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Abstract - This paper deals with perceptually inspired 

image segmentation for the purpose of generic image 

classification or object detection. Indeed, in our algorithm we 

will try to stay true to human perception and more specifically 

Gestalt Theory. Input images are processed in a three-step 

framework: a pre-processing step where the image is filtered 

and where perceptually similar colors are grouped as per 

color constancy law, a clustering step where we also 

determine an optimal number of quantized colors and a post 

processing step where we add spatial information and merge 

smaller regions as per “good continuation” and proximity 

laws. Another major feature of our algorithm is that it adapts 

to image dynamics and doesn’t require image-specific 

parameter tuning. Application on a 10,000 image dataset 

shows the algorithm succeeds in producing large coarse 

regions that can be used for feature extraction. 

 

 

1. INTRODUCTION 
 

Visual object classification or detection within 
unconstrained images is very challenging problem with a 
broad range of potential applications. Current successful 
approaches in classification problems such as the Pascal 
VOC Challenge [1] are mainly based on a “bag of features” 
kind of approach [2], [3] which captures statistical 
properties of local independent features. Our basic 
hypothesis, on the other hand, is that effective visual object 
classification or detection should be driven by visual 
perception principles. For instance the well known Gestalt 
laws of Perceptual Organization suggest both the grouping 
of pixels into homogeneous regions as well as the 
interaction between regions. We feel that lacking these 
principles, “bag of features” approaches deprives 
themselves of meaningful information.  

In this paper we propose a color segmentation scheme 
designed to follow basic Gestalt principles (namely color 
constancy, vicinity, similarity and good continuation laws), 
remove the necessity of image dependant thresholds, as 
well as emphasize robustness by ensuring the output 
remains usable for feature extraction. This results in 
perceptually significant partial gestalts for further visual 
object analysis. After a brief introduction of Gestalt theory 
and an overview of the existing work in section 2, we will 
describe our proposed algorithm in section 3. Section 4 
presents some experimental results and future work while 
we will have some concluding remarks in section 5. 

 

2. RELATED WORK 
 

A.Desolneux, L.Moison and J.M.Morel have given in 
[4] a comprehensive introduction to Gestalt theory in an 
image analysis perspective. Gestalt theory starts with the 
assumption of active grouping laws in visual perception 
which recursively cluster basic primitives into a new, larger 
visual object, a gestalt. These grouping laws follow 
criterion such as spatial proximity, color similarity. These 
laws also highlight the interaction between regions. 

The principle of our image segmentation algorithm is to 
segment an image into partial gestalts for further visual 
object recognition. We thus made use of the following 
Gestalt basic grouping laws in our gestalt construction 
process: The color constancy law stating that connected 
regions where color does not vary strongly are unified; the 
similarity law leading to group similar objects into higher 
scale object; the vicinity law suggesting grouping close 
primitives with respect to the others; and finally good 
continuation law saying that reconstructed amodal object 
should be as homogenous as possible. Because those laws 
are defined between regions and their context, at each step 
we assess the possibility to merge according to global 
information. Through this we also adapt to image contents. 

Most visual object analysis systems found in the 
literature do not perform any image segmentation and 
instead apply a statistical computation of local features on 
some “points of interest”. However, if we want to carry out 
visual object recognition according to a Gestalt Theory-
based approach, we first need to recursively merge by 
Gestalt grouping laws basic primitives, for instance pixels, 
into more and more composite gestalts, which amounts at 
its first level to segment an image into regions.  

There exists a very abundant literature on image 
segmentation. We can roughly classify existing approaches 
into two major categories [5]: pixel color classification 
based and spatial relationship based methods. Pixel color 
classification based methods are basically clustering 
problems and as such present the usual difficulties: with 
about tens of thousands of colors clustering is complex and 
very slow; Moreover the determination of the optimal 
number of colors mostly is an image dependent parameter 
to be tuned. We therefore need either adaptive algorithms 
like in [6] or algorithms that evaluate an optimal number of 
colors. Spatial relationship based methods work within 
image space rather than color space. We can again 
distinguish three subcategories : edge based methods such 
as geodesic active contours [7], region-based methods 
including region merging, region splitting and split and 



merge methods [8], and finally variational segmentation 
methods such as Edgeflow [9].  

All these techniques are more or less application or 
image content dependent as region of interest is typically 
application dependent. For the purpose of generic visual 
object classification problem, the nature of images is very 
complex and gives birth of a large variability in lighting 
conditions, scale, background, pose, etc. Our conjuncture is 
that reliable generic visual object recognition needs to rely 
on coarse bigger regions, thus making use of the recursive 
application of Gestalt basic grouping principles to segment 
image content into perceptually significant “objects”. 
Moreover, our segmentation process should avoid image 
dependant parameters, having in mind the diversity of 
images and the size of the dataset. 

 

 

3. PROPOSED ALGORITHM 
 

3.1 Clustering Preparation 
 

As we said clustering methods suffer from the vast 
amount of color data within an image. Regrouping identical 
colors and weighting their values using their population 
still leaves us with tens of thousands of colors; which 
remains computationally very expensive. After applying 
vector median filtering [10] to add some robustness to 
noise, we first reduce image color depth. On the other 
hand, adding a preclustering step is dangerous, as chaining 
processes sums up their respective flaws and result in 
increased approximations. To limit these problems, we 
propose a simple preclustering step that only groups colors 
which are perceptually similar according to an appropriate 
metric. We therefore chose to agglomerate colors using an 
accumulator array within the CIELab color space as it 
shows acceptable perceptual homogeneity. Given a fixed 
grid size, colors falling in a same cuboid are agglomerated 
and replaced by the barycenter of all the colors within the 
cuboid. An important factor here is obviously the size of 
the grid: in order not to harm segmentation accuracy, we 
choose to select a grid size that only allows merging colors 
which are perceptually similar.  

To measure perceptual similarity, we use the CMC 
distance ([5], [11]) which is one of the most accurate 
metrics according to human perception. Equation (1), show 
the expression of this distance.  

 

 

(1) 

 

Sh, Sl and Sc are determined, ∆H, ∆L and ∆C are 
differences computed in a transformation of Lab Color 
space (Hue, Chroma and Luminance). 

As we can see it expresses the ellipsoidal shape of 
perceptual similarity areas described in the works of 
Wright and Mc. Adam. We then compute distances 
between all possible colors coded using RGB values which, 
once converted to CIELab, fall into the same cuboid. 
According to CMC metrics, two colors are perceptually 
similar provided the distance between them is inferior to 1. 
We thus seek for cuboid dimensions that would give a 
maximal CMC distance inferior to 1. This was achieved 
with a 0.33 x 0.66 x 0.66 cuboid (in Lab space). Such an 
agglomeration guarantees that two merged colors will be 

perceptually similar. However it does not provide a 
sufficient reduction of the amount of processed data. 
Therefore we loosened the constraint and chose cuboid 
dimensions which guaranteed that 90% of agglomerated 
colors would be perceptually similar. This produces a 1.5 x 
3 x 3 cuboid size and allows performing a quick 
agglomeration by replacing colors that fall within a same 
cuboid by their barycenter. This process reduces the 
number of colors by an average of 89% (computed on a 
sample diversified set of 600 images). Maximal possible 
distance is 4 and 98% of possible distances are below 1.5. 
Experiments revealed this approximation was reasonable. 
Cuboid size may, of course, be adjusted as a part of a speed 
vs. accuracy tradeoff. 

 

3.2 Adaptive Clustering 
 

In order to evaluate an optimal number of color clusters 
we observe a relationship between the number of quantized 
colors and the Mean Square Error (MSE) between 
quantized and original colors. Coarse centroids are 
obtained using Neural Gas [12], which is quite fast and less 
sensitive to initialization than the more commonly used K-
Means algorithm. The principle of this algorithm is simple: 
after a random initialization of the centroid set A, at each 
iteration t, a random sample color ξ is selected and all 
centroids wi converge towards the color by ∆wi as per (2); 
closer centroids converge more than distant ones. ∆wi 
decays over time. 

(2) 

 

With the following time dependencies: 

 

 

 

 

With εi, εf, λi and λf  being parameters allowing 
adjusting convergence speed. ki(ξ,A) represent the rank of 
the i

th
 centroid when the centroid set A is sorted from the 

centroid closest to ξ to the furthest.  

For each image, we perform several clustering tasks for 
different target cluster counts study the evolution of the 
MSE according. Results are presented on Fig. 1. 

We can see that there is a steep increase in MSE starting 
for a number clusters. Depending on the picture, this 
evolution is more or less marked. We use this information 
to dynamically determine an information-loss threshold 

Figure 1: Evolution of Mean Square Error (MSE) between 

quantized colors and original colors different curves represent 

images with different color variety 
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which we chose as a percentile value (set empirically) from 
the initial clustering MSE. Our method thus adapts to 
image dynamics and avoids resorting to image dependant 
thresholds. We use a simple "divide and conquer" strategy 
to limit the number of neural gases to perform. The process 
can also be speeded up using parallelization by executing a 
neural gas task on each available processing unit. 
Moreover, the clustering does not have to be very accurate: 
experiments revealed that down to a certain limit the use of 
less iterations did not impact the detection of an 
appropriate number of clusters. Once this optimal number 
of clusters is reached we use an agglomerative hierarchical 
clustering algorithm to build the appropriate clusters. 

The decision regarding adaptive clustering (using an 
algorithm such as competitive agglomeration [13] which 
was done in [6]) vs. regular clustering + dynamic 
determination of the number of clusters was based on 
experiments that revealed two drawbacks in adaptive 
clustering. The first is that the algorithm sometimes fails to 
adapt and leads to either a highly oversegmented image or 
a single region for the whole image. We were also unable 
to set the parameters to obtain a low number of regions 
without noticeably increasing the number of those extreme 
cases. The second is the lack of consistency: when an 
image is slightly altered, the regions outside the altered 
area should not change. While both algorithms are affected 
with this problem, our experiments revealed this was more 
the case with adaptive clustering. Our preference therefore 
went to the more costly but also more consistent approach 
of dynamically determining a number of clusters. 

 

3.3 Post Processing 
 

Having agglomerated colors within the CIELab color 
space we still need to separate clusters that are not spatially 
connected. This last step is performed in a single pass on 
the original image and allows mapping pixels to regions 
and respectively. As we said earlier, smaller regions do not 
interest us because they produce feature vectors from few 
to no data, inducing noise within the image representation. 
Thus, during this step we also control the size of regions.  

As per [14] we choose to merge smaller regions 
according to a statistical similarity test. We use the popular 
squared Fisher’s distance (3) for that purpose. 

 

 

(3) 

Where ni, µ i, σi
2
 are respectively the number of pixels, 

the average color and the variance of colors within region i. 
This information is computed at the time of region 
separation, although variance computation requires another 
pass. This distance fits our stance of keeping our 
independence towards image dynamics as it involves intra-
cluster distance vs. inter-cluster distances. The threshold 
therefore only represents a region coarseness parameter. 
However, we need to address the problem of consecutive 
merging (for instance in gradients) which could lead to 
abusive merging with respect to the original regions. To 
prevent that we use binary tree structures to store region 
merging history and enforce the condition that a parent 
region can only merge with a target region if all its child 
regions could have merged with this target region. 

Finally, because we absolutely wanted to avoid small 
regions we add an optional step which merges regions 

smaller than 100 pixels with their closest neighbor (with 
respect to Fisher’s distance). We also generate an 
adjacency graph during the spatial separation step which 
can be used to obtain neighborhood information for the 
automated indexing task. 

This algorithm provides us with a coarse segmentation 
producing rather big regions consistently and 
independently of the conditions as the following section 
will illustrate. 

 

 

4. SOME RESULTS AND COMMENTS 
 

4.1 Sample results 
 

We first show the results of segmentation on a sample 
image in order to illustrate the various steps of the 
algorithm (Fig. 2.). This is an image with a huge color 
palette (120,526 unique colors). We can see the first step 
does not alter the image although the difference is slightly 
perceptible on the real-size image. Indeed while the colors 
agglomerated and the original color are perceptually 
similar, color gradients are altered in this operation which 
makes the difference perceptible. We can then see the third 
step merges various smaller regions, with the most 
noticeable change visible in the beak region. The merging 
of regions smaller than 100 pixels was not applied here. 

We then show some sample images drawn from the 2007 
Pascal Challenge dataset. The first sample showed results 
for an image with lots of colors, the following samples 
(Fig. 3.) have been selected in order to show the behavior 
of the algorithm under various image color depth and 
lighting circumstances. The algorithm was actually applied 
to the whole dataset (roughly 10,000 images) giving in 
every case an adequate output of coarse big regions without 
having to change any parameter. 

As we can see the algorithm adapts to a wide range of 
situations, the same set of parameters was used for the 
segmentation of all the images. Situations encompass high 
color images, low color images with both high and low 
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Figure 2: Illustration of the different steps of the algorithm;  

1 is the original image, 2 is the result of our fast perceptual 

quantization, 3 is after clustering and spatial separation and  

4 is after color merging using Fisher’s distance.  



contrast. In all cases the algorithm adapts and performs 
consistently without having to change any parameter. 
While we can regret regions such as the ones created by 
shadows below the plane, the contrast is simply too strong. 
Moreover, in most cases we would not like to have an 
object merge with its shadow. The second image shows 
problems with reflections and transparencies in items on 
the table which lead to inaccurate merging. Last sample 
poses the problem of color gradients: in this case it would 
be better to merge the different parts of the car’s chassis.  

These issues show the limits of our algorithm because 
the most appropriate segmentation is clearly image 
dependant. Sometimes it will be appropriate to merge 
different regions from a color gradient, sometimes doing so 
will lead to merging very different areas. 

 

4.2 Future work 
 

The algorithm is being put to use in its current version 
for our scene categorization and object detection 
algorithms. Tests regarding classification performance 
should lead to a more efficient post-processing step with 
more efficient region merging criterion like adapting the 
threshold to region size rather than handling small regions 
separately. We also plan to improve the determination of 
the threshold which determines the number of colors by 
approximating the derivative of the MSE curve. 

Also, while performance is not a real issue for our 
automated indexing platform, it remains an area which we 
need to work on as the image processing part has not been 
properly optimized. Current implementation uses quite 
inefficient high level image processing API. Optimizing 
computational efficiency could make this algorithm 
suitable for more applications. 

Further work would involve more in-depth study on the 
image features in order to identify troublesome regions 
with reflections, cast shadows, etc. 

5. CONCLUSION 
 

In this paper, we proposed a hybrid color/spatial 
information-based segmentation algorithm.  

It is inspired by Gestalt theory and centered on three 
parts: perceptual color reduction, dynamic determination of 
the number of clusters and spatial post processing. This 
algorithm allows the production of big coarse color regions 
(partial gestalts) which are suitable for feature extraction. A 
major feature of this algorithm is also the lack of image-
dependant threshold. Use on the 2007 Pascal Challenge 
10,000 image dataset showed its consistent performance. 
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