
An approach to User-Centric Context-Aware
Assistance based on Interaction Traces

Damien Cram, Béatrice Fuchs, Yannick Prié, and Alain Mille

LIRIS UMR CNRS 5205, University of Lyon
42, bd du 11 Novembre 1918
69622 Villeurbanne, France

March 2008

Abstract

This paper presents an approach to context-aware assisting sys-
tems that reuse user’s personal experience as an alternative to tradi-
tional systems having an explicit context model associated to reason-
ing capabilities on this model. This approach proposes to model the
use of the environment through interaction traces representing user’s
experience and different processes to manage user’s traces intended to
be exploited for later reuse. A user’s assistance is based on the reuse
of past traces that are semantically similar to the current sequence of
interactions representing the current context of the user. The assis-
tance is based on the identification of recurrent task signatures, which
are sequential structures representing typical tasks. These signatures
are user-centric since they have been interactively elaborated in ac-
cord with the user himself. Several typical use scenarios are listed
making a possible use of the case-based reasoning paradigm (CBR)
which raises issues due to ill-defined cognitive tasks.1

1This research is supported by the french National Research Agency (ANR) as a con-
tribution to the project PROCOGEC (http://www.procogec.com)

1



1 Introduction

To better assist a user in his tasks, a good knowledge of what the user is doing
and what constitutes his environment is required. A system that fulfills these
requirements is called a “context-aware” system. Dey and Abowd [ADB+99]
give the following definition of a context:

A context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications themselves.

Therefore, a natural approach to context-awareness is to first define a
context model that expresses what contextual information represent for the
best a situation, secondly to instanciate this context model for each situation,
and thirdly to perform reasoning tasks on this context instance. This paper
proposes a different approach to provide a contextual assistance to the user,
where the context is modelled on the fly, i.e. only when the situation requiring
assistance appears. It consists in modelling user’s interaction traces and in
reusing them to gradually build a knowledge base of typical and abstract
situations that could require an assistance. The user is involved in this
building process, which enables a high user-centricity level of contextual
information, and then a more relevant assistance system.

In section 2, we describe some issues in context modelling and reason-
ing techniques, and explain how our approach brings new solutions to these
issues. Section 3 gives definitions and models for concepts related to inter-
action traces reusing. The assistance process that collects interaction traces,
abtracts them with the user’s help, and reuses them to provide a contex-
tual assistance is developped in section 4. Section 5 is a discussion on our
approach, and section 6 concludes and draws some perspectives.

2 Limitations of usual techniques in context-

aware assistance

2.1 The issue of modelling the context a priori

Considering the definition of a context given in [ADB+99], a natural approach
to the conception of context-aware systems is to elaborate an expressive con-

2



text model that takes into account every element of this definition. Reasoning
techniques are then employed to infer knowledge that can be usefull to the
assistance system, as it is the case in ontology-based approaches [WZGP04].
The task of modelling the context is usually performed by an expert of the
user’s activity. An ideal context model would have its instances (called con-
text objects) containing every relevant details of each real situation of the
activity. In a way, the expert temporally takes the place of the user and
tries to imagine what entities and what actions of the activity are considered
significant by the user.

This approach is quite paradoxal, as it ossifies the definition of a context
before the activity starts. We think that the context cannot actually be
known a priori, mainly because it can evolve from a situation to another.
Furthermore, there is a loss of information in applying the same model to
every situations. Indeed, each situation is unique and observing a situation
from the point of view of the context model potentially approximates some
details that could have been usefull for assisting the user in a particular
situation. This refers to the more general well-known issue of approximating
the real world with models, and we think it is the reason why applying these
methods to context awareness is not satisfying enough.

2.2 The issue of infering user-centric information

In [HSW07], the authors propose to define the context model so as it an-
swers the six contextual questions “who”, “what”, “when”, “where”, “why”,
and “how” (5W1H). It is then argued that the obtained context model is a
user-centric context, where user-centric means containing contextual pieces
of information as the user perceives them. A context that is user-centric po-
tentially improves the relevancy of the context-based user assistance system.
If filling the context object with information about “who”, “what”, “when”
and “where” from sensor data seems quite direct, it gets more complicated
with how the user is doing his current activity and even more with why he
is doing it. Indeed, ongoing processes are only sensorable at a very factual
level and user’s intentions are not sensorable at all. All the information we
can really obtain from sensor data are clues of what the user intends to do,
but never the real intentions. The expert can define rules to infer user’s
intentions from sensor data, but these rules are not very precise and can
sometimes infer wrong. Knowing at a hight level of abstraction how the user
is currently doing his activity and why he is doing it this way would be a pre-

3



cious information to build a relevant assistance, but this is still an important
research issue.

2.3 The issue of abstracting information from sensored
data

In a survey on context-aware systems [BDR04], Baldauf and Dustdar point
out that most context-aware systems have the same multi-layer architecture.
Sensors are set up in the environment and the first layer consists in sensoring
the environment and user actions to provide context information for upper
layers. The second layer gives a uniform access to raw data coming from
heterogeneous sensors to upper levels, mainly for modularity purpose and
convenience. For example, information coming from a GPS and another
position sensor can be accessed via a single getPosition() method. In
the third layer, sensor data, which are often too technical and too verbose,
are transformed into information at a higher abstraction level. The reason
is that context-aware systems will need contextual information in a more
meaningful form to enable contextual reasoning. For example, the position
coordinates of a user and his surrounding objects can be transformed into
nominal attributes with possible values like closeTo, or farFrom, which
would give more semantics about the current context to upper levels. The
fourth and the fifth layers reuse the context information produced by level
3 to govern the behaviour of the context-aware system. A typical kind of
behavior is to provide an assistance to the user like displaying information
about surrounding objects, recommanding an action, automating the current
task, etc.

The degree of relevancy of a context-aware system strongly depends on
the third layer: the abstraction layer. The critical question is “how to
get high level information from low level data?”. Hilbert and Redmiles
state that there are six levels of abstraction in interactions between a user
and its environment [HR00]. Lowest levels describe very factual events like
gazingDirectionChanged, fingerMoved, etc., while highest levels describe
tasks and goals (e.g. buyingDVD, readingNews). Interactions of a given level
are composed of interactions of the level below. For example, givingAddress
is composed of events selectingField, typingAddress and clickingOK.
Similarly, clickingOK is composed of events movingMouseOnOKButton and
pressMouseButton, etc. The only interaction levels that can be sensed are

4



the lowest ones, but the highest levels are the most useful for context-aware
decision-making. A context-aware system realizes this abstraction by in-
stanciating the context model into context objects from sensor data, follow-
ing certain predefined transformation rules. Sometimes these transformation
rules are not reliable and the abstracted information infered by these rules
might not be totally precise.

2.4 Our interaction-based approach of context-aware
assistance

In our approach of context-aware assistance, we aim at proposing a solution
to the three issues stated above. The idea is, instead of modelling a pri-
ori the context, to model the user’s interactions with the environment. In
other words, the system has no context objects to reason on, but only in-
teraction traces of the user’s current and past activity. An interaction trace
describes the user’s activity: what actions he has done, what objects have
been impacted, the date and time of actions, the roles of potential other
users, etc. Thus, contextual information (who, what, when, where) is em-
bedded in interactions traces, and reasoning on interaction traces comes to
implicitly reasoning on context. But with this approach, the “how” is also
taken into account since all user’s actions and their relative order are consid-
ered. To provide a context-aware assistance to the user, the system compares
the sequence of current interactions (the current trace) to past sequences of
interactions (past episodes), and reuses these past episodes. Many types of
assistance based on interaction traces are possible. For example, in [CJM07],
they are interactively navigable by the user in order to improve his reflexivity.
We clarify in section 4.3 what kind of assistance can be provided by reusing
interaction traces.

This approach is qualified as interaction-based since we put the focus on
modelling interactions rather than on modelling the context directly, even if
the current context is implicitly contained in current interactions. With this
approach, the uniqueness of the context of every situations can potentially be
taken into account when traces are reused, and there is no information loss by
trying to fit data coming from sensors to the context model. But we still face
the abstraction problem; traces obtained from sensors are low-level. To get a
more abstracted interaction trace, sequence mining algorithms like [MTV97]
search for recurrent episodes in low level traces and expose them to the

5



user. The user then tags the episodes he can recognize as meaningful to him.
Observations that compose each episode are transformed in a single, more
abstracted observation that makes sense to the user. With this interactive
approach of abstracting from sensor data, we also address the issue of user-
centricity, since the user is involved in the definition of abstracted traces.

A system that handles interaction traces is called a Trace-Based System
(TBS ) [LSPM06]. A TBS provides tools to model interaction traces, to
collect interaction traces in raw format from sensors and to transform them
into the TBS format. Trace transformations are also handled in a TBS:
filtering, rewriting, merging, etc. A request system enables an user to query
the TBS and to extract transformed traces, that can be visualized through a
visualization system or processed out of the TBS (cf. figure 4). In TBS terms,
the focus of this paper is to explain an interactive approach that defines
“good” trace transformations, where “good” means that resulting traces are
abstracted and user-centric, which enables a more relevant context-aware
assistance.

3 Interaction-based context modelling

This section describes different concepts that need to be introduced before
going into further details in the interactive abstraction process. Examples
and figures are taken from a user working on a Content Management Sys-
tem (CMS) Collaborative ECM 2. So, our environment is a computer system,
which has been set up with sensors to track interactions using, among other
technics, Javascript and auditing3.

3.1 Modelling interaction traces

An interaction trace is a sequence of events. Each event can have many
relations to some entities. The events represent actions performed by an user
or the system, while entities represent objects that exist in the environment.
Relations make the bridge between actions and impacted entities. Each event
has a timestamp of the date when the event occured. The set of events of

2Collaborative ECM is a collaborative CMS developped by our research partner Know-
ings (http://www.knowings.com/)

3http://wiki.alfresco.com/wiki/Audit

6



Figure 1: An example trace model. Navigation and CreateContent are
event classes (subclasses of the general event class Event); User, Content
and Page are entity classes (subclasses of the general entity class Entity);
hasActor, fromPage, toPage et createdContent are relation types.

an interaction trace that occur between two dates d1 and d2 is called the
section (d1,d2).

A trace model is a set of concepts and relation types that expresses knowl-
edge about elements in the interaction trace. Each action, entity, and relation
is an instance of an element in the trace model. Typically, OWL can be used
to build the trace model. Figure 1 shows a trace model example. A trace
section example that is an instance of this trace model, is shown on figure 2.

For the sake of simplicity, very few possible user actions are reified by
event classes in the trace model of figure 1. The class Navigation is in-
stanciated when the user navigates from a page of the CMS to another
one; CreateContent is instanciated each time a new content is created
in the CMS. The example trace of figure 2 can be read as follows. The
user e=damien navigated through pages a=xxx, b=importContent.jsp and
c=setContentProperties.jsp, then created the content f=myContent, and
finally navigated to page d=contentList.jsp. Circles on figure 2 are other
events that occured during this process but not taken into account in this
simple modelling example.

3.2 The task signature

The task signature concept has been introduced in [CPM03]. It is a structure
that represents a typical task in which a user can be engaged. It specifies
what events (or event types) and entities (or entity types) are involved in a
task, and how they are all temporally and structurally related to one another.
In this paper, task signature is defined as follows.

A task signature is a set of event declarations, entity declarations, relations

7



Figure 2: A section of an interaction trace instanciating the trace model of
figure 1

as previously defined, and temporal constraints. An event declaration is either
an event or an event class; an entity declaration is either an entity or an entity
class. A temporal constraint is a pair of event declarations (A,B) meaning
that A must occur before B. In the case an event/entity declaration is a
class, it acts as a structural constraint. An entity (resp. event) e satisfies
an entity declaration (resp. event declaration) E if E is an entity instance
(resp. event instance) and e equals E, or if E is a class and e is an instance
of E. A section of an interaction trace is said to match a task signature when
events, entities and relations of this section statisfy structural and temporal
constraints. A section that matches a task signature is called an occurrence
of this task signature.

Figure 3 gives an example of a task signature for the task “adding a con-
tent to the CMS”. It defines a task signature in which the same user ?x (who-
ever the user is) navigates from b to c, creates any content ?y, and navagiates
to d. The section of figure 2 matches the task signature of figure 3 and then
contains an occurence of this task signature. This task signature can be inter-
preted as “user ?x creates the content ?y”. For example, an occurence of this
signature having ?x=User:damien and ?y=Content:mrc2008-paper.pdf would
be read as “damien adds the content mrc2008-paper.pdf to the CMS”, an-

8



Figure 3: Task signature of the task “adding a content”. The entity declara-
tion User:?x contraints occurences to have entities of class User as targets for
the relation hasActor. The entity declaration b, c and d contraint occurences
to have respectively importContent.jsp, setContentProperties.jsp, and
contentList.jsp as relations fromPage and toPage.

other occurence having ?x=User:béatrice and ?y=Content:mrc2008-paper-review.pdf

would be read as “béatrice adds the content mrc2008-paper-review.pdf

to the CMS”.

3.3 Abstract classes and explained task signatures

In a way, a task signature represents an event that is more abstract than the
ones it is composed of. Having a trace model and a task signature based on
this trace model, it is possible to define a new event class in the trace model.
For example, the task signature of figure 3 could be reified in the trace
model with the event class addContent having a relation type hasActor to
the class User and a new relation type newContent to the class Content.
This operation comes to reformulate the events of the task signature into
a single more abstracted event class. Each time the signature occurs in
the interaction trace, the occurrence could potentially be replaced with a
single instance of the more abstracted class. In this paper, we reuse the
term ExTaSi (Explained Task Signature), introduced in [CPM03], to refer
to a task signature that has been transformed into a class by the user. In

9



Figure 4: Context-aware assistance based on interaction traces reusing

[CPM03], such a signature is qualified as “explained” because the user can
also add an annotation to it in natural language to explain its meaning.

4 Interactive trace abstraction for context-

aware assistance

Figure 4 shows how the context-aware assistance is made from interaction
traces. The primary trace is built by the TBS from raw data that are col-
lected from sensors (1). The primary trace is then abstracted under the
control of the user interactively in the transformation system (2), an as-
sistant system helps the user in his tasks by reusing abstracted traces (3).
Following subsections describe these three steps into details.

4.1 Trace collection

This step consists in collecting interaction traces from all the sensors and in-
tegrating these data into a single interaction trace called the primary trace.
This is the job of the Trace Collection System (TCS), which has the knowl-
edge of the primary trace model and instanciates concepts and relations of
this trace model with observations made from sensor data. Each sensored
interaction in the environment triggers the TCS, which updates in real-time
the primary trace with new observations. The primary trace is a single se-
quence of observations, containing both current (or contextual) information

10



about what happens in the environment and information about what has
happened in the past.

This level of information of the primary trace is like Baldauf and Dustdar’s
level two (cf. section 2.3) in the sense that the primary trace from now
constitutes the unique access to sensored data from the environment. It is
very important to note that the primary trace model is usually not abstract
at all, collecting very fine grain events, and letting the job of aggregating and
abstracting to the transformation system.

4.2 Interactive trace abstraction

Abstracting traces is a process that is actually both interactive and itera-
tive. It is interactive in the sense that, as argued in section 2, the user
must be involved in it so as to be user-centric. It is also iterative, because
several transformations can be applied to get a satisfying abtraction level.
On figure 4, two trace transformations are represented: transformation τ1

abstracts the primary trace into Trace 2, which in turn is abstracted into
Trace 3 by τ2. Figure 5 zooms on a single iteration τk. An iteration is
performed thanks to two complementary separate phases: the trace analysis
and the trace transformation.

4.2.1 Trace analysis.

The analyze step extracts from Trace k recurrent task signatures, using
techniques of “Frequent Episode Discovery” in an event sequence [MTV97],
and suggests them to the user. Then, the user looks at suggested candidate
signatures and validates the ones that make sense to him as ExTaSis. If the
user is not satisfied with the suggested candidates, he can rerun the analysis
with new entry parameters. New entry parameters can be new constraints
guiding the extraction process, like “search for signatures with an instance
of class X”, or “search for signatures with at least two different users” (which
is the task signature of a collaborative task), etc.

4.2.2 Trace transformation.

Once the user has found ExtaSis from Trace k, the tranformation step re-
formulates each occurence of an ExTaSi in Trace k into an abstract event

11



Figure 5: An iteration of the interactive trace abstraction process.

12



in Trace k+1 (cf. Ext1 and Ext2), while every other non-matching observa-
tions in Trace k stay unchanged. In terms of trace models, TMk+1 is built
upon TMk by adding abstract classes that are each made from an ExTaSi, as
explained in section 3.3 (like Ext1 and Ext2 in figure 5). Within the TBS
framework [LSPM06], this operation consists in defining a transformation
rule τk by specifying the pattern to transform (the task signature) and the
result type (the abstract class). The TBS then does the transformation job
for us. This transformation phase results in a new trace Trace k+1 that is
more user-centric, in the sense that it describes the user activity from the
user’s point of view. It is then a more readable and understandable trace to
the user.

4.3 Signature-based context-aware assistance

Back to figure 4, the last part of the context-aware assitance is the Assistance
System itself. It is composed of an assisting agent that observes the current
interaction trace through the TBS’s request system. When the current trace
matches with the beginning of an ExTaSi, the assisting agent requests the
TBS for all occurences of this ExTaSi in the interaction trace. These oc-
curences can be ranked according to a similarity measure to the current
trace. An assistance is provided to the user based on the past most similar
occurences of his current task.

This assistance can be of many types. For example, a task automating
system could propose to the user to finish the current task. Of course, this
kind of system can only be set up in environments in which possible actions
can be easily automated, typically a computer. Another type of usual assis-
tance is to inform the user that some actions, like “look at this document”
or “contact this person”, could help him to better achieve his goals. These
types of assistance systems are based on the current task recognition as the
beginning of an ExTasi. The assistance then consists in recommending to
the user what is coming next in this ExTaSi. The problem is that an ExTaSi
is a general form of a task, which means that some of its components are
concepts and not instances, and consequently a strong adaptation effort to
the current context has to be made by the system.

There is another approach to assistance that would fit better our system:
it consists in making visible to the user in real-time past occurrences of the
recognized ExTaSi, enabling the user to visualize complete stories similar to
what he is currently doing. This could give an access to every entities that

13



were involved in these past stories, and then potentially provides additional
task-contextual information to the user. The importance of storytelling in
human reasoning is well-known and advantages it could bring to the human
activity is getting aknowledged. That is why systems trying to facilitate
storytelling have started to appear. In [LMS04], authors use storytelling to
enable the user to recontextualize objects involved in his activity. In [GJ03],
the authors argue that humans have a narrative indexation of documents, and
that a narrative description of documents is more helpful to the user than
a usual classification. Our system can provide such a storytelling assistance
based on ExTaSi recognition.

5 Discussion

We have seen that the relevancy of an assistance system depends on the user-
centricity of input traces, but it also strongly depends on the adaptation that
the assisting agent is able to perform from past occurences to current context.
This adaptation issue is already known in Case-Based Reasoning systems to
be both quite difficult to formalize and critical for the usability of the system
[MMB+05].

Another interesting issue is organizing ExTaSis. The problem is that an
ExTaXi stands for several similar occurences in the trace, but more precisely
each of these occurences tells actually a different story about the user’s ac-
tivity. We expect there will be a need for expressing that an ExTaSi is
more specific than another one, e.g. expressing that “adding the minutes of
a meeting” and “adding a project plan” are both more specific ExTaSis of
“adding a content”. These concerns have been addressed by Roger Schank
in his theory of dynamic memory [Sch99] to describe the human memory
where Memory Organization Packages (MOP) are structures that hold both
concrete experiences (scripts) and more general ones in a single hiearchy that
is constantly updated. Historically, this theory gave birth to the paradigm
of Case-Based Reasoning (CBR) [RS89], which raised a great interest in the
community of AI.

However, CBR systems can only focus on well-defined problems. In many
environments, we don’t have the knowledge of what the user will precisely
intend to do a priori. We are then unable to define what will be the user
problems, and consequently unable to build a CBR system. The system we
propose in this paper does not need a problem or a case to be modelled

14



beforehand. In a way, it is more a method that supports the emergence
of problem definitions from usage. Indeed, each ExTaSis can be seen as a
problem definition as it describes at a high level of abstraction what a task
consists in. It also contains information about why a user realizes this task
in terms of user intentions (cf. section 2), as an ExTaSi has been labelled in
natural language by the user.

6 Conclusion

In this paper we presented an approach to user’s assistance based on the ex-
ploitation of interaction traces of the user’s activity. We described a model of
interaction traces expressing user’s interaction with his surrounding entities,
and proposed a three-steps process that reuses traces for a contextual assis-
tance: collecting traces from sensors, abstracting traces, and assisting. Two
steps are performed in interaction with the user : the discovery of typical
task signatures that are interpreted and validated by the user and the con-
text based assistance like automatization of tasks, or action recommendation
under the control of the user.

Further work has to be done to precise what kind of transformations are
performed and what granularity level has to be chosen for a better reusability
and understandability of traces. Other works will consist in defining different
kinds of assistance scenario and in studying how a CBR cycle would reason
on traces. In a CBR system, a problem part and a solution part have to be
identified as well as a request that are generally not clear in a current context.
Such a CBR system has to associate knowledge to each kind of signature and
learn from usage to enhance its reasoning capabilities by interactively acquire
knowledge about how to reuse better traces.

References

[ADB+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies,
Mark Smith, and Pete Steggles. Towards a better understand-
ing of context and context-awareness. In HUC ’99: Proceedings
of the 1st international symposium on Handheld and Ubiquitous
Computing, pages 304–307, London, UK, 1999. Springer-Verlag.

15



[BDR04] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg.
A survey on context-aware systems. International Journal of Ad
Hoc and Ubiquitous Computing, forthcoming, 2004.

[CJM07] Damien Cram, Denis Jouvin, and Alain Mille. Visualizing In-
teraction Traces to improve Reflexivity in Synchronous Collabo-
rative e-Learning Activities. In Academic Conferences Limited,
editor, 6th European Conference on e-Learning, pages 147–158,
October 2007.

[CPM03] Pierre-Antoine Champin, Yannick Prié, and Alain Mille.
MUSETTE: Modeling USEs and Tasks for Tracing Experience.
In Workshop 5 ’From Structured Cases to Unstructured Problem
Solving Episodes For Experience-Based Assistance’, ICCBR’03,
2003.

[GJ03] Daniel J. Goncalves and Joachim A. Jorge. Ubiquitous access
to documents: Using storytelling to alleviate cognitive problems.
In Proceedings of the Tenth International Conference on Human-
Computer Interaction, pages 374–378. Lawrence Erlbaum Asso-
ciates, 2003.

[HR00] David M. Hilbert and David F. Redmiles. Extracting usability
information from user interface events. ACM Comput. Surv.,
32(4):384–421, 2000.

[HSW07] Dongpyo Hong, Hedda R. Schmidtke, and Woontack Woo. Link-
ing context modelling and contextual reasoning. In 4th In-
ternational Workshop on Modelling and Reasoning in Context,
Roskilde, Denmark, 2007 2007.

[LMS04] Norman Lin, Kenji Mase, and Yasuyuki Sumi. An object-centric
storytelling framework using ubiquitous sensor technology. In
Proceedings of Pervasive 2004 Workshop on Memory and Sharing
of Experiences, Vienna, Austria, 2004.

[LSPM06] Julien Laflaquière, Lotfi Sofiane Settouti, Yannick Prié, and
Alain Mille. A trace-based System Framework for Experience
Management and Engineering. In Second International Work-
shop on Experience Management and Engineering (EME 2006),
2006.

16



[MMB+05] Ramon Lopez De Mantaras, David McSherry, Derek Bridge,
David Leake, Barry Smyth, Susan Craw, Boi Faltings, Mary Lou
Maher, Michael T. Cox, Kenneth Forbus, Mark Keane, Agnar
Aamodt, and Ian Watson. Retrieval, reuse, revision and reten-
tion in case-based reasoning. Knowl. Eng. Rev., 20(3):215–240,
2005.

[MTV97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Dis-
covery of frequent episodes in event sequences. Data Mining and
Knowledge Discovery, 1(3):259–289, 1997.

[RS89] Christopher K. Riesbeck and Roger C. Schank. Inside Case-
Based Reasoning. Lawrence Erlbaum Associates, Inc., Mahwah,
NJ, USA, 1989.

[Sch99] Roger C. Schank. Dynamic memory revisited. Cambridge Uni-
versity Press, New York, NY, USA, 1999.

[WZGP04] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng
Pung. Ontology Based Context Modeling and Reasoning using
OWL. In PERCOMW ’04: Proceedings of the Second IEEE An-
nual Conference on Pervasive Computing and Communications
Workshops, page 18, Washington, DC, USA, 2004. IEEE Com-
puter Society.

17


