Main Objectives

- Generalizing closed pattern (formal concept) extraction to \(n \)-ary relations.
- Identifying the class of constraints our proposal can efficiently handle at extraction time.

Closed \(n \)-set: a Generalization of Closed Pattern (Formal Concept) to \(n \)-ary Relations

The ternary relation, depicted beside, could represent customers (1, 2, 3 and 4) buying items \((A, B, C)\) along three months \((\alpha, \beta, \gamma) \). \((\langle \alpha, \gamma \rangle, (1, 2), (A, B)\rangle\) is an example of closed 3-sets:
- Connection. The customers 1 and 2 buy both items \(A \) and \(B \) during the months \(\alpha \) and \(\gamma \).
- Closeness. \((\langle \alpha, \gamma \rangle, (1, 2), (A, B)\rangle\) is closed w.r.t. every attribute:
 - There is no other month during which these two customers buy these two items.
 - No other customer buys these two items during these two months.
 - No other item is simultaneously bought by these two customers during these two months.

D-Miner-like:
- DATA-PEELER traverses the search space (lattice) in a depth-first way.
- It recursively splits the search space into two non-overlapping parts.
- At any recursive call, any element (from any attribute) can be enumerated:
 - Truly working on \(n \)-ary relations.
 - A clever enumeration strategy improves the running times by orders of magnitude.

Difficulties:
- \(n \)-sets are not structured by a Galois connection.
- Ability to exploit, at extraction time (safe pruning), a broad class of constraints on the \(n \)-sets.

Piecewise (Anti)-Monotonic Constraints

DATA-PEELER can exploit, at extraction time (safe pruning), a broad class of constraints on the \(n \)-sets: the piecewise (anti)-monotonic constraints.

In the expression of a piecewise (anti)-monotonic constraint, some arguments can occur several times. When such an argument grows (w.r.t. the \(\subseteq \) order), some of its occurrences tend to satisfy the constraint, whereas the rest of them tend to violate it (cf. Example).

Comparison With Competitors

General case. We are not aware of any other algorithm tackling the complete extraction of closed \(n \)-sets for \(n > 3 \).

Ternary case. CUBEMINER and TRIAS were specifically designed to extract closed 3-sets.
- DATA-PEELER outperforms both of them by orders of magnitude.
- CUBEMINER’s performances quickly decrease with the size of the relation.
- CUBEMINER’s division of the search space does not form a partition.
- TRIAS’s performances quickly decrease with the size of the smallest dimension.
- TRIAS is combining extractions on binary relations.

Application to a Real-Life Co-Interest Dynamic Graph

Setting. A 4-ary relation was derived from the logs of DistroWatch.com. It indicates that, in a given country (among 40), during a given semester (among 7), two GNU/Linux distribution pages (among 350) were frequently loaded the same day by a visitor (identified by her IP address).

Results. The extracted closed 4-sets, under a weighted area constraint, were relevant (cf. Example).

Article

In *SDM’08: Proceeding of the Eighth SIAM International Conference on Data Mining*. SIAM.