintaining
a fast and simple reading. Fig.2 presents a 2D example of
such annSP-tree.

3254 150 2141250

128 999

0 165 847 12

Node

Leaf containing x d-simplicesx

6 bits

1 bit

1 bit

1 bit

560 5 140

17

1 10 11 16

2 3 8 9 12 13 14 15

4 5 6 7
n Postorder index

Figure 2: 2D nSP-tree example with p= 9 bits, pr = 6 bits,
n = 2 and Nmin = 1000

Simplex duplication: A simplex is said to belong to an
nSP-cellc if at least one of its incident vertices (0-simplices)
lies insidec. Therefore, a simplex of the original model
can simultaneously belong to severalnSP-cells and conse-
quently, some simplices are duplicated during the distribu-
tion into the leaves of thenSP-tree. Fig.3 shows the space
partitioning of annSP-cell.

1 2

3 4

1

3

2

44

Figure 3: Example of 2D space partitioning (n = 2)

Choosing n: In order to get an integer forpl , n must be cho-
sen as a power of 2. This guarantees that any descendant of a
kd-cell contained in annSP-cellc remains insidec. Further-
more, it prevents the kd-tree cells to overlap twonSP-cells.

Writing the header of the compressed file:The file begins
with a header that contains all general data required by the
decoder: the coordinate system (origin and grid resolution,
useful to reconstitute the exact original vertex positions), the
dimensiond of the mesh, the numberp of bits per coor-
dinate, the numbern of subdivisions per axis for the space

partitioning, as well as the root and level precisions,pr and
pl .

4.2. Treating each cell of thenSP-tree

Then thenSP-tree is traversed in postorder (see Fig.2, num-
bers in red), and the following treatment is applied to each
nSP-cellc.

(a) Building the kd-tree and the simplicial complex: If
c is a leaf: the top-simplices belonging toc are read from
the RWI file and the associated vertices from the RWP file;
then a kd-tree is built that separates the vertices (top-down
process) and at last the simplicial complex based on the kd-
tree leaves is generated.

(b) Computing the geometry and connectivity codes:
The leaves of the kd-tree are sequentially merged follow-
ing a bottom-up process. For each fusion of two leaves of
the kd-tree, a code sequence is obtained that combines ge-
ometry and connectivity information. It must be noticed that
for rendering needs, this sequence is enriched by specifying
the orientation of the triangles that possibly collapse with the
merging. The process is stopped when the minimal precision
of c is reached.

(c) Writing the codes in a temporary file: The obtained
codes are written in a semi-compressed temporary file us-
ing an arithmetic coder . At this stage, we cannot write in
the final entropy coded file since statistical data over the full
compression process is not available.

(d) Merging into the parent nSP-cell: We are left now
with a kd-tree and a simplicial complex whose vertices have
the minimal precision ofc. To continue the bottom-up pos-
torder traversal of thenSP-tree, the content ofc must be
moved to its parent. Ifc is the first child, its content is sim-
ply transferred to the parent. Else, the kd-tree and simplicial
complex ofc are combined with the parent current content,
which implies in particular to detect and merge the dupli-
cated simplices (see Sec.6.2).

4.3. Final Output

Once allnSP-cells have been processed, we own statistical
data over the whole stream and thus can apply efficient en-
tropy coding. The probability tables are first written to thefi-
nal compressed file, then thenSP-cells code sequences of the
temporary file are sequentially passed through an arithmetic
coder. At the end of the file, a description of thenSP-tree
structure is added that indicates the position of eachnSP-cell
in the file. This table allows the decompression algorithm to
rebuild an emptynSP-tree structure that provides a direct ac-
cess to the code sequence of anynSP-cell.
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5. Decompression and View-Dependent Visualization

The decompression and visualization stages are strongly in-
terlinked, since the data must be efficiently decoded and se-
lectively loaded in accordance with the visualization context.
In this section, we detail each component of the rendering
process.

5.1. Initialization

The first step consists in reading the header, from which gen-
eral data is extracted. Then, the offset table situated at the
end of the file is read to build thenSP-tree structure. Once
done, eachnSP-cell only contains its position in the file. To
complete the initialization process, the kd-tree of the root
nSP-cell is created at its simplest form,ie.one root, and like-
wise the associated simplicial complex is initialized to one
vertex.

5.2. Real-time Adaptive Refinement

At each time step of the rendering, the mesh is updated to
match the visualization frame. ThenSP-cells contained by
the view frustum are refined or coarsened so that the maxi-
mum error on the coordinates of any vertex guarantees that
its projection respects the imposed display precision. The
other cells are coarsened to minimize memory occupation,
and are not sent to the graphic pipeline to reduce GPU com-
puting time. According to this viewpoint criterion, we main-
tain a list ofnSP-cells to be rendered with their associated
precision. A cell that reaches its maximal precision is split,
and the content of each child is efficiently accessed thanks
to the offset contained in thenSP-tree structure. Conversely,
if an nSP-cell needs to be coarsened at a level below its min-
imal precision, its possible children get merged together.

5.3. Multi-resolution Transitions

Once thenSP-cells that need to be rendered are known, we
face two main issues, which both concern the borders be-
tweennSP-cells. First, some of the simplices being dupli-
cated in differentnSP-cells, they may overlap. Second, vi-
sual artefacts can be caused by adjacentnSP-cells with dif-
ferent precisions. Only border top-simplices may cause these
problems, the other ones can be straight rendered using their
representative points. Border top-simplices are composedof
at least one vertex belonging to anothernSP-cell. The fol-
lowing algorithm is applied to each border top-simplexs:

1. Let c be thenSP-cell to whichs belongs,pc the current
precision ofc, andl the list ofnSP-cells to render. LetN
be the number of kd-cells (ie.of vertices) composings, ci
(for i in 1, . . . ,N) thenSP-cell in which lies theith kd-cell
ki composings, andpi the current precision ofci (if ci /∈ l
thenpi = pc).

2. If there exists ani in 1, . . . ,N such thatpi > pc or (pi = pc

andci index > c index), s is eliminated and will not be
rendered.

3. Else, for each kd-cellki such thatci ∈ l andci 6= c, we
look for the kd-cellk′i of ci containingki . The representa-
tive point ofk′i is used to renders.

Thus, a smooth and well-formed transition is obtained be-
tweennSP-cells of different precisions (see Fig.4).

1 21 2

Figure 4: Rendering of the border top-simplices between
two nSP-cells with different LOD

6. Memory and Efficiency Issues

Two challenges have lead the present work : out-of-core han-
dling of arbitrarily large meshes and smooth real-time ren-
dering. To reach these goals, we had to pay a particular at-
tention to every aspect of the implementation.

6.1. Memory Management

To minimize memory occupation, each loadednSP-cell only
stores the leaves of its kd-tree. The internal nodes are easily
rebuilt by recursively merging the sibling leaves. Further-
more, the successive refinements and coarsenings imply a
lot of creation and destruction of objects such as kd-cells,
simplices and lists. A naive memory management would
involve numerous memory allocations and deallocations,
causing fragmentation and substantial slowdowns. To avoid
this, memory pools are widely used to preallocate thousands
of objects in one operation, and preference is given to object
overwriting rather than deletion and recreation.

Common implementations of simplicial complex build a
structure where each n-simplex (n > 1) is composed ofn+1
(n−1)-simplices. Such a structure is costly to maintain and
since we do not particularly need to keep this parent-to-child
structure, we have chosen to store the following minimal
data structure: simplicial complexes are represented as a list
of top-simplices, each simplex containing references to the
corresponding kd-cells that give a direct link to its incident
vertices. Conversely, each kd-cell stores a list of its incident
top-simplices.

At last, the external memory accesses are optimized to
avoid frequent displacements of the hard disk head. Pagina-
tion and buffering techniques are used during compression to
write in the RWI file, and during visualization to access the
compressed file: each time anSP-cell is needed, its complete
code is read and buffered to anticipate possible subsequent
accesses.
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6.2. Efficient Adaptive Rendering

During an nSP-cell split, kd-cells and top-simplices are
transferred and sometimes duplicated into the children. A
costly part of this split consists in determining the child
where each kd-cell must be transferred and the possible chil-
dren where it must be copied (when it is incident to a bor-
der top-simplex). Rather than computing this information for
numerous kd-cells just before the split, we compute it as
soon as the kd-cell precision suffices to determine its future
containingnSP-cell, store it and transfer it directly to the de-
scendant kd-cells. Likewise, from this information, the evo-
lution of a top-simplex during the nextnSP-cell split can be
deduced. To smooth the computation load through time, each
top-simplex is tested either after its creation (due to a kd-cell
split) or after its duplication (due to annSP-cell split).

Conversely, the merging of twonSP-cells implies to delete
all the duplicated objects. To optimize this step and quickly
determine these objects, each kd-cell and top-simplex stores
the kd-tree level it was created in, and if it was created
after annSP-cell split. Another issue is that top-simplices
moved into the parentnSP-cell may refer to a duplicate kd-
cell that must be deleted. Since we cannot afford to look for
the corresponding original kd-cell among all the existing kd-
cells, each duplicate stores a pointer to its original cell.To
keep this working properly, the coarsening and refinement
processes has to be reversible: by refining annSP-cell then
coarsening it back to its minimal precision, the same kd-cells
must be obtained.

Computing the connectivity changes associated to kd-cell
split or merging are costly operations on which we have fo-
cused to ensure a fast rendering. First, an efficient order re-
lation is needed over the kd-cells: rather than the geometric
position, the kd-index order has been chosen, which costs a
single comparison and gives a natural order relation over the
top-simplices. Besides, we have seen that each top-simplex
stores the kd-tree level it was created in. This value is also
used to speed up edge collapse and vertex unification during
coarsening: since it points out the top-simplices that must
be removed after the merging of 2 kd-cells, we just need to
replace in the remaining incident top-simplices the removed
kd-cell by the remaining one, and to check if some triangles
degenerate into edges.

6.3. Multi-core Parallelization

The nSP-tree structure is intrinsically favorable to paral-
lelization. Both compression and decompression have been
multithreaded to benefit from the emerging multi-core pro-
cessors. While file I/O remain single-threaded to avoid
costly random accesses to the hard disk, vertex splits and
unifications, edge expansions and collapses,nSP-cell splits
and mergings, can be executed in parallel on differentnSP-
cells. We observe experimentally a global performance in-
crease between 1.5 and 2 with a dual-core CPU, and around
2.5 with a quad-core CPU.

7. Encoding Geometry Before Connectivity

The main drawback of this algorithm is its inclination to pro-
duce many small triangles in the intermediate levels of pre-
cision. These triangles usually have a size near the asked
screen precision and penalize the rendering. Actually, the
precision asked by the user mainly concerns the geometry: a
one-pixel precision requires the vertex positions to be one-
pixel precise but does not require the triangles to be one-
pixel sized. This issue is addressed by encoding geometry
earlier than connectivity in the compressed file: the decoder
will hear of the point splitsmbits before the associated con-
nectivity changes. It works as if two distinct kd-trees were
maintained: the first one would contain geometry split infor-
mation, and the second one the connectivity codes. The de-
coding process traverses the first one with an advance ofm
bits over the second one. For each displayed vertex, its future
children are thus known and their center of mass is taken as
the new refined vertex position. For efficiency purposes, both
geometry and connectivity are kept in one slightly modified
kd-tree, as can be seen in Fig.5.

C0 / G3+5

nSP-cell 0

C1 / G8 C2 / G11

C3 / G17 C5 / G23+24

G0+1+2

nSP-cell 1 nSP-cell 2

0

1 2

3 5

8 11

C17 / G72+7417 C23b / G95b+97b+98b23b

C48b48bC47b47b

C23 / G96+9823 C24 / G10224

C4848 C5050C3636C3535 C4747

G11b+23b

C7272 C7474 C95b95b C97b97b C98b98b C9898 C102102C9696

Ci / Gj+ki Kd-cell n°i containing connectivity codes of kd-cell i and geometry codes of kd-cells j and k

Gm+n+...
At the beginning of an nSP-cell, we store geometry codes which were not in the parent 

nSP-cell and which are not in the following kd-tree

145 146 150 191b 192b 198b 199b 193 197 198 206

C8 / G35+368 C11 / G47+48+5011C11b / G47b+48b11b

Figure 5: Example of a kd-tree with geometry before con-
nectivity: 2D case,1 bit earlier (ie.2 kd-tree levels)

During the split of annSP-cell, some kd-cells may be du-
plicated in several children, such as kd-cell 11 in Fig.5. The
parent kd-tree (nSP-cell 0 in the example) can store the early
geometry codes of only onenSP-cell child (nSP-cell 2). We
choose the child containing the duplicated kd-cell. If the kd-
cell is outside the parentnSP-cell, no child geometrically
contains it, so we choose the nearest child. For the othernSP-
cells, the missing geometry codes are added at the beginning
of the sequence (see bold red box innSP-cell 1). Similarly,
the rootnSP-cell having no parent, a few geometry codes
have to be encoded at its beginning. Fig.6 shows the bene-
fits of this technique in terms of rendering.
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Figure 6: Geometry before connectivity: normal rendering
(left) and rendering with a precision advance of2 bits for
vertex positions (right)

8. Results

In this section, we present experimental results obtained
from a C++/OpenGL implementation of the method running
on a PC with an Intel Q6600 QuadCore 2.4Ghz CPU, 4GB
DDR2 RAM, 2 RAID0 74GB 10000 RPM hard disks, and an
NVIDIA GeForce 8800 GT 512MB video card. The tested
models are provided courtesy ofThe Digital Michelangelo
Project, Stanford University Computer Graphics Labora-
tory, UNC Chapel HillandElectricité de France (EDF).

8.1. Compression

Tab. 1 presents results from the out-of-core compression
stage withpr = 7 bits andn = 4. For each model, we first
indicate the number of triangles and the size of the raw bi-
nary coding, which is the most compact version of the naive
coding: if n is the number of vertices,t the number of tri-
angles andp the precision in bits for each vertex coordi-
nate, this size in octets is given by 3pn/8 for the geometry
+3t log2n/8 for the connectivity. Then the compression pa-
rameters are given, as well as the total number ofnSP-cells
and of course the compression rate (as the ratio between the
raw size and the compressed size). Compared to [GD02],
an average extra cost of about 30% is observed, due to the
redundancy induced by space partitioning, the additional en-
coding of triangle orientation, and the fact that we cannot
afford to use on-the-fly computed prediction but only pre-
calculated statistical prediction in order to keep rendering
interactive. Compression times are also given, the column
headers referring to the steps detailed in Sec.4. As expected,
the computation of code sequences (step 2c) is the most ex-
pensive part. However, this step, which is directly propor-
tional to the number of vertices and triangles, benefits from
our multithreaded implementation. Finally, the table details
the memory usage (including temporary disk usage), attest-
ing that the method is actually out-of-core.

8.2. Decompression and Visualization

Since the refinement and rendering processes run in two
different threads, the framerate is not a significant data to
evaluate our visualization method. Thus, it is difficult to

present quantitative results of the decompression and render-
ing stage. Fig.7 presents a few examples of different LOD
of theSt_Matthewmodel with the times observed to obtain a
given view by refinement or coarsening of the previous one
(or from the beginning of the visualization for view(a)).

These times can seem high but it must be noticed that dur-
ing a navigation, the transition from a view to the next one is
progressive and the user’s moves are usually slow enough to
allow smooth refinements. That is why the best way to ap-
preciate the algorithm behavior is to manipulate the viewer
or watch the accompanying videos . It must be added that the
small polyhedral holes that can be observed on the captures
and especially on the videos are not artefacts of the viewer
but come from the original meshes.

9. Conclusion and Future Work

As seen in Sec.8, the data structures and algorithms pre-
sented in this article achieves good results compared to the
state of the art, at the same time as an out-of-core loss-
less compression method, and as an interactive visualiza-
tion method for arbitrary meshes (in terms of kind and size),
thus offering an interesting combination for numerous ap-
plications. However, we currently work on several points of
improvement which should make it possible to rule out the
main limits of the method. Our first perspective consists in
a noticeable framerate increase in the navigation stage. To
reach better performances in this respect, three paths at least
can be explored: the introduction of occlusion culling tech-
niques, the optimization of the decompression algorithm (in-
cluding prefetching strategies and intensive use of the GPU),
and the possible recourse to simplification methods to reduce
the number of simplices to be displayed in the worst cases.
Furthermore, we think that it is still possible to improve the
compression ratios by refining the predictive schemes. The
difficulty consists in designing a precise probability model
whose computing cost does not penalize the visualization.
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