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Abstract

We propose in this paper a definition of the normal
law on the space of strings. This definition allows gen-
erations of sets of strings that have controled statistical
features. Moreover, we apply with success a method of
estimation of the mean and standard deviation of a nor-
mal string distribution.

1. Introduction

For many years, several research teams have tried
to blend the two main approaches of pattern recogni-
tion, namely the statistical and structural ones [3, 2].
The wish is to be able to benefit from the advantages
of the two approaches, while being detached from their
respective drawbacks.

The statistical pattern recognition is based on a cod-
ing of the data in the form of numerical vectors, often
unable to accurately reproduce the complexity of the
data. But this choice is justified by the broad pallet of
statistical algorithms published in the literature and rec-
ognized as powerful with numerical data [1].

In the structural pattern recognition paradigm, the
coding part is rich because of being based on data struc-
tures of great expressivity (graphs, strings. . . ). How-
ever, the tools related to the classification of structures
are too restrictive (isomorphism, edit distance[4]. . . )
and not robust enough for some applications specific to
pattern recognition.

We propose in this paper to translate the concept of
distribution to spaces of structures. We concentrate our
attention to strings for which we propose the definition
of a distribution controled by a normal probability den-
sity function (pdf), together with algorithms that respec-
tively permit to generate sets of such strings, and esti-
mate the mean and standard deviation of a normal dis-
tribution, from a sample of strings. Before going into

details in section 3, we introduce some necessary nota-
tions and definitions.

2. Preliminary notations and definitions

Let A be an alphabet, i.e. a finite non-empty set
whose elements are called letters. We denote by |A|
the number of letters of A.

A string X over A is a finite-length sequence of let-
ters of A. We denote by |X| the length of X , Xi the
i-th letter of X (i ∈ {1, . . . , |X|}), A∗ the set of strings
over A, and λ the empty string, i.e. of length 0.

The concatenation operator, denoted by ., of-
ten omitted for simplicity, is defined over cou-
ples (X, Y) of strings or letters (as strings of
length 1), as follows: [X.Y (=notation XY ) = Z] ⇐⇒
[|Z| = |X|+ |Y |] ∧ [∀i ∈ {1, . . . , |X|}, Zi = Xi] ∧[
∀i ∈ {1, . . . , |Y |}, Z|X|+i = Yi

]
.

The prefix X ′ of length n of a string X is the string
made of the concatenation of the n-th first letters of X:
[|X ′| = n] ∧ [∀i ∈ {1, . . . , n}, X ′i = Xi].

An edit operation over A is a couple (a, b) of ele-
ments of A ∪ {λ}, denoted by a→ b. We say that such
an operation transforms a into b, or consumes a to pro-
duce b. Moreover, if a = λ (resp. b = λ), it is the
insertion of b (resp. deletion of a), and if a 6= λ and
b 6= λ, it is the substitution of a by b.

An edit string over A is a string of edit operations
over A (string over the alphabet (A ∪ {λ})2). Let
Z = X1 → Y1 . . . Xn → Yn be such a string. We
say that Z consumes (resp. produces) the string (over
A) made of the concatenation of the letters consumed
(resp. produced) by its operations, i.e. X1 . . . Xn (resp.
Y1 . . . Yn).

Let c be an edit cost function over A: ∀(a, b) ∈ (A∪
{λ})2, a 6= b, c(a → a) = 0, and c(a → b) > 0. c
can translate a knowledge related to the dissimilarity of
a and b, or to the likelihood of the transformation of a
into b.



3. The string gaussian distribution

3.1. Definition

As initialy proposed in [2], a deviation in the letter
domain is an edit operation consuming the mean letter
(except λ if we expect no letter at all), and so on in the
string domain an edit string consuming the mean string.

Refering to a multivariate paradigm, and with an as-
sumption of mutual independance between the letter
distributions composing a string, we define the gaussian
distribution of strings overA∗, of standard deviation the
edit string D over A, by the concatenation of |D| gaus-
sian distributions over A∪{λ}, where the i-th one is of
standard deviation Di, i ∈ {1, . . . , |D|}.

A gaussian distribution over A ∪ {λ}, with standard
deviationm→ d, is the distribution that assigns to each
letter a ∈ A ∪ {λ}, a probability equals to the density
of probability of c(m → a) assigned by a normal pdf
over R of mean 0 (c(m → m)) and standard deviation
c(m → d), normalized by the sum over A ∪ {λ} of all
of these densities. That is, we use the cost function c
to be able to define the concept of gaussian letter devia-
tion, by means of a discretization process of a numerical
normal law.

The generative and predictive processes are respec-
tively detailed by the algorithms 1 and 2. The genera-
tive algorithm merely applies the iterative process im-
plied by the reasoning above, of complexity O(|D|).
The complexity of the predictive algorithm is higher.
Indeed, a string X is unaffected by insertions of as
much of λ as desired at any position where it is pos-
sible, and so the number of possibilities of production
ofX is equal to the number of combinations of size |X|
from a set of size |D|. To solve this problem, we use a
dynamic programming method of temporal complexity
O(|X| × |D|3) and space complexity O(|D|). At each
iteration j of the main central loop, PP[i] contains the
probability of production of the prefix of length j of X ,
according to a normal law of standard deviation the pre-
fix of length i of D. The special case X = λ does not
enter in this scheme, and is thus treated separately.

3.2. Estimation

Given a set of strings S, we want to estimate the pa-
rameters of the underlying normal distribution G.

The estimate of the standard deviation D is the
edit string D̂max obtained by the maximization of the
likelihood of S: D̂max = arg max{D̂ ∈ ((A ∪
{λ})2)∗}

∏
X∈S P(X|Ĝ), with Ĝ the normal law of

standard deviation D̂, and P(X|Ĝ) the probability ofX
according to Ĝ. We think that this optimization problem

Input: An edit string D = m1 → d1 . . .mn → dn
over A

Output: A string X generated according to a
normal law over A∗, of standard
deviation D

begin
X ←− λ;
for i←− 1 to n do

g ←−N (0, c(mi → di)2);
l←− random choice according to the
following distribution: ∀a ∈ A ∪ {λ}:

P(a) =
g (c(mi → a))∑

b∈A∪{λ} g (c(mi → b))
;

X ←− X.l;
end
return X;

end
Algorithm 1: String generation according to a nor-
mal law

Input: An edit string D = m1 → d1 . . .mn → dn
over A

Output: The probability of λ according to a
normal law over A∗, of standard
deviation D

begin
P ←− 1.0;
for i←− 1 to n do

P ←− P× P(λ in position i);
// algorithm 4

end
return P ;

end
Algorithm 3: Prediction of the probability of λ ac-
cording to a normal law

Input: A letter l ∈ A ∪ {λ}, an edit operation
m→ d over A

Output: The probability of l according to a
normal law over A ∪ {λ}, of standard
deviation m→ d

begin
g ←−N (0, c(m→ d)2);
return

g (c(m→ l))∑
b∈A∪{λ} g (c(m→ b))

;

end
Algorithm 4: Prediction of the probability of a let-
ter according to a normal law



Input: A string X over A, an edit string D = m1 → d1 . . .mn → dn over A
Output: The probability of X according to a normal law over A∗, of standard deviation D
begin

/* Special case X = λ */
if X = λ then return P(λ); // algorithm 3
/* Inizialisation : production of the first letter of X */
for i←− 1 to |D| − |X|+ 1 do

// Production of X1 in position i of D
PP[i]←− P(X1 in position i); // algorithm 4
// Leftmost completion with productions of λ
for l←− 1 to i− 1 do PP[i]←− PP[i] × P(λ in position l); // algorithm 4

end
for i←− |D| − |X|+ 2 to |D| do

// Impossible to begin the production in this position i of D
PP[i]←− 0.0;

end
/* Iterations : production of the other letters of X */
for j ←− 2 to |X| do

// Possibilities of production of Xj in position i of D
for i←− |D| to 1 do

PP[i]←− 0; // initialization
// Possibilities of production of Xj−1 in position k < i of D
for k ←− 1 to i− 1 do

// Production of Xj−1 in position k of D
PLUS←− PP[k];
// Completion with productions of λ in positions (k + 1) 6 l 6 (i− 1)
for l←− k + 1 to i− 1 do PLUS←− PLUS × P(λ in position l); // algorithm 4
// Addition of the probabilities of production of Xj−1

PP[i]←− PP[i] + PLUS;
end
// Production of Xj in position i of D
PP[i]←− PP[i] × P(Xj in position i); // algorithm 4

end
end
/* Finalization of the possibilities of production of X */
P ←− 0.0;
for i←− 1 to |D| do

// The production of X was stopped position i of D
PLUS←− PP[i];
// Rightmost completion with productions of λ
for l←− i+ 1 to |D| do PLUS←− PLUS × P(λ in position l); // algorithm 4
// Addition of the probabilities of production of X
P ←− P + PLUS;

end
return P ;

end

Algorithm 2. Prediction of the probability of a string according to a normal law
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Figure 1. Ratios of perplexities of the esti-
mates

is NP-hard. But in the specific case where the cost func-
tion makes improbable any insertion or deletion (cost
+∞), all strings of S have same length |D|, and we
know that all letters in the same position in the strings
of S have been generated by the same normal law of let-
ters. Therefore, we have: D̂max = d̂1 max . . . ̂d|D|max,

with, ∀ 1 6 i 6 |D|, d̂imax = arg max{d̂i ∈
A2}

∏
X∈S P(Xi|Ĝi), with Ĝi the normal law of stan-

dard deviation d̂i. It is thus effectively possible, in that
case, to find D̂max in O(|D| × |A|2 × |S|).

Figure 1 shows the result of an estimation process
in that specific case. The alphabet is the set of non-
special ASCII characters (|A| = 95), and the strings
are generated with length 100. The cost of a subsitution
of 2 characters is the Hamming distance of their repec-
tive visual coding by a binary 7 × 7 matrix. To have a
better interpretation, the effectively presented measures
are the ratios R = P̂ /P , with P̂ the perplexity of S by
Ĝmax, and P by G. The perplexity is just the reverse
of the average likelihood of an element of S, and such a
ratio R > 1 is interpreted as the fact that a string of S is
R times as likeliky by G than by Ĝmax, and if R < 1,
1/R times as likeliky by Ĝmax than by G. Notice that
minimizing the perplexity maximizes the likelihood.

We have divided the experimentation in two levels
of difficulties: estimating the standard deviation with
known or unknown mean. In the first case, the con-
sumed string of the standard deviation estimate is ob-
siously set to the mean, and it remains to estimate the
produced one. In the second case, the consumed string
of the estimate provides an estimate of the mean. In
all cases, we can see that the method leads to good re-
sults, Ĝmax converging very quickly to G, due to the
fact that we don’t need to generate a great number of
strings (relatively to the 95100 non improbable strings)
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Figure 2. Ratios of perplexities of a nor-
mal law of random deviation

to reach a rather good representativy of S regarding to
G. The cases where S is more likely by Ĝmax than
by G appears when S is too small to be representative
of G, leading to the existence of normal laws different
of G for which S is more representative. Finally, this
good conclusion is emphasized by the very bad results
obtained by a random estimate, as presented in figure 2.

4. Conclusion

We have presented a new gaussian string distribu-
tion definition, with a method to estimate its (mean and)
standard deviation, leading to encouraging results.

This work is a prelude and it would be interesting
to study the possible properties of the distribution, par-
ticularly those that could arise when combining, in a
manner to be specified yet, independent executions of
the same string distribution, as told by the central limit
theorem. A necessary condition is to define the con-
cept of random variable in a measurable vector space
for strings. It could be sufficient to order the strings to
keep the real line as the state set of such random vari-
ables, and thus take advantage of the classical (numeri-
cal) probabilistic statistical theory.
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