
Timed transition discovery from Web service conversation logs
(extended version)

Didier Devaurs†, Kreshnik Musaraj‡, Fabien De Marchi‡, Mohand-Saïd Hacid‡
† University of Windsor; School of Computer Science

401 Sunset Avenue, Windsor, Ontario, Canada, N9B 3P4
ddevaurs@uwindsor.ca

‡ Université Claude Bernard Lyon 1; LIRIS, UMR CNRS 5205
8 Boulevard Niels Bohr, 69622 Villeurbanne, France

{kreshnik.musaraj, fabien.demarchi, mohand-said.hacid}@liris.cnrs.fr

Abstract

Web service business protocols are of importance to both clients and providers, as they
model the external behaviour of services. However, the business protocol is not always pub-
lished together with the service interface, and this hinders automatic management. When
conversation logs are available, a solution is to discover the business protocol from past
service executions. This presents many difficulties. One of them is the extraction of some
temporal constraints called timed transitions, which are not explicitly recorded in the logs.
In this paper, we present our approach for discovering such transitions. We formally define
a class of patterns called proper timeouts and show that they reveal the presence of timed
transitions in the business protocol. We also present a polynomial algorithm for extracting
such patterns, as well as some preliminary experiments.

Keywords: Web service, business protocol, knowledge extraction, temporal constraint

1 Introduction
Web services are undoubtedly the new well-established generation of Web technologies for appli-
cation interaction and integration. Their increasing use offers many possibilities, but also raises
new questions and problems which need to be quickly answered and solved. A very important
ambition associated with Web services relates to loosely-coupled integration, which is already
partially carried out by the fact that services use widespread standards (XML, HTTP). How-
ever, such flexibility is possible only if users know how to interact with a service. This requires
to associate with services elaborate descriptions (such as WSDL, for example) enabling a good
understanding of their execution semantics.

It is highlighted in [7] that descriptions like WSDL are not sufficient for a sophisticated and
automatic use of Web services, because they provide information only about static properties.
This is one of the main reasons which motivated authors in [7] to define a higher level model,
the so-called business protocol, which specify the external behaviour dynamics of a service (such
as allowed conversations or temporal constraints, cf. Section 2.1). Since it is formalized by
a finite-state machine, the business protocol offers automatic reasoning mechanisms for many
applications, such as correctness verification, compatibility testing, etc. Nevertheless, the busi-
ness protocol is not often specified in real life services. Potential reasons include lack of time
during implementation, or uncontrolled service evolution (making the initial model obsolete).
A solution is to infer the business protocol from the conversation logs of a service (cf. Section
2.2), when available. Solving this discovery problem could also be very useful for re-engineering
applications, such as implementation correctness checking, or service evolution.

1

Discovering service business protocols includes many technical challenges: analyzing logs for
cleaning them from "noise", identifying the different conversations in the logs, defining assess-
able models for extracted protocols (in terms of relevance and quality), developing refining tools
for an interactive extraction, etc. The first contribution to this problem has been proposed in
[15, 16]. This work handles most of the problems mentioned above, but relates only to untimed
business protocols. With the importance of temporal constraints in real life services (such as
expiration dates), it becomes crucial to extend this discovery technique to timed business proto-
cols, which contain not only explicit transitions (related to a message emission or reception), but
also timed transitions (representing implicit state changes, due to temporal constraints). This
is the aim we would like to achieve, by discovering these timed transitions.

Contribution. In this paper, we present our approach for extracting timed transitions from
conversation logs. The challenging point of this problem is that no information is recorded
when a timed transition is triggered. The first part of our work consists in formally defining
a class of patterns called proper timeouts, and showing that these patterns are the best repre-
sentations of timed transitions in the logs. The second part is based on a characterization of
the set of proper timeouts satisfied by the logs, which leads to a polynomial extraction algorithm.

Paper organization. In Section 2, we recall the notion of timed business protocol, and stress
the importance of its use and discovery. Then, we specify what conversation logs are, we define
the problem more precisely, and we present an overview of our approach. Section 3 constitutes
our theoretical analysis leading to the definition of proper timeouts. In Section 4, we present
our method for extracting proper timeouts from logs, and the initial experiments we performed.
We discuss some technical points and present some related work in Section 5. Finally, we draw
some conclusions in Section 6.

2 Context, problem and approach

2.1 Timed business protocols

Business protocols [7] were proposed in order to model execution semantics of Web services.
They are formalized by deterministic finite-state machines1, where states represent the various
phases in which a service can be during its execution. Transitions are triggered when the service
sends or receives messages; each one is labelled by an incoming (+ sign) or an outgoing (− sign)
message. A message corresponds to the invocation of a service operation or to its reply. A
conversation is a sequence of messages exchanged between a given service and a customer. A
business protocol specifies the conversations supported by a service (i.e. all valid sequences of
message exchanges).

Some state changes are not related to the emission of explicit messages but to temporal
constraints (validity period, expiration date, etc). The basic model was thus enhanced with
timed transitions, and renamed timed business protocol [5, 6]. A timed transition (also called
implicit transition) occurs automatically, after a time interval is elapsed since the transition has
been enabled (i.e. source state of the transition has become the current state), or after some
date is reached; it is labelled by the corresponding time constraint. Note that, since the model
is deterministic, a state cannot have several outgoing timed transitions.

Example 1 Fig. 1 illustrates a timed business protocol describing the external behaviour
of an order management service. Explicit transitions are represented by solid lines, and timed
transitions by dotted lines. This protocol specifies that a customer must initially connect himself
(login operation), before looking for products (searchGoods). Then, the user can add or remove
products from its cart (addToCart, removeFromCart), look for other goods (searchGoods), or

1Some other proposals for high-level service models are based on Petri nets, e.g. [12]

2

Figure 1: Example of a timed business protocol [5, 6].

ask for a quote (quoteRequest), which will be valid only during 3 days (i.e. 4320 min); during
this period the goods can be ordered (order). If the user does not do it, the conversation finishes
after 3 days (through the timed transition going out of Quoted state), and the order is canceled.

Using a business protocol (instead of a simple interface or code analysis) makes many prob-
lems easier to solve, because it is a visual model of a service behaviour. For example, it facilitates
(i) the development of clients that can interact correctly with a service, (ii) the evolution of a
service, when adding new functionalities, constraints or rules. As it is an automaton, it can easily
be translated in a programming language. Thus, it enables to perform many tasks in an auto-
matic way, such as (i) checking whether messages are sent or received according to specifications
(i.e. service executions correctness), (ii) testing whether a service is replaceable or compatible
with another one, or whether it conforms to a given standard. More generally, it provides a
high-level and precise language which allows expressing and reasoning about concepts at their
natural level of abstraction. As such, using business protocols can improve service management,
analysis and optimization.

Despite the obvious advantages, most of real life services are not described by such a high-
level model but only by their WSDL specification. It means that, even if the operations provided
by a service are generally published, its valid operation sequences are not always available for
potential users. Furthermore, constructing a model from an unstructured representation or from
specifications of a service is quite difficult and expensive. That is why a method for extracting
the business protocol of a service from its conversation logs was proposed in [15, 16]. Besides
the already mentioned advantages of using business protocols, solving this discovery problem of-
fers its own benefits for re-engineering. For example, programmers could check implementation
correctness, i.e. they could extract the "actual" (really used) protocol of a service, and verify
whether it fits the originally specified one; then they could correct the program or prepare the
service evolution. Once automated this extraction process could also be applied in dynamic
service discovery architectures [9] for automatic service composition and replacement.

Discovering the business protocol of a service includes many technical challenges. First, the
model of the extracted protocol has to take into account the uncertainty of the result, and to
evaluate its relevance by means of confidence indexes and quality criteria. This uncertainty
comes mainly from the fact that service logs can contain some "noise" (i.e. some errors). Thus,
tools are needed to analyze and clean data before treating them. Another challenging issue is the
message correlation, i.e. the identification and separation of the different conversations, which
can overlap in the logs. Finally, it is also important to propose tools that enable to correct or
refine the discovered protocol, according to what the user wants or knows about it.

3

As already mentioned, a method for business protocol discovery is proposed in [15, 16].
This work is mature and handles most of the problems mentioned above. However, it relates
only to untimed protocols, which were the starting point of the work realized in [7] on service
protocols. With the importance of temporal aspects in real life services (such as expiration
dates), it becomes crucial to extend this discovery technique to timed business protocols. This
is the goal we would like to achieve, by adding to the method developed in [15, 16] an extracting
"module" specialized in timed transitions discovery from conversation logs.

2.2 Conversation logs

Extracting timed transitions would be very easy if we had access to "internal" service logs
(defined in the implementation code): it should be enough to make sure that some information
is recorded whenever a timed transition is triggered. However it seems not realistic, because
in a management platform services are generally considered as "black boxes" whose external
behaviour only (published in the interface) can be observed, and not internal operations. In fact
the logs we analyze are recordings of conversations taking place between services (i.e. messages
intercepted by servers or by specific interception tools2); that is why they are called conversation
logs. In the sequel we will consider these logs from the point of view of a given service, i.e. we
will keep only the messages that it sends or receives. In the logs of this service, there will
be explicit traces of all triggered transitions except timed transitions, which are not related to
explicit messages.

Various ways for collecting interaction logs of a service have been described, e.g. in [10].
According to service implementation and to the tools used for execution management, different
information can be logged. In realistic scenarios, at least the content, the sender, the receiver
and the timestamp of each message are collected. However this information can be insufficient
to separate conversations, which can overlap.3 It is highlighted in [15] that providing automat-
ically a unique identifier for each conversation (if it is not logged by the management tool) is a
research topic by itself. As such, it is assumed in [15] that this information is available. We will
make the same assumption. More precisely, we assume that, for each message, the name, the
timestamp and the conversation identifier are available.

We now give a more formal definition of logs. Let Msg be a set of message names. A message
occurrence is a coupleM = (m, t), where m ∈ Msg is the message name (denoted byM.name in
the sequel), and t ∈ IR+ is the message timestamp (denoted byM.time in the sequel). Formally,
a conversation is a sequence of message occurrences C = 〈M1,M2, . . . ,Mn〉, where n ∈ IIN∗, and
M1.time < M2.time < · · · < Mn.time. A conversation logs file L is a multi-set of conversations,
called simply logs L in the sequel.

Example 2 For a service defined with respect to the business protocol illustrated by Fig. 1,
we can for example obtain the following logs:
〈 (login, 9:18), (searchGoods, 9:20), (addToCart, 9:21), (quoteRequest, 9:22), (cancel, 9:51) 〉
〈 (login, 11:03), (searchGoods, 11:04), (addToCart, 11:08), (quoteRequest, 11:12) 〉

2.3 Problem statement and assumptions

Recall that we focus on timed transitions, which are local properties of the business protocol.
Discovering the whole automaton is out of the scope of this paper. The problem we address can
be set out as follows: Let L be a conversation logs file of a service S, whose underlying timed
business protocol P is not known; extract from L the timed transitions of P .

2We do not give any more detail about how logs are gathered. This issue is beyond the scope of this paper.
3Overlapping conversations result from the interactions of several instances of the service with different clients,

in parallel. Isolating these conversations amounts to separating parallel executions of the service.

4

In order to avoid technical problems, and to focus on the central issue, the problem is
simplified, by means of three restrictive working hypothesis, regarding the underlying timed
business protocol. First, we assume that transitions are uniquely labelled, which means that
there do not exist two transitions associated with the same message (cf. Fig. 2). This implies
that each message in the logs corresponds to only one transition in the protocol. Second, we
assume that no final state has an incoming timed transition, because our method cannot discover
a timed transition that reaches a final state. Such transitions need an additional extracting
technique that we plan to consider in future work. Actually, we can expect that, in real life
scenarios, a notification message is sent when an expiration occurs. Finally, we assume that
there is no cycle in the business protocol.

To make sure that all timed transitions can be found, we also assume that logs are complete,
which means that all valid conversations are recorded in the logs (this point is discussed in
Section 5). Finally, we assume that logs are not noisy (i.e. they are correctly recorded, in the
right sequence), in order to propose, in a first step, a deterministic method. In future work we
plan to investigate a probabilistic approach to analyze noisy logs.

Example 3 Logs L1 (cf. Fig. 2) will be our running example. Note that timestamps are
relative to the beginning of each conversation. Protocol P1, which has been used for generating
logs L1, is supposed to be unknown. Note also that protocol P1 is intentionnally simplified
compared to general business protocols, which can contain much more information.

a

b

c
d

e

f

T.T. : 7

s

T.T. : 4

s

s

k

i

s

s

j

g

h

0

1

2

3

6

s5

s
4 s7

s
8

s
9

Figure 2: Protocol P1 (left) and associated logs L1 (right).

2.4 Overall presentation of the approach

Recall that a timed transition is part of a business protocol, which is an abstract representation of
a service behaviour. Since we only have logs (which are in fact recordings of service executions,
in the concrete domain), we cannot work at this abstract level, and directly discover timed
transitions. Furthermore, their occurrences cannot explicitly be disclosed by logs, in contrary
to explicit transitions, whose labels are recorded. We need to identify some traces (i.e. some
consequences) of a timed transition, showing that it has been triggered. Thus, our problem is
twofold: (i) specify suitable patterns that could correspond to timed transitions, and (ii) extract
these patterns from the logs.

We define a class of patterns called proper timeouts, and give a condition for a proper timeout
to be satisfied by the logs. However, no equivalence can be found between the presence of a
timed transition, and the satisfaction of a proper timeout. We present a necessary condition,
which states that: if a timed transition belongs to the business protocol, then a corresponding
proper timeout is satisfied by the logs. Conversely, we say that: a satisfied proper timeout
reveals only the presence of a potential timed transition. Indeed, another scenario leads also to
the satisfaction of a proper timeout, because it creates the same kind of traces in the logs. It

5

occurs if, in some state of the service, some messages always take longer to be sent or received
than others. In both scenarios, the presence of a timed transition will be presumed, because logs
by themselves are not sufficient to distinguish them (but we sketch some solutions in Section 5).
Details of the theoretical analysis leading to these definitions and results, as well as examples,
are presented in Section 3.

Although we cannot establish an equivalence between these patterns, proper timeouts are
the best representations of timed transitions, in the logs. Due to the assumption on logs com-
pleteness, all timed transitions can be found, because each one of them involves the satisfaction
of a proper timeout. That justifies the relevance of a timed transition discovery method based
on proper timeout mining.

A basic "generate and test" approach for proper timeouts extraction would be intractable,
because it would suffer from combinatorial explosion. Instead we propose a simple characteri-
zation of the set of proper timeouts satisfied by the logs (presented in Section 4.1). It is based
on a specific (and totally ordered) partition of the occurring episodes, which represent pairs of
messages that occur consecutively in a conversation. Once this partition is constructed, the set
of proper timeouts is exactly given by its pairs of consecutive elements. Finally, we propose an
incremental algorithm for constructing such a partition (presented in Section 4.2). This con-
struction is achievable in polynomial time with respect to the input size (i.e. the number of
episodes) using only two simple operations (add and merge).

3 Associating patterns with timed transitions

3.1 Episodes

Let Msg be the set of message names, and L the conversation logs file. To reason about consec-
utive messages, we introduce the notion of episode occurrence.

Definition 1 An episode is a sequence of two message names α = 〈m,m′〉, withm,m′ ∈ Msg.

Definition 2 Given an episode α = 〈m,m′〉, an occurrence of α is a sequence of message
occurrences 〈M,M ′〉 such that there exists a conversation C ∈ L satisfying:

M,M ′ ∈ C
M.name = m and M ′.name = m′

M.time < M ′.time
@M ′′ ∈ C such that M.time < M ′′.time < M ′.time

If such a sequence exists, we say that α occurs in conversation C.

Given an episode α, we denote by Occ(α) its set of occurrences. We say that α occurs in
logs L if α occurs in at least one conversation C of L, i.e. if Occ(α) 6= φ. We denote by Ep the
set of episodes that occur in logs L.

Proposition 1 Consider the set Pm = {α ∈ Ep|∃m′ ∈ Msg, α = 〈m,m′〉}, for each m ∈ Msg.
Then, {Pm |m ∈ Msg} is a partition of Ep.

This means that one can partition the episodes, such that each part contains all the episodes
whose first element is a given messagem. It will enable to decompose our discovery task. Instead
of analyzing all the episodes as a whole, we will treat each element of this partition separately.

Example 4 Consider logs L1 (cf. Fig. 2). Here, Ep = Pa ∪ Pb ∪ Pc ∪ Pd ∪ Pe ∪ Pf , where
Pb = {〈b, c〉, 〈b, d〉, 〈b, e〉, 〈b, f〉, 〈b, g〉, 〈b, h〉} (note that for example 〈b, i〉 6∈ Pb), etc. Moreover,
Occ(〈b, h〉) = { 〈(b, 0), (h, 13)〉 , 〈(b, 0), (h, 15)〉 } (but 〈(b, 0), (h, 3)〉 6∈ Occ(〈b, h〉)), etc.

6

We define now the concept of occurrence duration. Intuitively, the occurrence duration of an
episode occurrence is the difference between the message timestamps in this occurrence. From
this, we define the minimal (respect. maximal) occurrence duration of an episode as the smallest
(respect. greatest) occurrence duration of all its occurrences. The occurrence duration interval
of an episode is the interval which includes all its occurrence durations.

Definition 3 Consider an episode α ∈ Ep.
The duration of an occurrence 〈M,M ′〉 of α is M ′.time−M.time.
The minimal occurrence duration of α is dmin(α) = min{M ′.time−M.time|〈M,M ′〉 ∈ Occ(α)}.
Its maximal occurrence duration is dmax(α) = max{M ′.time−M.time | 〈M,M ′〉 ∈ Occ(α)}.
The occurrence duration interval of α is [dmin(α); dmax(α)].

In the same way, we define the minimal (respect. maximal) occurrence duration of a set of
episodes as the minimum (respect. maximum) of all the minimal (respect. maximal) occurrence
durations of these episodes. The occurrence duration interval of a set of episodes is the interval
which includes all the occurrence durations of these episodes.

Definition 4 Consider a set of episodes A ⊆ Ep (A 6= φ).
The minimal occurrence duration of A is Dmin(A) = min{dmin(α) | α ∈ A}.
The maximal occurrence duration of A is Dmax(A) = max{dmax(α) | α ∈ A}.
The occurrence duration interval of A is [Dmin(A);Dmax(A)].

Example 5 Consider logs L1 (cf. Fig. 2). The occurrence duration interval of episode 〈c, k〉
is [1; 3]. The occurrence duration intervals of sets {〈a, c〉, 〈a, d〉} and {〈a, h〉} are [1; 5] and [8; 10]
respectively. They are disjoint and satisfy a precedence relation on the time scale. Obviously,
this is due to the timed transition between states s2 and s3, triggered automatically at time 7
(after arrival in state s2) if none of the messages c, d or e is emitted before.

Since it is the consequence of the presence of a timed transition, the precedence relation
presented in this example will be useful in the sequel. If the reasoning is reversed, finding that
such a relation is satisfied by the data could lead to the discovery of a timed transition. Thus,
we formalize this relation.

3.2 Order relation on sets of episodes

Definition 5 Consider A,B ⊆ Ep (A,B 6= φ). We say that A precedes B, which is denoted
by A ≺ B, if Dmax(A) < Dmin(B). We say that A and B are not comparable, which is denoted
by A ‖ B, if A ⊀ B and B ⊀ A.

Intuitively, the expression A ≺ B means that the occurrence duration interval of A precedes
that of B on the time scale, and that they are disjoint. We say also that B follows A.

Property 1 Relation ≺ is a strict order relation on P(Ep) \ {φ}.

Proof
− Irreflexivity:
Consider A ⊆ Ep (A 6= φ).
Dmin(A) ≤ Dmax(A)⇒ Dmax(A) ≮ Dmin(A)⇒ A ⊀ A.
Therefore, ∀A ⊆ Ep (A 6= φ), A ⊀ A.
− Asymmetry:
Consider A,B ⊂ Ep such that A ≺ B.
As A ≺ B, we have: Dmax(A) < Dmin(B).

7

Since Dmin(A) ≤ Dmax(A) and Dmin(B) ≤ Dmax(B), we have: Dmin(A) < Dmax(B).
Thus, Dmax(B) ≮ Dmin(A), i.e. B ⊀ A.
Therefore, ∀A,B ⊂ Ep, A ≺ B ⇒ B ⊀ A.
− Transitivity:
Consider A,B,C ⊂ Ep such that A ≺ B and B ≺ C.
We have: A ≺ B ⇒ Dmax(A) < Dmin(B) and B ≺ C ⇒ Dmax(B) < Dmin(C).
Since Dmin(B) ≤ Dmax(B), we have: Dmax(A) < Dmin(C), i.e. A ≺ C.
Therefore, ∀A,B,C ⊂ Ep, we have: (A ≺ B and B ≺ C) ⇒ A ≺ C.

�

Example 6 Consider logs L1 (presented in Fig. 2). We have:
· {〈a, c〉} ≺ {〈a, g〉}, for Dmax({〈a, c〉}) = 3 < 15 = Dmin({〈a, g〉})
· {〈a, c〉, 〈a, d〉} ≺ {〈a, g〉}, for Dmax({〈a, c〉, 〈a, d〉}) = 5 < 15 = Dmin({〈a, g〉})
· {〈a, c〉, 〈a, d〉} ≺ {〈a, g〉, 〈a, h〉}, for Dmax({〈a, c〉, 〈a, d〉}) = 5 < 8 = Dmin({〈a, g〉, 〈a, h〉})
· {〈a, c〉, 〈a, d〉, 〈a, e〉} ≺ {〈a, g〉, 〈a, h〉} for Dmax({〈a, c〉, 〈a, d〉, 〈a, e〉}) < Dmin({〈a, g〉, 〈a, h〉})
· etc

Proposition 2 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If there exists a timed
transition, in the business protocol, between the state from which the transitions corresponding
to the elements of A are going out, and the one from which the transitions corresponding to the
elements of B are going out, then A ≺ B.

i) ii)

m

T.T. : t

s

s

...

...
m

.......

T.T. : t1

1

m’1 m’2

m’p

2
m’’1

m’’2m’’q

T.T. : t

s

s

...

...

1

m’1 m’2

m’p

2
m’’1

m’’2m’’q

T.T. : t n>

Figure 3: Various configurations associated with a timed transition having as time constraint t.

Proof Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ) such that A = {〈m,m′1〉, . . . , 〈m,m′p〉}
andB = {〈m,m′′1〉, 〈m,m′′2〉, . . . , 〈m,m′′q 〉}. Since transitions of the business protocol are uniquely
labelled, A ∩B = φ.
Assume there exists a timed transition, in the business protocol, between the state (denoted by
s1) from which the transitions labelled by m′1, m′2, . . . , m′p are going out, and the one (denoted
by s2) from which the transitions labelled bym′′1, m′′2, . . . , m′′q are going out. With this transition
is associated some time constraint t. During a conversation, once state s1 is reached, if none
of the messages m′1, m′2, . . . , m′p is emitted before time t, the service reaches automatically
state s2. In other words, in a point of view which is global to all executions, we observe that:
once state s1 is reached, messages m′1, m′2, . . . , m′p can be emitted only before time t, although
messages m′′1, m′′2, . . . , m′′q can be emitted only after.

8

• If the transition labelled by m come into state s1 (cf. Fig. 3 i)):
We have: ∀ 1 ≤ i ≤ p, dmax(〈m,m′i〉) < t, and ∀ 1 ≤ j ≤ q, dmin(〈m,m′′j 〉) > t.
As Dmax(A) = max1≤i≤p{dmax(〈m,m′i〉)} and Dmin(B) = min1≤j≤q{dmin(〈m,m′′j 〉)}, we
have: Dmax(A) < t < Dmin(B).
Therefore, A ≺ B.

• Else (cf. Fig. 3 ii)):
The state in which the transition labelled by m is coming, is linked to s1 by a sequence of
n (n ≥ 1) timed transitions associated with time constraints t1, t2, . . . , tn.
Then we have: Dmax(A) < t+ T < Dmin(B), where T = t1 + t2 + · · ·+ tn.
Therefore, A ≺ B.

Remark. We can prove that, if there exists a sequence of m timed transitions (m ≥ 1) between
the states from which the transitions corresponding to the elements of A and B respectively are
going out, then A ≺ B. In this case, if t1, t2, . . . , tm are the time constraints associated with
the different timed transitions, the proof is similar, with t = t1 + t2 + · · ·+ tm.

�

This proposition is a necessary condition for the existence of a timed transition. Our problem
would be solved if this condition was also sufficient (we would have an object equivalent to a
timed transition); but that is not the case.

Remark. The converse of Proposition 2 does not hold.

Counter-example. We have {〈a, c〉} ≺ {〈a, e〉} (for Dmax({〈a, c〉}) = 3 < 4 = Dmin({〈a, e〉}))
in logs L1, whereas the transitions labelled by c and e are going out of the same state (cf. Fig. 2).

Proposition 2 and the assumption on logs completeness guarantee that the set of expressions
A ≺ B verified by the logs encompasses all timed transitions. However, these expressions can
also give false information, about non-existent transitions. This arises from the fact that the
relation ≺ does not take into account all the information induced by the presence of a timed
transition. That is why we define in the sequel a richer relation on sets of episodes.

3.3 Timeouts

Definition 6 A timeout is a triplet T (m,A,B), where m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ).
We say that logs L satisfy the timeout T (m,A,B), which is denoted by L � T (m,A,B), if:{

A ≺ B
∀ α ∈ Pm, {α} ∦ A or {α} ∦ B

If A = {〈m,m′1〉, 〈m,m′2〉, . . . , 〈m,m′p〉}, B = {〈m,m′′1〉, . . . , 〈m,m′′q 〉}, and L � T (m,A,B), by
abuse of notation, we write: L � T (m, {m′1,m′2, . . . ,m′p}, {m′′1,m′′2, . . . ,m′′q}).

Intuitively, the assertion L � T (m,A,B) means that, according to logs L, (i) occurrence
durations of all the episodes in A are strictly less than occurrence durations of all the episodes
in B, and that (ii) there is no episode having one occurrence whose duration belongs to the
occurrence duration interval of A, and another occurrence whose duration belongs to the occur-
rence duration interval of B. With this timeout can be associated an expiry time, greater than
the maximum occurrence duration of all the episodes in A (i.e. Dmax(A)), and less than the
minimal occurrence duration of all the episodes in B (i.e. Dmin(B)). The possible values for
such an expiry time are all real numbers in the interval]Dmax(A);Dmin(B)[, called the expiry
interval of T (m,A,B).

9

Example 7 T (b, {c, d, e}, {g, h}) is a timeout satisfied by logs L1 (cf. Fig. 2). Indeed, the
sets {〈b, c〉, 〈b, d〉, 〈b, e〉} and {〈b, g〉, 〈b, h〉} satisfy the conditions of Definition 6 for Pb, i.e.
· {〈b, c〉, 〈b, d〉, 〈b, e〉} ≺ {〈b, g〉, 〈b, h〉} (for Dmax({〈b, c〉, 〈b, d〉, 〈b, e〉}) < Dmin({〈b, g〉, 〈b, h〉}))
· ∀ α ∈ Pb, {α} ∦ {〈b, c〉, 〈b, d〉, 〈b, e〉} or {α} ∦ {〈b, g〉, 〈b, h〉} (e.g. {〈b, f〉} ≺ {〈b, g〉, 〈b, h〉})
We also verify that L1 � T (a, {c, d, e}, {g}), L1 � T (a, {c, d}, {g}), L1 � T (b, {f}, {c, d, e}),
L1 � T (b, {f}, {g, h}), L1 � T (b, {f}, {c, d, e, g, h}), etc.
On the other hand, L1 2 T (a, {c}, {e}), for {〈a, d〉} ‖ {〈a, c〉} and {〈a, d〉} ‖ {〈a, e〉}.

Proposition 3 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If there exists a timed
transition, in the business protocol, between the state from which the transitions corresponding
to the elements of A are going out, and the one from which the transitions corresponding to the
elements of B are going out, then L � T (m,A,B).

m

T.T. : t

s

s

...

...

1

m’1 m’2

m’p

2
m’’1

m’’2m’’q

> us’2s’1s’ T.T. : t’u
T.T. : t’1

1s’’
T.T. : t’’1

.......<v-1s’’vs’’
T.T. : t’’v

Figure 4: General configuration associated with A and B.

Proof Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ) such that A = {〈m,m′1〉, . . . , 〈m,m′p〉}
and B = {〈m,m′′1〉, . . . , 〈m,m′′q 〉}. Assume there exists a timed transition, in the business proto-
col, between the state from which the transitions labelled by m′1, m′2, . . . , m′p are going out, and
the one from which the transitions labelled by m′′1, m′′2, . . . , m′′q are going out. This configuration
is illustrated by Fig. 4 (where u and v can equal zero). According to Proposition 2, we already
know that A ≺ B.
Consider α = 〈m,m′〉 ∈ Pm. m′ is associated with a transition going out of, either state s1, or
state s2, or one of the states s′1, s′2, . . . , s′u, or one of the states s′′1, s′′2, . . . , s′′v .

• If it is s1, or one of the states s′1, s′2, . . . , s′u, we have:
∀ 1 ≤ j ≤ q, dmax(α) < t+∑uk=1 t

′
k < dmin(〈m,m′′j 〉).

Thus: Dmax({α}) = dmax(α) < min{dmin(〈m,m′′j 〉) | 1 ≤ j ≤ q} = Dmin(B).
Then, {α} ≺ B, and therefore {α} ∦ B.

• If it is s2, or one of the states s′′1, s′′2, . . . , s′′v , we have:
∀ 1 ≤ i ≤ p, dmin(α) > t+∑uk=1 t

′
k > dmax(〈m,m′i〉).

Thus: Dmin({α}) = dmin(α) > max{dmax(〈m,m′i〉) | 1 ≤ i ≤ p} = Dmax(A).
Then, A ≺ {α}, and therefore {α} ∦ A.

• Conclusion: ∀ α ∈ Pm, {α} ∦ A or {α} ∦ B.
Since A ≺ B, we have: L � T (m,A,B).

�

Remark. The converse of Proposition 3 does not hold.

10

Counter-example. The timeout T (b, {f}, {g, h}) is satisfied by logs L1, although there is no
timed transition between states s1 and s3 of protocol P1 (cf. Fig. 2). However, a chain composed
of two timed transitions connects these states.

Proposition 3 and the assumption on logs completeness guarantee that each timed transition
of the business protocol can be found via some timeout satisfied by the logs. However, a time-
out is satisfied between two sets of episodes, if a timed transition is present between the states
corresponding to those sets of episodes, as well as if it is a chain of timed transitions. Thus, we
define a restricted class of timeouts, in order to avoid such ambiguity. Another problem related
to timeouts is that they are much more numerous than timed transitions are (cf. Ex. 8).

Example 8 Consider protocol P1 and logs L1 (cf. Fig. 2). The timed transition between states
s1 and s2 involves the satisfaction of T (b, {f}, {c, d, e}), but also of T (b, {f}, {c, d, e, g, h}). The
one between s2 and s3 leads to the satisfaction of T (a, {c, d, e}, {g}), but also of T (a, {c, d}, {g}).

This example illustrates that several forms of "redundancy" can appear. Nevertheless, we
would like to give to the user the minimal information needed to find the timed transitions. It
is in this sense that we define proper timeouts.

3.4 Proper timeouts

Definition 7 A proper timeout is a triplet PT (m,A,B), where m ∈ Msg, and A,B ⊂ Pm
(A,B 6= φ). We say that logs L satisfy the proper timeout PT (m,A,B), which is denoted by
L � PT (m,A,B), if:

A ≺ B
∀ α ∈ Pm \ (A ∪B), {α} ∦ A ∪B
∀X,Y ⊂ A (X,Y 6= φ) such that X ∪ Y = A, we have X ⊀ Y
∀X,Y ⊂ B (X,Y 6= φ) such that X ∪ Y = B, we have X ⊀ Y

If A = {〈m,m′1〉, 〈m,m′2〉, . . . , 〈m,m′p〉}, B = {〈m,m′′1〉, . . . , 〈m,m′′q 〉}, and L � PT (m,A,B), by
abuse of notation, we write: L � PT (m, {m′1,m′2, . . . ,m′p}, {m′′1,m′′2, . . . ,m′′q}).

Intuitively, the assertion L � PT (m,A,B) means that, according to logs L, (i) occurrence
durations of all the episodes in A are strictly less than occurrence durations of all the episodes
in B, that (ii) there is no episode, except those of A and B, having occurrences whose durations
belong to the occurrence duration interval of A ∪B (interval including the occurrence duration
intervals of A and B), and that (iii) there is no partition of A or B composed of two subsets
ordered by the relation ≺. Obviously, a proper timeout is a timeout. This result is formalized
by the following property, whose converse does not hold (cf. Ex. 9).

Property 2 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If L � PT (m,A,B), then
L � T (m,A,B).

Proof Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ).
Assume that: L � PT (m,A,B). Then we have: A ≺ B.
Consider α ∈ Pm.

• If α ∈ Pm\(A∪B), by assumption, we have: {α} ∦ A∪B, i.e. {α} ≺ A∪B or A∪B ≺ {α}.
Thus: dmax(α) < Dmin(A ∪B) or dmin(α) > Dmax(A ∪B).
Then, dmax(α) < Dmin(A) or dmin(α) > Dmax(A),
for A ⊂ A ∪B ⇒ [Dmin(A ∪B) ≤ Dmin(A) and Dmax(A ∪B) ≥ Dmax(A)].
Therefore, {α} ≺ A or A ≺ {α}, i.e. {α} ∦ A.

11

• If α ∈ A, we have: dmax(α) ≤ Dmax(A).
As Dmax(A) < Dmin(B) (for A ≺ B), we have: dmax(α) < Dmin(B).
Then, {α} ≺ B, and therefore {α} ∦ B.

• If α ∈ B, we have: dmin(α) ≥ Dmin(B).
As Dmin(B) > Dmax(A) (for A ≺ B), we have: dmin(α) > Dmax(A).
Then, A ≺ {α}, and therefore {α} ∦ A.

• Conclusion: ∀ α ∈ Pm, {α} ∦ A or {α} ∦ B
Since A ≺ B, we have: L � T (m,A,B).

�

Example 9 PT (b, {c, d, e}, {g, h}) is a proper timeout satisfied by logs L1 (cf. Fig. 2), because
{〈b, c〉, 〈b, d〉, 〈b, e〉} and {〈b, g〉, 〈b, h〉} satisfy the conditions of Definition 7, for Pb, i.e.
· {〈b, c〉, 〈b, d〉, 〈b, e〉} ≺ {〈b, g〉, 〈b, h〉}
· {〈b, f〉} ∦ {〈b, c〉, 〈b, d〉, 〈b, e〉, 〈b, g〉, 〈b, h〉}
· ∀X,Y ⊂ {〈b, c〉, 〈b, d〉, 〈b, e〉} (X,Y 6= φ) such that X∪Y = {〈b, c〉, 〈b, d〉, 〈b, e〉}, we have X ⊀ Y
· {〈b, g〉} ‖ {〈b, h〉}
We also verify that, for example, L1 � PT (a, {c, d, e}, {h}). On the other hand, we have:
· L1 2 PT (b, {f}, {g, h}), for {〈b, c〉} ‖ {〈b, f〉, 〈b, g〉, 〈b, h〉}
· L1 2 PT (b, {f}, {c, d, e, g, h}), for {〈b, c〉, 〈b, d〉, 〈b, e〉} ≺ {〈b, g〉, 〈b, h〉}
· L1 2 PT (a, {c, d}, {g}), for {〈a, e〉} ‖ {〈a, c〉, 〈a, d〉, 〈a, g〉}

Proposition 4 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If there exists a timed
transition, in the business protocol, between two states s1 and s2 such that the sets of transitions
going out of s1 and s2 respectively are in bĳection with A and B, then there exist A′ ⊆ A and
B′ ⊆ B (A′, B′ 6= φ) such that L � PT (m,A′, B′).

Proof Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). Assume there exists a timed transition,
in the business protocol, between two states s1 and s2 such that the sets of transitions going out
of s1 and s2 are in bĳection with A and B respectively.
Consider {A1, A2, . . . , Ax} the partition (which can be reduced to one element) of A such that:
− A1 ≺ A2 ≺ · · · ≺ Ax (knowing that ≺ is an order relation), and
− ∀ 1 ≤ k ≤ x, ∀ X,Y ⊂ Ak (X,Y 6= φ) such that X ∪ Y = Ak, we have X ⊀ Y .
Consider {B1, B2, . . . , By} the partition (which can be reduced to one element) of B such that:
− B1 ≺ B2 ≺ · · · ≺ By, and
− ∀ 1 ≤ k ≤ y, ∀ X,Y ⊂ Bk (X,Y 6= φ) such that X ∪ Y = Bk, we have X ⊀ Y .
Denote by m′1, m′2, . . . , m′p the elements of Ax, and by m′′1, m′′2, . . . , m′′q the elements of B1.
This configuration is illustrated by Fig. 4 (where u and v can equal zero).
According to Proposition 3, we already know that L � T (m,Ax, B1), and thus that Ax ≺ B1.
Consider α = 〈m,m′〉 ∈ Pm \ (Ax ∪ B1). m′ is associated with a transition going out of, either
state s1, or state s2, or one of the states s′1, s′2, . . . , s′u, or one of the states s′′1, s′′2, . . . , s′′v .

• If it is one of the states s′1, s′2, . . . , s′u, we have:
∀ 1 ≤ i ≤ p, dmax(α) <∑uk=1 t

′
k < dmin(〈m,m′i〉); and

∀ 1 ≤ j ≤ q, dmax(α) <∑uk=1 t
′
k < dmin(〈m,m′′j 〉).

Thus: dmax(α) < min({dmin(〈m,m′i〉) | 1 ≤ i ≤ p} ∪ {dmin(〈m,m′′j 〉) | 1 ≤ j ≤ q}),
i.e. Dmax({α}) < Dmin(Ax ∪B1).
Then, {α} ≺ Ax ∪B1, and therefore {α} ∦ Ax ∪B1.

• If it is one of the states s′′1, s′′2, . . . , s′′v , we have:
∀ 1 ≤ i ≤ p, dmin(α) > t+ t′′1 +∑uk=1 t

′
k > dmax(〈m,m′i〉); and

∀ 1 ≤ j ≤ q, dmin(α) > t+ t′′1 +∑uk=1 t
′
k > dmax(〈m,m′′j 〉).

Thus: dmin(α) > max({dmax(〈m,m′i〉) | 1 ≤ i ≤ p} ∪ {dmax(〈m,m′′j 〉) | 1 ≤ j ≤ q}),
i.e. Dmin({α}) > Dmax(Ax ∪B1).
Then, Ax ∪B1 ≺ {α}, and therefore {α} ∦ Ax ∪B1.

12

• If it is state s1 (which implies that x ≥ 2):
Since α ∈ Pm \Ax, we have: α ∈ Al, with 1 ≤ l ≤ x− 1.
Thus: dmax(α) ≤ Dmax(Al) < Dmin(Ax) (for Al ≺ Ax, by transitivity).
Furthermore, ∀ 1 ≤ j ≤ q, dmax(α) < t+∑uk=1 t

′
k < dmin(〈m,m′′j 〉).

Then, dmax(α) < Dmin(B1), and therefore Dmax({α}) = dmax(α) < Dmin(Ax ∪B1).
Accordingly, {α} ≺ Ax ∪B1, and thus {α} ∦ Ax ∪B1.

• If it is state s2 (which implies that y ≥ 2):
Since α ∈ Pm \B1, we have: α ∈ Bh, with 2 ≤ h ≤ y.
Thus: dmin(α) ≥ Dmin(Bh) > Dmax(B1) (for B1 ≺ Bh, by transitivity).
Furthermore, ∀ 1 ≤ i ≤ p, dmin(α) > t+∑uk=1 t

′
k > dmax(〈m,m′i〉).

Then, dmin(α) > Dmax(Ax), and therefore Dmin({α}) = dmin(α) > Dmax(Ax ∪B1).
Accordingly, Ax ∪B1 ≺ {α}, and thus {α} ∦ Ax ∪B1.

• Conclusion: ∀ α ∈ Pm \ (Ax ∪B1), {α} ∦ Ax ∪B1.
By assumption, we have also:

• ∀ X,Y ⊂ Ax (X,Y 6= φ) such that X ∪ Y = Ax, we have X ⊀ Y ;
• ∀ X,Y ⊂ B1 (X,Y 6= φ) such that X ∪ Y = B1, we have X ⊀ Y .

Therefore, L � PT (m,Ax, B1), with Ax ⊆ A and B1 ⊆ B (Ax, B1 6= φ).
�

Remark. The converse of Proposition 4 does not hold.

Counter-example. We have L1 � PT (a, {h}, {g}), although the transitions labelled by h and g
are going out of the same state (cf. Fig. 2). The satisfaction of this proper timeout is explained
by the fact that, in logs L1, after message a has been emitted, message g always takes longer to
be emitted than message h.

According to Proposition 4 and the assumption on logs completeness, since each timed tran-
sition involves the satisfaction by the logs of a proper timeout, we can find all of them. However,
we can discover more proper timeouts than there are timed transitions, if some messages always
take longer to be sent or received than the messages associated with all other transitions of the
same state. The following theorem states that this is the only possible alternative.

Theorem 1 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If L � PT (m,A,B), then there
exist in the business protocol:

• either two states s1 and s2, such that s2 is linked to s1 by a timed transition, that A
corresponds to a subset of the transitions going out of s1, and that B corresponds to a
subset of the transitions going out of s2,

• or one state s, such that A ∪ B corresponds to a subset of the transitions going out of s,
and that the messages in B always take longer to be emitted than those in A.

Proof Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). Assume that L � PT (m,A,B), i.e. :
A ≺ B (1)
∀ α ∈ Pm \ (A ∪B), {α} ∦ A ∪B (2)
∀X,Y ⊂ A (X,Y 6= φ) such that X ∪ Y = A, we have X ⊀ Y (3)
∀X,Y ⊂ B (X,Y 6= φ) such that X ∪ Y = B, we have X ⊀ Y (4)

Denote by sm the state of the business protocol in which the transition labelled by m is coming.
Since A,B ⊂ Pm, the elements in A∪B correspond to transitions which are going out of, either
sm, or a state linked to sm by a timed transition, or by a sequence of timed transitions.

13

• If all these transitions are going out of the same state (sm or another):
Since A ≺ B, we know that the messages associated with the elements of B always take
longer to be emitted than those associated with elements of A.

• If these transitions are going out of two different states s1 and s2:
s1 and s2 are linked by a sequence of p timed transitions, where p ≥ 1 (if p = 1, it is
a single timed transition). Without loss of generality, we can assume that s1 is at the
"beginning" of the sequence, and s2 at the "end". Denote by E1 and E2 the sets of episodes
from Pm corresponding to the transitions going out of s1 and s2 respectively.
We have: A ∪B ⊆ E1 ∪ E2, (A ∪B) ∩ E1 6= φ, and (A ∪B) ∩ E2 6= φ.
Assume that E1 ∩A = φ.

We have A ⊆ E2, and therefore E1 ∩B 6= φ.
Assume that E2 ∩B 6= φ.
We have (E1 ∩B) ∪ (E2 ∩B) = B.
Since s2 is linked to s1 by a sequence of timed transitions, we have: E1 ∩B ≺ E2 ∩B,
which contradicts (4).

Then, E2 ∩B = φ, and thus B ⊆ E1.
As A ⊆ E2, and s2 is at the end of the timed transitions sequence, we have: B ≺ A,
which contradicts (1).

Therefore, E1 ∩A 6= φ.
Assume that E2 ∩A 6= φ.

We have (E1 ∩A) ∪ (E2 ∩A) = A.
Since s2 is linked to s1 by a sequence of timed transitions, we have: E1 ∩A ≺ E2 ∩A,
which contradicts (3).

Therefore, E2 ∩A = φ.
Then, A ⊆ E1, and thus E2 ∩B 6= φ.
As we cannot have E1 ∩B 6= φ, we have: B ⊆ E2.
Thus, A and B correspond to two sets of transitions going out of s1 and s2 respectively.
Assume that p ≥ 2 (i.e. the sequence is composed of several transitions).
There exists a state s3 "between" s1 and s2.
Denote by E3 the set of episodes from Pm associated with the transitions going out of s3.
Consider α ∈ E3.
We have: dmin(α) < Dmax(B) = Dmax(A ∪B) (for A ≺ B), and thus A ∪B ⊀ {α}.
Furthermore, dmax(α) > Dmin(A) = Dmin(A ∪B) (for A ≺ B), and thus {α} ⊀ A ∪B.
Therefore, {α} ‖ A ∪B with α ∈ Pm \ (A ∪B), which contradicts (2).
Consequently, p = 1, i.e. s2 is linked to s1 by a single timed transition.

• If these transitions are going out of n states s1, s2, . . . , sn (with n ≥ 3):
Denote by E1, E2, . . . , En the sets of episodes from Pm which correspond to the transitions
going out of s1, s2, . . . , sn respectively.
We have: A ∪B ⊆ ⋃ni=1Ei, and ∀ 1 ≤ i ≤ n, (A ∪B) ∩ Ei 6= φ.
Assume that: ∃ i ∈ J1;nK such that A ⊆ Ei.

If I = J1;nK \ {i}, we have: card(I) ≥ 2, and ∀ k ∈ I, B ∩ Ek 6= φ.
Therefore, ∃ j ∈ I such that B ∩ Ej ≺

⋃
k∈I\{j}(B ∩ Ek), which contradicts (4).

Thus, @ i ∈ J1;nK such that A ⊆ Ei.
If J = {k ∈ J1;nK | A ∩ Ek 6= φ}, we have: card(J) ≥ 2.
Therefore, ∃ j ∈ J such that A ∩ Ej ≺

⋃
k∈J\{j}(A ∩ Ek), which contradicts (3).

Thus, we cannot have n ≥ 3.
�

Although we cannot ensure a total correspondence between these objects, proper timeouts
are the best possible representations of timed transitions, in the logs, for practical purposes.
Theorem 1 guarantees that, if we discover a proper timeout in the logs, then there is a timed
transition in the business protocol, or some messages take longer to be emitted than others,

14

knowing that the logs by themselves are not sufficient to detect such eventuality. Thus, we will
say that: a satisfied proper timeout reveals the presence of a potential timed transition. That
justifies the relevance of the development of a timed transition discovery method based on the
research of the proper timeouts satisfied by the logs.

4 Extracting the proper timeouts
The "naive" discovery method consists in generating all possible proper timeouts, and testing for
each one of them if the conditions of Definition 7 are satisfied. However, this method is doubly
exponential because (i) the number of candidates is exponential, and (ii) for each candidate,
if A ≺ B, we must check that all subsets of A and B are not comparable with respect to ≺.
Instead, we propose a nice characterization of the set of proper timeouts satisfied by the logs,
which will enable us to construct this set in a very simple way.

4.1 Characterization of the satisfied proper timeouts

This characterization is formalized by the following theorem. It states that: for a set Pm of
episodes whose first message is m, if we build a partition Π of Pm such that (i) Π is totally
ordered by the relation ≺, and (ii) for each element of Π, there does not exist a sub-partition
of this element composed of two subsets ordered by the relation ≺; then (a) there is a proper
timeout "between" each pair of consecutive elements in Π, and (b) these are the only proper
timeouts satisfied by the logs and related to message m .

Theorem 2 Consider m ∈ Msg, im ∈ IIN∗, and {P (1)
m , P

(2)
m , . . . , P

(im)
m } a partition of Pm. The

following assertions are equivalent:

i)
{
P

(1)
m ≺ P (2)

m ≺ · · · ≺ P (im)
m , and

∀ 1 ≤ i ≤ im, ∀X,Y ⊂ P (i)
m (X,Y 6= φ) such that X ∪ Y = P

(i)
m , we have X ⊀ Y

ii)

∀ 1 ≤ i < im, L � PT (m,P (i)

m , P
(i+1)
m), and

∀A,B ⊂ Pm (A,B 6= φ) such that L � PT (m,A,B), we have:
∃ i ∈ J1; im − 1K such that A = P

(i)
m and B = P

(i+1)
m

Proof Consider m ∈ Msg, im ∈ IIN∗, and {P (1)
m , P

(2)
m , . . . , P

(im)
m } a partition of Pm.

i)⇒ ii): Assume that{
P

(1)
m ≺ P (2)

m ≺ · · · ≺ P (im)
m , and

∀ 1 ≤ i ≤ im,∀X,Y ⊂ P (i)
m (X,Y 6= φ) such that X ∪ Y = P

(i)
m , we have X ⊀ Y

Consider i ∈ J1; im − 1K.
• P

(i)
m ≺ P (i+1)

m .
• ∀X,Y ⊂ P (i)

m (X,Y 6= φ) such that X ∪ Y = P
(i)
m , we have X ⊀ Y .

• ∀X,Y ⊂ P (i+1)
m (X,Y 6= φ) such that X ∪ Y = P

(i+1)
m , we have X ⊀ Y .

• Consider α ∈ Pm \ (P (i)
m ∪ P (i+1)

m).
Since {P (j)

m | 1 ≤ j ≤ im} is a partition of Pm, ∃ j ∈ J1; imK \ {i, i+ 1} such that α ∈ P (j)
m .

– If j < i, then P (j)
m ≺ P (i)

m and P (j)
m ≺ P (i+1)

m .
As {α} ⊆ P (j)

m , we have: {α} ≺ P (i)
m and {α} ≺ P (i+1)

m .
Thus, {α} ≺ P (i)

m ∪ P (i+1)
m , and thereby {α} ∦ P (i)

m ∪ P (i+1)
m .

– If j > i+ 1, then P (i)
m ≺ P (j)

m and P (i+1)
m ≺ P (j)

m .
As {α} ⊆ P (j)

m , we have: P (i)
m ≺ {α} and P (i+1)

m ≺ {α}.
Thus, P (i)

m ∪ P (i+1)
m ≺ {α}, and thereby {α} ∦ P (i)

m ∪ P (i+1)
m .

– Conclusion: ∀ α ∈ Pm \ (P (i)
m ∪ P (i+1)

m), {α} ∦ P (i)
m ∪ P (i+1)

m .

15

• Therefore, L � PT (m,P (i)
m , P

(i+1)
m).

Consequently, ∀ 1 ≤ i < im, L � PT (m,P (i)
m , P

(i+1)
m).

Consider A,B ⊂ Pm(A,B 6= φ) such that L � PT (m,A,B). We have:
A ≺ B (1)
∀ α ∈ Pm \ (A ∪B), {α} ∦ A ∪B (2)
∀X,Y ⊂ A (X,Y 6= φ) such that X ∪ Y = A, we have X ⊀ Y (3)
∀X,Y ⊂ B (X,Y 6= φ) such that X ∪ Y = B, we have X ⊀ Y (4)

• Since A ⊂ Pm and {P (j)
m | 1 ≤ j ≤ im} is a partition of Pm, we know that: ∃ i ∈ J1; imK

such that A ∩ P (i)
m 6= φ.

We can define IA = {i ∈ J1; imK |A ∩ P (i)
m 6= φ}, iA = max(IA) and I ′A = IA \ {iA}.

Assume that I ′A 6= φ.
We have: A = ⋃imi=1(A ∩ P

(i)
m) = ⋃i∈IA(A ∩ P (i)

m) = (A ∩ P (iA)
m) ∪ (⋃i∈I′A(A ∩ P (i)

m)), with
A ∩ P (iA)

m ⊂ A and ⋃i∈I′A(A ∩ P (i)
m) ⊂ A.

However, ∀ i ∈ I ′A, i < iA, and thus: ∀ i ∈ I ′A, P
(i)
m ≺ P (iA)

m .
Since ∀ i ∈ IA, A ∩ P (i)

m ⊆ P (i)
m , we have: ∀ i ∈ I ′A, A ∩ P

(i)
m ≺ A ∩ P (iA)

m .
Therefore ⋃i∈I′A(A ∩ P (i)

m) ≺ A ∩ P (iA)
m , which contradicts (3).

Thereby, I ′A = φ.
Consequently, ∃! i ∈ J1; imK such that A ∩ P (i)

m 6= φ, i.e. ∃ i ∈ J1; imK such that A ⊆ P (i)
m .

• In the same way (and according to (4)), we prove that: ∃ j ∈ J1; imK such that B ⊆ P (j)
m .

• Assume that: A P
(i)
m .

Consider α ∈ P (i)
m \A ⊂ Pm \A.

– If α ∈ B, since A ≺ B, we have: A ≺ {α}.
– If α 6∈ B, α ∈ Pm \ (A ∪B) and, according to (2), {α} ∦ A ∪B.

Thus, {α} ∦ A, i.e. {α} ≺ A or A ≺ {α}.
– Conclusion: ∀ α ∈ P (i)

m \A, we have: {α} ≺ A or A ≺ {α}.
Define X = {α ∈ P (i)

m \A | {α} ≺ A} ⊂ P (i)
m and Y = {α ∈ P (i)

m \A | A ≺ {α}} ⊂ P (i)
m .

We have: P (i)
m \A = X ∪ Y , and thus P (i)

m = X ∪ Y ∪A.
As A 6= P

(i)
m , we have: X 6= φ or Y 6= φ.

– If X 6= φ and Y = φ:
Since ∀ α ∈ X, {α} ≺ A, we have: X ≺ A.
Therefore, P (i)

m = X ∪A with X ≺ A, which contradicts i).
– If X = φ and Y 6= φ:

Since ∀ α ∈ Y , A ≺ {α}, we have: A ≺ Y .
Therefore, P (i)

m = Y ∪A with A ≺ Y , which contradicts i).
– If X 6= φ and Y 6= φ:

We have: X ≺ A and A ≺ Y .
Therefore, X ≺ (A ∪ Y) with P (i)

m = X ∪ (Y ∪A), which contradicts i).
Consequently, A = P

(i)
m .

• In the same way, we prove that: B = P
(j)
m .

• Assume that: j < i.
Then we have: P (j)

m ≺ P (i)
m , i.e. B ≺ A, which contradicts (1).

Therefore j ≥ i.
• Assume that: j > i+ 1.

Then we have: P (i)
m ≺ P (i+1)

m ≺ P (j)
m , i.e. A ≺ P (i+1)

m ≺ B.
Consider α ∈ P (i+1)

m ⊂ Pm \ (A ∪B).

16

We have A ≺ {α} ≺ B, and thus: {α} ⊀ A and B ⊀ {α}.
Thereby, {α} ⊀ A ∪B and A ∪B ⊀ {α}.
Thus, {α} ‖ A ∪B with α ∈ Pm \ (A ∪B), which contradicts (2).
Therefore, j ∈ {i, i+ 1}.

• If j = i, then A = B, which is impossible, for A ≺ B.
Therefore, j = i+ 1.

• Conclusion: ∃ i ∈ J1; im − 1K such that A = P
(i)
m and B = P

(i+1)
m

Consequently, ∀A,B ⊂ Pm (A,B 6= φ) such that L � PT (m,A,B), we have:
∃ i ∈ J1; im − 1K such that A = P

(i)
m and B = P

(i+1)
m .

ii)⇒ i):
∀ i ∈ J1; im − 1K, since L � PT (m,P (i)

m , P
(i+1)
m), we have:

• P
(i)
m ≺ P (i+1)

m

• ∀X,Y ⊂ P (i)
m (X,Y 6= φ) such that X ∪ Y = P

(i)
m , we have X ⊀ Y

• ∀X,Y ⊂ P (i+1)
m (X,Y 6= φ) such that X ∪ Y = P

(i+1)
m , we have X ⊀ Y

Therefore, P (1)
m ≺ P (2)

m ≺ · · · ≺ P (im)
m , and

∀ 1 ≤ i ≤ im, ∀X,Y ⊂ P (i)
m (X,Y 6= φ) such that X ∪ Y = P

(i)
m , we have X ⊀ Y .

�

Example 10 The set of proper timeouts satisfied by logs L1 (cf. Fig. 2) and related
to message b is exactly {PT (b, {f}, {c, d, e}) , PT (b, {c, d, e}, {g, h}) } . Indeed, the partition
{ {〈b, f〉} , {〈b, c〉, 〈b, d〉, 〈b, e〉} , {〈b, g〉, 〈b, h〉} } of Pb satisfies the conditions of Theorem 2 i)
· {〈b, f〉} ≺ {〈b, c〉, 〈b, d〉, 〈b, e〉} ≺ {〈b, g〉, 〈b, h〉}
· ∀X,Y ⊂ {〈b, c〉, 〈b, d〉, 〈b, e〉} (X,Y 6= φ) such that X∪Y = {〈b, c〉, 〈b, d〉, 〈b, e〉}, we have X ⊀ Y
· {〈b, g〉} ‖ {〈b, h〉}

This example illustrates that, given m ∈ Msg and the partition4 Π of Pm satisfying Theorem
2 i), the set of proper timeouts satisfied by the logs and related to message m is exactly given
by the set of pairs of consecutive elements in Π. In the sequel we present an algorithm for
constructing such a partition in an incremental way.

4.2 Algorithm and experiments

The construction process is expressed by Algorithm 1. The input is composed of a given message
name m, the set Pm of episodes whose first message is m, and the occurrence duration intervals
of all episodes in Pm (derived from the logs by the global algorithm presented in the sequel).
The output is the partition Π of Pm satisfying Theorem 2 i). Π is constructed incrementally,
starting with an empty partition, and inserting one by one the elements of Pm in such a way
that Theorem 2 i) is satisfied at each step. This means that the sets composing Π are strictly
ordered by ≺. In order to describe the general step of the algorithm, let us now consider that
Π is already partly constructed. Let α be an episode of Pm not yet considered. A single pass is
made over the partition in order to determine (i) whether the occurrence duration intervals of
some elements of Π overlap the one of α, and (ii) between which sets of Π α is situated according
to ≺ (which is done by comparing their occurrence duration intervals). If there is no overlap,
a new set containing α is created and inserted into the partition in compliance with ≺. If the
overlap takes place with only one element of Π, α is simply inserted in this set. If the overlap
occurs between α and several elements of Π, they are necessarily consecutive according to ≺; as
such they are merged and α is inserted into the resulting set. Let us highlight that once a set

4The considered set of proper timeouts being unique, this partition is unique too.

17

is created in the partition, it is never split. In fact, the algorithm is based on three simple set
operations: creation, insertion and merge. As for each episode α ∈ Pm only one pass is made
over the partition, the complexity of this algorithm is O(|Pm|2).

Algorithm 1 partitionPm
Require: m, Pm, and ∀α ∈ Pm, the Occurrence Duration Interval of α (denoted by ODI(α))
Ensure: Π the partition of Pm satisfying Theorem 2 i)
1: Π = ∅
2: while Pm 6= ∅ do
3: Choose episode α ∈ Pm; Remove α from Pm
4: Overlap = ∅; Binf = ∅; Bsup = ∅
5: // pass made over the partition
6: for all set S ∈ Π do
7: if ODI(S) ∩ODI(α) 6= ∅ then
8: Insert S into Overlap
9: else if S ≺ {α} then
10: Binf = S
11: else
12: Bsup = S; goto line 15
13: end if
14: end for
15: // update of the partition
16: if Overlap = ∅ then
17: Insert {α} into Π between Binf and Bsup
18: else if |Overlap| = 1 then
19: Insert α into the set S of Π that belongs to Overlap
20: else
21: Merge all the sets of Π that belong to Overlap and insert α into the resulting set
22: end if
23: end while

Proof Correctness of Algorithm 1.
The termination of the partitionPm algorithm is guaranteed by the finiteness of Pm. Its sound-
ness and completeness are proven by showing that, at each step of the algorithm (i.e. for each
new element inserted in the partition), the property stated in Theorem 2 i) is satisfied. This is
obvious in the first step. In the general step, let us assume that the property was satisfied in
the previous step. Then, different scenarios have to be analyzed:

• Overlap is empty. If {α} has to be inserted at the beginning of the partition: we find
that Binf is empty and that Bsup is the first element of Π (and {α} is inserted before
Bsup). If it has to be at the end of the partition: we find that Binf is the last element
of Π and that Bsup is empty (and {α} is inserted after Binf). Otherwise: we find that
Binf and Bsup are two consecutive elements of Π such that Binf ≺ {α} ≺ Bsup (and {α}
is inserted between Binf and Bsup). Thus {α} is inserted in accordance with the order
relationship between partition elements, which ensures that the first part of the property
is still satisfied. Furthermore, this insertion does not change the fact that the sets of the
partition cannot be decomposed. Thus the second part of the property is also still satisfied.

• Overlap contains only one element. Since α is inserted into this set, the order of the
partition elements is preserved. Since the occurrence duration intervals of this set and of
α are not disjoined, this insertion does not enable to decompose this set. The others sets
of the partition remain undecomposable.

• Overlap contains several elements. Let us denote them by E1, E2, . . . , Ek, and assume
without loss of generality that E1 ≺ E2 ≺ · · · ≺ Ek. Let us denote E1∪E2∪· · ·∪Ek ∪{α}

18

by E. We have Binf ≺ {α} ≺ Bsup, and ∀ 1 ≤ i ≤ k ,ODI(Ei) ∩ ODI(α) 6= ∅. Thus,
in the partition, we have · · · ≺ Binf ≺ E1 ≺ E2 ≺ · · · ≺ Ek ≺ Bsup ≺ Therefore,
· · · ≺ Binf ≺ E ≺ Bsup ≺ Furthermore, since ∀ 1 ≤ i ≤ k ,ODI(Ei)∩ODI(α) 6= ∅, E
cannot be decomposed. The other sets of the partition remain undecomposable.

�

Example 11 Given logs L1 (c.f. Fig. 2), algorithm partitionPm constructs the partition Π
of Pa = {〈a, c〉, 〈a, h〉, 〈a, e〉, 〈a, g〉, 〈a, d〉}, by including the episodes one by one (the final result
being independent of the insertions order):

• 〈a, c〉: in the first stage, the first set is created; Π = {{〈a, c〉}}

• 〈a, h〉: since {〈a, c〉} ≺ {〈a, h〉} (i.e. there is no overlap), 〈a, h〉 is inserted in a new element
of the partition after {〈a, c〉}; Π = {{〈a, c〉}, {〈a, h〉}}

• 〈a, e〉: as {〈a, c〉} ≺ {〈a, e〉} and {〈a, e〉} ≺ {〈a, h〉}, 〈a, e〉 is inserted in a new part between
{〈a, c〉} and {〈a, h〉}; Π = {{〈a, c〉}, {〈a, e〉}, {〈a, h〉}}

• 〈a, g〉: since {〈a, h〉} ≺ {〈a, g〉}, 〈a, g〉 is inserted in a new set of the partition after {〈a, h〉};
Π = {{〈a, c〉}, {〈a, e〉}, {〈a, h〉}, {〈a, g〉}}

• 〈a, d〉: as {〈a, d〉} ‖ {〈a, c〉} and {〈a, d〉} ‖ {〈a, e〉} (i.e. they overlap), {〈a, c〉} and {〈a, e〉}
are merged; Π = {{〈a, c〉, 〈a, e〉, 〈a, d〉}, {〈a, h〉}, {〈a, g〉}}.

The global method for extracting all the proper timeouts satisfied by the logs is divided in
two steps. The first one is a preprocessing of the data, performed in order to compute the set of
message names Msg, the set of episodes Ep, and the occurrence duration intervals of all episodes
in Ep. A single pass is made over the logs, during which the occurrence duration of each se-
quence of two consecutive messages is calculated.5 The second step consists in constructing the
partition {Pm |m ∈ Msg} of Ep, and running algorithm partitionPm for each m ∈ Msg. The
logs’ size being far greater than the number of episodes, the first step will be the most costly.
Thus the complexity of the global algorithm is O(|L|).

Example 12 The proper timeouts satisfied by logs L1 (c.f. Fig. 2), and extracted by the
global method, are listed in Table 1.

Table 1: Proper timeouts satisfied by logs L1.

proper timeout expiry interval

Pa
PT (a, {c, d, e}, {h})
PT (a, {h}, {g})

]6; 8[
]10; 15[

Pb
PT (b, {f}, {c, d, e})
PT (b, {c, d, e}, {g, h})

]3; 6[
]10; 13[

Experiments. We implemented our discovery process to test its scalability. Tests were
performed on a computer with an Intel Pentium 4, 2.8 GHz processor, 2 GB of RAM, running
Microsoft Windows XP Professional Edition SP2. In order to easily have a big amount of
data, we implemented a log generator which creates conversation logs from a given business
protocol by mimicking the behavior of a service. The generator was designed using the Matlab

5In other words, we use an analysis window of length 2 over the data.

19

Simulink tool from MathWorks. A protocol is modelled as a finite-state machine (FSM) and
timed transitions are materialized by logic constraints on the FSM transitions from one state
to another. This generator can be of a more general interest in the field of WS simulation
since it features a human-friendly user interface for designing protocols to be run, as well as the
possibility to introduce execution constraints and a random-based noise factor which should give
more realistic logs. The implementation of the discovery algorithm is written in Java (version
1.5.0−06) using the Eclipse development environment and the java −Xms512m −Xmx1024m
instruction for defining the heap size of the JVM. The maximum time for each test was set to 19
hours. Results of our experiments are presented in Fig. 5. They confirm the complexity results
we established formally: (i) partition complexity is quadratic wrt the number of episodes, (ii)
partition time is negligible compared to preprocessing time, and (iii) global discovery (i.e. log
preprocessing and partition) complexity is linear wrt the logs’ size. Considering the logs’ size,
running times are reasonable enough to affirm that our method is scalable. The final test will
be to run our algorithm on real-life data in further experiments.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

in
ut

es
)

Number of conversations (x1000)

Overall complexity

Proper Timeout Discovery

Figure 5: Running times of overall discovery method (left) and partition process (right).

5 Discussion and state of the art
As illustrated previously, elements of the partition {Pm |m ∈ Msg} of Ep are treated separately.
Thus, with each part Pm will be associated a set of discovered proper timeouts. This process can
seem redundant, in a sense that, if two transitions labelled for example by messages a and b enter
in the same state, from which a timed transition is going out, then two different proper timeouts
will be satisfied by the logs (one for Pa and another for Pb), and interpreted as representing
two different potential timed transitions. In fact, it is possible to realize that there is only one,
by using cross-checking between all sets of proper timeouts (cf. Ex. 13), which can be done
automatically.

This cross-checking can also enable to reject some proper timeouts which cannot represent
timed transitions (cf. Ex. 13). Indeed, as already explained, a proper timeout is satisfied if, in
some state of the service, some messages take longer to be sent or received than others. However,
cross-checking can be inefficient, if there is no contradicting proper timeout, to reject a "fake"
timed transition. In such a case, only a domain expert having some knowledge about the service
can make a decision. More generally, the verification of the discovered proper timeouts by an
expert could always increase the confidence about the result.

20

Example 13 Consider the proper timeouts satisfied by logs L1 (cf. Table 1). PT (a, {h}, {g}) is
rejected because it cannot represent a timed transition. Indeed, L1 � PT (b, {c, d, e}, {g, h}) im-
plies that {〈b, h〉} ‖ {〈b, g〉}; thus, h and g label two transitions going out of the same state (and g
takes longer to be emitted than h, only after a has been emitted). Regarding the "redundancy"
problem, we can see that PT (a, {c, d, e}, {h}) and PT (b, {c, d, e}, {g, h}) represent the same
timed transition, because there is a correspondence between the involved sets of messages. Fi-
nally, the result consists only on two timed transitions: one corresponding to PT (b, {f}, {c, d, e}),
and the other corresponding to PT (a, {c, d, e}, {h}) and PT (b, {c, d, e}, {g, h}).

Recall that we assumed to have complete logs. First, it can be seen as a very strong as-
sumption, but it is not. In fact, we ask only for valid conversations (i.e. the ones which finish
in a final state), and not for all paths of the business protocol, to be separately represented in
the logs. Furthermore, services generally do not allow a lot of operations, and complex services
are mainly constructed by composing more simple ones. As such, for a given service, the set of
valid conversations is quite small. Second, logs completeness is mainly a theoretical assumption,
made in order to prove that our algorithm can discover all timed transitions in this case. In fact,
we do not ask for logs to be complete in real life scenarios. Thus, some timed transitions can be
missed. In a re-engineering point of view, this can mean that some operations are useless, and
justify an evolution of the service.

Related work.
The business protocol discovery problem addressed in [15, 16] can be considered as a par-

ticular case of a more general issue: the extraction of a model from its instances. Literature
related to model discovery is extensive, for example in grammatical inference [17, 3], in workflow
mining [8, 1, 20, 13, 19], or in Web services interaction mining [10].

In grammatical inference, the problem consists in finding a grammar generating a language,
given a set of words that belong to this language, and a set of words that do not belong to
it; using both positive and negative examples allows producing a correct model. The business
protocol discovery problem is different in the sense that only (noisy and incomplete) positive
instances are available.

In Web services interaction mining, the goal is to discover from exchanged logs a workflow
modelling the interactions that take place between several services. Despite the similar context,
this differs from business protocol discovery in its knowledge extraction level; in [15, 16] cross-
services protocols are not considered.

Workflow mining (or software process discovery) is very similar to business protocol discov-
ery; actually the work in [8] strongly inspired the discovery method presented in [15, 16]. Main
differences between all techniques lie in the choice of the model (automaton [15, 16, 8], Petri net
[20] or directed graph [1, 13, 19]), in the fact that noise is considered [15, 16, 8, 1, 13, 19] or not
[20], and that the extraction process allows user driven refinement [15, 16] or not [8, 1, 20, 13, 19].
It is worth to notice that none of these approaches consider the extraction of temporal constraints
from the data.

At the same time the work exposed in [15, 16] was achieved, similar techniques [9] were
developed, though with quite different concerns. In [9] the concepts of interaction and interac-
tion protocol are used equivalently to conversation and business protocol. The goal is to solve
an interoperability problem between a client and several Web services that expose the same
interface but may have different interaction protocols. The proposed solution consists in au-
tomatically extracting approximated interaction protocols from recorded interactions (between
these services and previous users); the client can then verify which services are compatible with
its requirements and adapt its own sequences of interactions. This method is presented as a sim-
ple extension of a service discovery architecture. As in [15, 16] the model discovery algorithm is
borrowed from the workflow mining area. The main advantage of the approach exposed in [9]

21

is that it is fully automatic, which is essential in a service discovery architecture. However, this
can be an important drawback in the service management and re-engineering area, where it is
essential to allow a user driven refinement of the extracted model [15, 16]. Two other limitations
of [9] are that (i) the modules performing the protocol discovery are supposed to be associated
by service brokers with all new published services (which raises many questions about a possible
implementation), and that (ii) noise in mined interactions is not taken into account, contrary to
[15, 16]. Finally, it is worth to note that our work could be an extension of [9] too, as possible
temporal constraints of the interaction protocol are not considered.

Since we are not interested in discovering the whole business protocol but only some partic-
ular transitions, our work is more related to the area of pattern mining. Among the numerous
kinds of patterns that have been studied in the literature, we can mention for example sequential
patterns [2, 18, 14], workflow patterns [11], or service interaction patterns [4].

Sequential patterns [2, 18] are basically event subsequences; in [14], they are named episodes
and defined as directed acyclic graphs of events. They are extracted from a sequence database
[2, 18] or from event sequences [14], using levelwise [2, 14] or pattern-growth [18] methods. As in
many data mining problems, only frequent patterns are sought, contrary to our approach. It is
also worth to notice that, even if they provide some information about the order between events,
sequential patterns do not contain explicit temporal constraints, contrary to proper timeouts.

In the area of workflow mining, not all the literature relates to model discovery. In [11]
workflow patterns are defined as substructures of the directed graph representing the workflow,
and are extracted from execution logs. Contrary to our approach, the model is supposed to be
known for the generation of the patterns, and only the frequent ones are considered. In fact,
the method presented in [11] does not aim to discover any knowledge about the workflow, but
to perform diagnostic and termination prediction. As sequential patterns, workflow patterns do
not contain explicit temporal constraints.

In the Web services field, service interaction patterns [4] are defined as abstracted forms of
representative scenarios. They are not extracted from execution data, but empirically derived
from the literature, standardization activities, and real-scale use cases. They are mainly used
to benchmark Web services functionalities related to choreography and orchestration.

6 Conclusion
In the context of the discovery of the timed business protocol of a Web service from its con-
versation logs, we have focused on extracting timed transitions. Our contribution is based on
a formal framework leading to the definition of proper timeouts. We have shown that proper
timeouts are the best representations of timed transitions in conversation logs. We have given a
simple characterization of the set of proper timeouts satisfied by the logs. We have also proposed
a polynomial algorithm for extracting these patterns.

As future work, our first objective is to broaden our method: we plan to deal with more gen-
eral business protocols, with cycles, and where transitions are not necessarily uniquely labelled,
or having timed transitions entering in a final state. It would be also relevant to analyze noisy
logs and to propose a probabilistic method. Another interesting prospect would be to make use
of our technique to discover the entire business protocol. In fact, the result we propose to a
user contains not only proper timeouts but also some local knowledge about transitions. We
would like to investigate whether gathering this local information could lead to a coherent global
knowledge about the protocol.

As already mentioned, this work is an extension of the one proposed in [15, 16], and combining
both approaches is an exciting prospect. In fact, both take part in ServiceMosaic6 international
project, which aims at developing a platform for modeling, analysing and managing Web ser-

6http://servicemosaic.isima.fr

22

vices. The main goals of this project are (i) defining models enabling description, orchestration
and composition of services, (ii) specifying an algebra for high-level analysis, and (iii) creating
service management and development tools.

Acknowledgments

The authors would like to thank Boualem Benatallah and Hamid Motahari, whose comments
and discussions considerably improved the quality of the paper.

References
[1] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process models from

workflow logs. In EDBT ’98, pages 469–483, Valencia, Spain, Mar 1998. Springer.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In ICDE ’95,
pages 3–14, Taipei, Taiwan, Mar 1995. IEEE Computer Society.

[3] Dana Angluin and Carl H. Smith. Inductive inference: Theory and methods. ACM Com-
puting Surveys, 15(3):237–269, Sep 1983.

[4] Alistair Barros, Marlon Dumas, and Arthur H. M. ter Hofstede. Service interaction patterns.
In Business Process Management 2005, pages 302–318, Nancy, France, Sep 2005. Springer.

[5] Boualem Benatallah, Fabio Casati, Julien Ponge, and Farouk Toumani. Compatibility and
replaceability analysis for timed web service protocols. In BDA ’05, Saint-Malo, France,
Oct 2005.

[6] Boualem Benatallah, Fabio Casati, Julien Ponge, and Farouk Toumani. On temporal ab-
stractions of web services protocols. In CAiSE ’05 Short Paper Proceedings, pages 39–44,
Porto, Portugal, June 2005. Springer.

[7] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Analysis and management of web
service protocols. In Conceptual Modeling - ER ’04, pages 524–541, Shanghai, China, Nov
2004. Springer.

[8] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes from
event-based data. ACM Transactions on Software Engineering and Methodology, 7(3):215–
249, July 1998.

[9] Giovanni Denaro, Mauro Pezzé, Davide Tosi, and Daniela Schilling. Towards self-adaptive
service-oriented architectures. In TAV-WEB ’06, pages 10–16, Portland, Maine, USA, Jul
2006. ACM.

[10] Schahram Dustdar, Robert Gombotz, and Karim Baïna. Web services interaction mining.
Technical Report TUV-1841-2004-16, Technical University of Vienna, Vienna, Austria, Sep
2004.

[11] Gianluigi Greco, Antonella Guzzo, Giuseppe Manco, and Domenico Saccà. Mining and rea-
soning on workflows. IEEE Transactions on Knowledge and Data Engineering, 17(4):519–
534, Apr 2005.

[12] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web service com-
position. In ADC ’03, pages 191–200, Adelaide, Australia, Feb 2003. Australian Computer
Society, Inc.

23

[13] San-Yih Hwang and Wan-Shiou Yang. On the discovery of process models from their
instances. Decision Support Systems, 34(1):41–57, Dec 2002.

[14] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, Sep 1997.

[15] Hamid R. Motahari-Nezhad, Régis Saint-Paul, Boualem Benatallah, and Fabio Casati.
Protocol discovery from imperfect service interaction logs. In ICDE ’07, pages 1405–1409,
Istanbul, Turkey, Apr 2007. IEEE.

[16] Hamid R. Motahari-Nezhad, Régis Saint-Paul, Boualem Benatallah, Fabio Casati, Julien
Ponge, and Farouk Toumani. Servicemosaic: Interactive analysis and manipulations of
service conversations. In ICDE ’07, Istanbul, Turkey, Apr 2007. IEEE. Demonstration.

[17] Rajesh Parekh and Vasant Honavar. Grammar inference, automata induction, and language
acquisition. In Handbook of natural language processing, pages 727–764. Marcel Dekker, Inc.,
New York, USA, 2000.

[18] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Mei-Chun Hsu. Mining sequential patterns by pattern-growth: The
prefixspan approach. IEEE Transactions on Knowledge and Data Engineering, 16(11):1424–
1440, Nov 2004.

[19] Ricardo Silva, Jĳi Zhang, and James G. Shanahan. Probabilistic workflow mining. In KDD
’05, pages 275–284, Chicago, Illinois, USA, Aug 2005. ACM.

[20] Wil van der Aalst, Ton Weĳters, and Laura Maruster. Workflow mining: Discovering
process models from event logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, Sep 2004.

24

