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b LIRIS, UMR 5205 CNRS, Université de Lyon, INSA de Lyon, Villeurbanne, F-69621, France.

ABSTRACT

We present a local wavelet decomposition framework based on a segmentation of semi-regular meshes and mostly
dedicated to mesh compression purposes. The shape partition has been created to adapt the compression in
the regions where the wavelet coefficients have a non negligible magnitude or polar angle (the angle with the
normal vector), reflecting the high frequencies of the model. This partitioning have been produced by first
applying a classification algorithm (K-Means) on a 3D mesh. Given a segmentation constructed from the latter
classification, it is possible to adapt a special treatment on each region, according to its frequency magnitude, in
order to produce the smallest wavelet coefficients. The wavelets can also be quantized and encoded independently
in order to minimize the global distortion at a given bitrate and provide a very efficient and flexible compression
scheme. Finally, the proposed local multiresolution analysis allow the user to reconstruct adaptively the produced
patches that generally correspond to relevant parts of the mesh. Several other kind of applications can benefit
from this adaptive decomposition, like error resilient compression or watermarking. We present some examples
for which the redundancy produced by the partitioning can be compensated by a well adapted prediction scheme
on each region.

Keywords: Geometric wavelets, mesh partitioning, multi-resolution analysis, lifting scheme, 3-D mesh com-
pression.

1. INTRODUCTION

With the emerging development of the Internet and the telecommunication networks, the 3D models are more
and more widespread. Indeed these kinds of objects are not only used in entertainment (video games or animation
films), but also for industrial purposes like medical imaging, car industry (CAD framework), simulation or virtual
environment contexts.

The complexity of the 3D models used in computer graphics has recently increased due to the last progress of
the sampling techniques. These objects are consequently represented numerically with more and more precision
and details for realism purposes. The modelling of such objects or 3D scenes is commonly done thanks to geomet-
ric primitives embedded in the 3D Euclidean space. Triangle mesh is actually the most common representation
for these objects because it’s a well adapted model for many applications and for the rendering process. This
representation include geometry and topology information which could be expensive for computation, storage,
transmission and rendering tasks, even if the material involved is more and more competitive.

Consequently multiresolution (MR) techniques have emerged, in order to represent data with multiple Levels
of Detail (LOD). They are of particular interest for progressive transmission and visualisation purposes, where a
coarse approximation can subsequently be further improved depending on the user resources (network, visuali-
sation terminal) and waitings. This scalable representation is commonly produced by a wavelet transform which
is also suitable for denoising, filtering or surface editing purposes.

Two different approaches are considered to achieve this task, considering directly the irregular structure or
using a remeshing part to produce a semi-regular representation. In this paper, we consider the semi-regular
surface representation for the usual models, which generally contains the fewest connectivity and parametric
information to encode. As the target applications do not impose a lossless compression scheme, this modelling
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is very interesting to benefit from more efficient data structures and processing algorithms which are closer to
the ones used for data sampled on regular grids.

The actual state of the art mesh compression methods, presented in Section 2, generally compress the mesh
with a global scheme, except for large polygonal meshes composed of millions or billions of vertices where a
partitioning and gluing algorithms are commonly used. We propose a new shape decomposition framework that
aims at differentiating the analysis for each partition, consequently the work done in mesh partitioning is also
presented in Section 2.

We have used a segmentation based on the wavelet coefficient magnitude or polar angle and produced by
a global decomposition. Our goal is to construct homogeneous regions according to these criteria that every
remeshing or compressing algorithm tend to minimize. But even if the best methods provide non uniform
distributions, some non negligible values still remain because they are generally associated to the high frequency
parts of the model. Consequently, we propose to adapt the mesh analysis in the created regions where a different
kind of treatment can be considered. We present the framework developped in this context in Section 3 with
some of our experimental results. They emphasize in the additive information needed for the patch independent
coding which can be compensated by an adapted treatment on each type of region.

The possible applications based on this framework are presented in Section 4 with their corresponding results,
like compression or watermarking which can benefit from this partitioning in order to apply different marks or
subdivision schemes according to the visual aspect of the surface. Moreover, little attention has been paid to
the combination of mesh compression and patch decomposition for ROI decoding, whereas it is possible with
JPEG 2000 for images. However a view-dependent streaming of large meshes can accelerate their treatments
and rendering, where objects or scene parts could be more refined than others. Another interesting point to
be noticed is that the partition coding includes additive information that improves the robustness of the data
susceptible to encounter transmission errors in the channels, so another possible application can be error-resilient
3D mesh coding.

Finally discussions and ideas for future work are presented in the last Section.

2. RELATED WORK

The proposed algorithm first partitions semi-regular meshes (produced by a remeshing algorithm) according to
their associated wavelet coefficients obtained from a global multiresolution analysis. Each coefficient associated to
a given resolution level of the hierarchy is important and reveals the high frequencies lost during the coarsification.
The goal of this segmentation is to separate regions for which the associated coefficient magnitude or polar angle
(the angle between each coefficient and its corresponding surface normal vector) do not have the same magnitude
order in order to adapt a different treatment, aiming at reducing the wavelet coefficients to code.

Before detailing our algorithm, we present in this section the existing work done in mesh partitioning and
MR analysis.

2.1. State of the art in mesh partitioning

In the past twenty years, much work has been done in shape decomposition because of its utility in many
computer graphic applications. These methods are usually designed to solve a specific application problem
using different types of techniques which are difficult to compare. Mesh decomposition is used for applications
such as collision detection, skeletonization, metamorphosis, animation or modelling by parts, where the object
is generally decomposed in regions corresponding to relevant aspects of the surface of the shape (sub-meshes),
which are far from our expectations, but described in the comparative study of Attene et al.1

Another type of applications use segmentation to simplify treatments like texture mapping, parameterization,
mesh editing, modeling, deformation or compression on complex meshes with a high genus, for example. These
latter treatments are generally faster and less complicated on surface patches homeomorphic to a disc. In this
context, most of the existing segmentation algorithms are based on the surface curvature or planarity information
to distinguish the relevant parts or to obtain regions gathering common characteristics.
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The former methods that have partitioned the object into surface patches having common characteristics
have intended to approximate the object by planar faces so as to minimize the approximation error between
this element set and the original surface.2, 3 These approximation techniques are particularly useful for mesh
simplification and radiosity. Other approaches4, 5 have used the discrete curvature computed in each vertex with
a watershed algorithm adapted from those employed in image segmentation. Mangan et al.4 have generalized this
algorithm for arbitrary 3D meshes and have used the Gaussian curvature computed in each vertex as watershed
altitude. Another measure of curvature was defined by Sun et al.5 based on a principal component analysis
of the surface normal vectors in a geodesic window. More recently, Razdan et al.6 have proposed a hybrid
approach, which combines the watershed algorithm with a sharp edge extraction. But theses methods tend to
extract only regions surrounded by high curvatures and do not handle correctly the boundaries between the
patches, which are either fuzzy or jagged. The method developped by Lavoué et al.7 overcomes these drawbacks
using a K-Mean8 classification algorithm instead of the watershed, in order to more precisely detect curvature
transitions, particularly on CAD objects.

We propose to adapt the algorithm of Lavoué et al.,7 formerly conceived for the compression of CAD objects,
which contain sharp edges and corners that generally separate smooth regions. Our extension uses the same
concept based on the production of homogeneous regions, but regarding surface smoothness. This adaptation is
able to compress more natural and complex objects this latter algorithm cannot consider. Most state of the art
methods used to compress the 3D models have employed the geometric wavelets in a MR framework. Thus we
intend to extend this treatment to the partitions obtained by our segmentation contribution. We first present
the existing methods using geometric wavelets for semi-regular mesh compression.

2.2. State of the art in multiresolution analysis of semi-regular meshes

MR analysis for triangles meshes with arbitrary topology has been introduced by Lounsbery9 who has shown
that a subdivision scheme can serve as a scaling function basis in order to extend the wavelet theory for irregular
sampled signals like meshes. In this context, the canonical quadrisection produced by the subdivision schemes
imposes to apply the analysis on semi-regular meshes, considered as functions via the parameterizations intrin-
siquely defined by the remeshing part. The compressing algorithm performances are then highly dependent on
the quality (smoothness, distortion) of the parameterization used.

The main semi-regular remeshing algorithms rely on the same philosophy, which aim at removing almost all
of the connectivity information from the mesh, and also reduce the parametric information, so as to be able to
represent the details only with their geometric part. For that purpose, a mesh simplification is used to produce
the base complex on which the input model will be parameterized. Then, the resampling step can vary in its
construction but is always based on a subdivision connectivity construction. Two different currents are used to
produce the base complex having the same topology as the original surface. The main differences can be noticed
during the coarse mesh construction, which can be obtained directly from the initial object or by progressive
decimations.

2.2.1. Mesh simplification by chartification

For the first current, the parameterization is in general based on the chartification produced to simplify the
mesh, aiming at minimizing the distortion when mapping a curved surface to the plane, with an energy function.
The first remeshing method10 proposed in this context has used a partition of the original mesh into Voronöı
tiles, computed by taking into account the geodesic distance. The coarse model has been obtained with the
dual construction : the Delaunay triangulation. It has been then refined by subdivision steps and additional
displacements to obtain a semi-regular approximation of the original form. The missing details have been obtained
at each resolution level thanks to a local parameterization, based on harmonic maps. In the same way, Gioia11

has also proposed a parameterization based on harmonic maps. The method produces a semi-regular mesh from
a coarse one obtained by a partitioning process. The principal difference between these two methods is that the
latter take more into account the geometric and visual properties of the initial surface during the construction
of the coarsest approximation. Gioia experimentally obtained on average twice less wavelet coefficients than
with the previous method, for natural and CAD objects, considering the fact that geometric shapes are not just
functions. The recent method proposed by Guskov12 has also followed this philosophy but will be discussed later
to be compared with another up-to-date algorithm.
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2.2.2. Mesh simplification by progressive decimation

The other class of methods use progressive decimation generally based on constructing a mesh hierarchy thanks
to the vertex removal or edge collapse operation. A specific error metric is also used at each decimation step.

The MAPS algorithm13 was the first to use mesh simplification in order to build the base domain. Vertex
removal has been used to progressively build a parameterization of the original object in a hierarchy of meshes.
At each step, the vertices chosen to be removed are those that withdraw the fewest geometrical and topological
information. Then the conformal mapping consists in expressing the decimated vertices as barycentric coordi-
nates. The Loop subdivision14 is finally used to produce the semi-regular mesh from the coarsest one. At the
end of the simplification process, each vertex in the input mesh is associated to some base complex triangle with
appropriate barycentric coordinates.

As the construction of the base complex is not based on a chartification, some people have noticed that a
global parameterization could be constructed. This latter remark was exploited by Guskov et al. in another
famous algorithm15 that has used a recursive piercing procedure and unlifted Butterfly wavelets to concentrate
the high-frequency information along the surface normal. The resulting meshes are ideally suited for progressive
compression purposes, because almost all of the geometric details are expressed with a single scalar. This
algorithm currently produces one of the best remeshes for compression purposes but only for closed surfaces.

This has recently been adapted16 for the progressive compression of 3D dynamic mesh sequences. The
authors have used some different decimation process and parameterization of the first frame mesh structure into
the base complex. Thanks to this remeshing algorithm, they can better compress mesh sequences with important
structural changes, by mapping the same connectivity structure to all the frames.

Because most of the previously described algorithms have suffered from smoothness artefacts at patch bound-
aries, a new class of algorithms have appeared. They tend to construct a globally smooth parameterization not
only within each coarser triangle, but also across patch boundaries and corners. The smoothness of the parameter-
ization is directly related to how well the mesh can be compressed, together with providing good approximations
and non degenerated mesh elements.

2.2.3. Methods using a globally smooth parameterization

The first method designed in this context17 has used the same simplification algorithm as MAPS for building the
base domain but with a different decimation selection, based on an energy minimization to better control the
induced smoothness, shape quality and metric distortion. Inter-fragment transition functions between patches
have been used to ensure global smoothness and relaxation over all overlapping charts. Starting from the initial
mapping produced by MAPS, the relaxation process builds the final smooth paramaterization to optimize inter-
chart continuity. The compression of the produced semi-regular meshes have given comparable and in some cases
superior rate/distortion (r/d) performance than those obtained from the Normal Mesh algorithm.

These transition functions have also been considered by Ray et al.18 to construct a quasi conformal param-
eterization which does not require any prior partition into charts nor cutting. It avoids finding the optimum
partition of the mesh surface into charts, which is an open problem. The produced quadrilateral chart layout
has the advantage that it follows the principal curvatures of the object.

More recently, Guskov12 has proposed to split the original input mesh into Voronöı tiles, in order to obtain
the simple base domain and the initial mapping. The minimization of a global parametric energy functional is
then used to improve the parameterization. Contrary to the preceding method, they construct an open atlas that
covers the base mesh and forms a manifold structure for the parameterization construction and the resampling
step. It provides comparable results than the previous method in term of r/d performance, after the application
of the compression framework of Khodakovsky et al.19 But the main advantage is that the output mesh is
constructed automatically without user intervention. Finally, this algorithm provides an anisotropic remesher
extension that allows to control the anisotropy of the output meshes.

Once the semi-regular mesh has been constructed with the fewest connectivity and parametric information,
efficient data structures and processing algorithms can be used to get closer to the methods used for data sampled
on regular grids.
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Figure 1. Principal fonctionnalities of our framework which aims at locally encoding a semi-regular mesh Msr in order
to propose a robust and efficient reconstruction Mrec on the client side.

2.2.4. Semi-regular mesh compression algorithms

The application of the MR analysis on the semi-regular meshes, resulting from these latter algorithms and mainly
used for progressive compression purposes, can be based on various subdivision schemes. Most of the existing
methods9, 11, 20, 21 have benefited from interpolating subdivision schemes for the low-resolution versions to be
good approximations of the original object (in a least-squares sense). In other words, to provide numerical
stability of the fitting operation and have a more stable wavelet construction for practical applications than with
approximating schemes.

But other authors22, 23 have recently proposed a wavelet construction based on the Loop subdivision and
the lifting scheme. They have managed to overcome the Khodakovsky19 filter drawbacks by constructing stable
schemes for the wavelet analysis and synthesis with a linear time complexity.

All of these previously described algorithms have applied a global wavelet decomposition, using the same
scheme on the entire surface of the mesh. We propose a new framework to improve the latter compression
algorithms. It’s obvious that for any remeshing algorithm applied on natural objects, the information to be
coded (the wavelet coefficients) is heterogeneous all over the surface and mainly depend on the prediction power
of the scaling functions. Thus, we propose to partition the mesh so as to analyse it differently to further reduce
the compression costs.

3. PROPOSED METHOD

We have introduced the different existing remeshing algorithms that transform an irregular model into a semi-
regular one. Semi-regular meshes represent the input models of our framework that aims at detecting the
heterogeneity relatively to the wavelet coefficients in order to locally decompose the surface. The principal
fonctionnalities of these local analysis and synthesis are presented in Fig. 1 and detailed in the following
subsections. The analysis begins with a shape segmentation oriented by the distribution of the wavelet coefficient
magnitude and polar angle, followed by a patch refinement for establishing a hierarchical partitioning. Given
this structure, an independent wavelet decomposition and coding can be realized, considering some possible
optimizations for the binary allocation of each produced partition. On the synthesis side, the last two treatments
are reversed to reconstruct an approximation of the initial model.

3.1. Segmentation based on wavelet measures

We present our extension of the segmentation algorithm of Lavoué et al.,7 based on the wavelet coefficient
magnitude and polar angle and which can be computed on any mesh of the hierarchy produced by a global
decomposition. We first propose to review briefly the computation of the wavelet coefficients, and then the
classification and segmentation algorithms.
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3.1.1. Wavelet coefficients as a segmentation criterion

The decorrelation power of the wavelets has been trully proven for images and videos, with the standards JPEG-
2000 and MPEG, but also for meshes. Appart from the coarser mesh, they represent the only information to
code in order to obtain a progressive compression. We propose to study their distribution in all the resolution
levels, so as to identify homogeneous regions. More precisely, we are interested in the coefficient magnitude and
polar angle, measures that every existing compressing algorithm tend to minimize, while using a common scheme
for the whole model. Their distribution can then reveal that for some regions of the mesh, the former prediction
scheme is well adapted because the values are close to zero. But usually there remain some regions where another
prediction scheme, decomposition or quantization can provide better results in term of compression.

For 3D meshes, the facet refinement of a coarse mesh during the multiresolution synthesis, consists in first
applying a canonical quadrisection. This one-to-four triangle construction is based on the addition of three
new vertices in the middle of each edge composing the facets of the coarse mesh. The position of these newly
added vertices is obtained by the prediction operation, followed by the wavelet coefficient addition. Consequently
the common representation of the wavelets consists in associating them with their corresponding coarser model
edges. Consequently the measures we consider are linked to the edges of each resolution level, except for the finer
representative of the hierarchy. The classification and segmentation algorithms we have adapted were formally
designed to partition mesh data associated to vertices, so that even after several adaptations, the best results
were obtained with measures associated to vertices. They correspond to the mean of the measures linked to the
incident edges.

The wavelet transform used in this study belongs to the class of second-generation wavelets, specially con-
structed to adapt to irregular point sets and introduced by Sweldens.24, 25 This construction produces filters
with good properties like vanishing moments or orthogonality which is primordial for compression purposes. For
a more detailed explanation of the wavelet decomposition construction, the reader is invited to see our previous
paper.26

Considering the segmentation based on the distribution of the wavelet coefficient magnitude, we have noticed
that the smooth parts of a mesh are clearly separated from the rough, textured or noisy ones. It’s also well suited
for detecting the sharp creases or high curvatures, as the wavelet coefficients represent the high-frequencies lost
during the coarsification of the input model.

Moreover the distribution of the polar angle is interesting for distinguishing the coefficients that only have a
normal component from those for which the parametric information isn’t implicit. The resulting segmentation
can then be used by our local wavelet coding framework to adapt the wavelet coefficient representation and
coding so as to produce closer results than those obtained by the Normal Mesh compression algorithm. This
latter produces actually one of the best compression rates gathering all the high frequency energy in the normal
direction, so we have first studied the distribution of the described measurements on objects remeshed with this
algorithm.

As the non-lifted butterfly scheme is used on these semi-regular models to produce the best results in term of
compression, the corresponding wavelet distribution will be used to further reduce the compression costs. For a
comparison, we also have applied our framework on objects remeshed with another famous remeshing algorithms,
MAPS,13 in association with a non-lifted butterfly wavelet analysis. But it can adapt to the specificity of any
remeshing algorithm, showing the regions where the produced coefficients could be further reduced.

We present in Fig. 2 to 4 the corresponding distributions for each resolution level of the Rabbit, Venus and
Horse models. But as the segmentation algorithm can only be applied on one mesh of the hierarchy, we propose
to clusterize all the coefficients in one mesh so as to take into account all the high frequencies lost during the
coarsification. For that purpose, we have compared several possible aggregations. Normalizing each coefficient
according to its own level extrema values and computing the mean of these values for all the corresponding
incident edges of a vertex have given some interesting results as we can see in the last picture of Fig. 2 to 4.

These results have been obtained by applying a Gaussian Normalisation, aiming at not taking into account
the extrema values of the interval. This normalization is allowed because the associated histograms (presented
in Fig. 2 to 4) have a Gaussian normal distribution. With this assumption, then, about 68% of the values are
within one standard deviation of the mean, about 95% of the values are within two standard deviations, and
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Figure 2. Distribution of the wavelet coefficient magnitude and polar angle on different resolution levels for the Rabbit
model. The decomposition has been produced with the non lifted Butterfly scheme on a Normal Mesh. (a) Wavelet
coefficients represented as 3D vectors linked to edges of the 1st resolution level (multiplication factor: 20) ; (i) Original
model ; (b, j) Histograms of the normalized magnitude and polar angle for the five resolution levels ; (c) Color scale used
for the next figures ; (d, k) Distributions of the normalized magnitude and polar angle on the 1st decomposition level ;
(e-g, l-n) Same distributions but using a Gaussian Normalisation on the first three levels ; (h, o) Gaussian normalized
distribution means computed on the five decompositions and represented on the 1st level.

about 99.7% lie within three standard deviations. This is known as the 68-95-99.7 rule, or the empirical rule,
defining the confidence intervals. We have considered the second percentage for all the treatments because it has
given sufficiently good results without a more important restriction.

Fig. 2 to 4 show different kinds of wavelet coefficient distributions on several 3D models remeshed by the
Normal Mesh and MAPS algorithms. For each mesh, the Gaussian normalized distribution mean of all the
wavelet coefficients (represented in the last column) has given the best results when considering a classification
and segmentation based on the wavelets. More particularly, the last raw of Fig. 2 shows that the coefficient
polar angle distribution obtained on a Normal Mesh is not enough revealing for applying a classification, even
after a Gaussian Normalisation. We only present it on the Rabbit model, but it can be generalized for the other
meshes. As we can deduce from the histogram, the quasi totality of the wavelet coefficients obtained after this
remeshing lie along the surface normal. This is not the case when dealing with the MAPS remeshed models, as
illustrated by the last raw of Fig. 3.

On globally smooth models, the coefficient magnitude distribution allows to identify the high curvatures
characterizing the eyes, ears, feet or the nose of the Rabbit and Horse models. This distribution emphasizes also
the textured parts, such as the hair of the Venus head.
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Figure 3. Distribution of the wavelet coefficient magnitude and polar angle on different resolution levels for the Rabbit
model remeshed by MAPS. The decomposition has been produced with the non lifted Butterfly scheme. (a, g) Histograms
of the normalized magnitude and polar angle for the five resolution levels ; (b, h) Distributions of the normalized magnitude
and polar angle on the 1st decomposition level ; (c-e, i-k) Same distributions but using a Gaussian Normalisation on the
first three levels ; (f, l) Gaussian normalized magnitude means computed on the five decompositions and represented on
the 1st level.

3.1.2. Mesh classification and segmentation steps

Our algorithm uses the distribution of the wavelet measures (associated to the simplices of the mesh) in asso-
ciation with an adaptation of the classification and segmentation algorithms of Lavoué et al.27 They exploit
the principal curvature values computed in each vertex using the estimation of the curvature tensors defined by
Cohen-Steiner and Morvan.28 Our adaptation produces connex regions that share homogeneity relatively to the
information used to progressively compress a mesh. For more details on the adaptation of this algorithm, the
reader is invited to consult our preceding paper.26

The classification algorithm of Lavoué et al.7 was first used to create two groups of vertices, one with the
smallest measure amplitudes and the other with the highest ones. We present the results obtained for the
coefficient magnitude and polar angle separated classifications, in order to emphasize the differences between the
two remeshing algorithms we have considered. But it is also possible to associate these measures.

The construction of the connex partitions, using the region growing and merging algorithms, consists in
transmitting the studied measure from vertices to triangles, starting from seed triangles having their three
vertices on the same cluster. The region merging algorithm mainly aims at reducing the oversegmentation
resulting from the growing step, thanks to a region adjacency graph. The graph reduction stops when the
smallest edge is larger than a given threshold. This reduction is based on the similarity distance Dij which
gather studied measure similarities, size and common perimeter of the two regions.

Thanks to this framework, a mesh decomposition in a finite number of regions can be created at a given
resolution level, as we can see in Fig. 5 to 8 for the preceding models. In order to take into account a maximum
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Figure 4. Distribution of the wavelet coefficient magnitude on the Venus and Horse models remeshed by the Normal
Mesh algorithm. The decomposition has been produced with the non lifted Butterfly scheme. (a, e) Histograms of the
normalized coefficient magnitude for all the resolution levels ; (b, f) Distributions of the normalized coefficient magnitude
on the 1st decomposition level ; (c, g) Same distributions but using a Gaussian Normalisation on the 1st level ; (d, h)
Distribution means of all the Gaussian normalized magnitudes on the 1st level.

number of the wavelet coefficients computed on the surface, we have always considered the segmentation of the
first decomposition level distribution mean of all the Gaussian normalized coefficients. These distributions are
reported in the first pictures of Fig. 5 to 8, followed by the two-clustered classification of the vertices. The face
oriented classification presented in the third column is the result of the application of the region growing and
merging stages. The colors used for the clusters are randomly chosen. The different classifications obtained on
the Rabbit model and presented in Fig. 5 and 6, always emphasize the characteristic parts of the mesh delimited
by high curvatures (ears, feet and nose) but the coefficient magnitude seems more approriate to separate the
textured neck or the eyes from the smoother surroundings. The same kinds of observations have been made on
the two other models.

Since our goal consists in analysing independently each patch with a special subdivision schemes or quanti-
zation, we need to be able to apply a separate multiresolution analysis in each produced partition. We present
in the next subsection the method we have considered and comment on the rest of the pictures.

3.2. Local multiresolution analysis computed on connex partitions

In order to analyse, quantify and encode separately each connex region, we need to be able to decompose
independently each one into several levels. Consequently, we have chosen to start from the level on which the
segmentation was produced and to coarsen it so as to obtain good approximations of the former partitions on the
coarser meshes. The final stage consists in projecting back the approximations on the finest model (the original
one), in order to begin the local analysis.

9



Figure 5. Classification and segmentation based on the coefficient magnitude for the Rabbit model, remeshed by the
Normal Mesh algorithm. (a) Distribution mean of all the Gaussian normalized coefficient magnitudes on the 1st level ;
(b) Two-clustered classification on the same level ; (c) Same classification after the region merging step ; (d, g) Cluster
projections on the coarsest (5th) level using the two different rules and (e) the first projection rule corresponding connex
regions ; (f, h) Connex partitions projected on the finer mesh.

3.2.1. Determination of the coarsest acceptable model for the segmentation projection

One of our contributions is the projection of the fine classification and segmentation on the coarser resolution
levels. If we assume that the segmentation was computed on the resolution level n, the projection will start
on the immediately coarser model (level n + 1) and will continue until the produced regions are too far away
from the initial ones. Experimentally, we have noticed that it generally occurs when the coarse mesh number of
triangles is smaller than 130. That’s why we have projected the partitioning until the 5th resolution level for all
the considered models.

We have used two different rules to determine for each coarse triangle (represented by t in Fig. 9), its cluster
affiliation, according to its incident four finer facets. For the first rule, if at least three of the four fine triangles
belong to a given cluster, the corresponding coarser triangle will also belong to this cluster. The projection using
this rule is illustrated in Fig. 10. If an equality occurs, we have the choice to favour one of the two clusters,
depending on the final stake. We have chosen to favour the non smooth cluster (represented in green in Fig. 10)
because one of our goal is to show the reconstruction produced when any wavelet is associated to the smooth
parts. Following this latter objective, we have also proposed a second rule that always favour the non smooth
cluster if at least one of the four fine triangles are not smooth.

The cluster and partitioning coarse projections are presented in Fig. 5 to 8 for the first or both rules. For
every cluster projection, the blue color is associated to the smooth cluster. We can see that the first rule has
produced projections which are not really far from the former ones. The results obtained with the second rule
are much more differents, except for the Horse model which is predominantly composed of smooth parts.

The last stage consists in projecting back the coarse segmentation on the finest mesh (the original one), so
as to be able to compute a local multiresolution analysis considering different treatments on each partition.

3.3. Separated wavelet analysis

Once the projection on the finest level is realized, we can decompose each partition until the coarsest acceptable
level (the 5th one). This patch-independent analysis can be based on each partition cluster type, in order to
differentiate the treatments on smooth and high frequency parts. It produces as much ”wavelet files” as the
number of created regions that can be separetely quantified and entropy coded.

Considering the wavelets to produce such a hierarchy, we aim at finding the best prediction scheme for each
specificity in the surface, in order to improve the rate/distorsion (r/d) results in comparison with the global
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Figure 6. Classification and segmentation based on the coefficient magnitude and polar angle for the Rabbit model,
remeshed by MAPS. (a, g) Distribution means of all the Gaussian normalized magnitudes and polar angles on the 1st

level ; (b, h) Two-clustered classifications on the same level ; (c, i) Previous classifications refined by the region merging
step ; (d, j) Cluster projections using the first rule, on the coarsest (5th) level and (e, k) the corresponding connex regions
; (f, l) The same partitions projected on the finer mesh.

Figure 7. Classification and segmentation based on the coefficient magnitude for the Venus model, remeshed by the
Normal Mesh algorithm. (a) Distribution mean of all the Gaussian normalized coefficient magnitudes on the 1st level
; (b) Two-clustered classification on the same level ; (c) Same classification after the region merging step ; (d) Cluster
projection using the first rule on the 5th level and (e) the corresponding eleven created connex regions ; (f) Previous
partitions projected on the finer mesh.
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Figure 8. Classification and segmentation based on the coefficient magnitude for the Horse model, remeshed by the
Normal Mesh algorithm. (a) Distribution mean of all the Gaussian normalized coefficient magnitudes on the 1st level ; (b)
Two-clustered classification on the same level ; (c) Same classification after the region merging step ; (d, f) Corresponding
partition projections using the two different rules, on the 5th level ; (f) Previous connex regions projected on the finer
mesh.

Figure 9. Example of the coarse facet cluster affiliation determination (b) according to its incident four finer facets (a).

Figure 10. Example of the coarse facet cluster affiliation after two successive coarsifications with our first rule. Using
our second rule, if we consider that the ”smooth triangles” are represented in blue, the final three coarse triangles would
have been identified rough (in green).
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treatment. We illustrate this consideration in the next section on a synthetic object. For the other models,
another kind of treatment can also be considered which is discussed in the conclusion.

3.4. Zerotree coding and binary allocation

The most powerfull compression algorithms for this kind of 3D representations use the geometric wavelets on
semi-regular meshes. The coefficients are hence quantized and compressed with a very efficient method, based on
their distribution in the resulting hierarchy (zerotree representation) or considering the neighbouring coefficients
(spatial correlation). A scalar quantization is generally used, so we are faced with three independent coders.
Finally, an arithmetic coding is added to further compress the data.

For the coefficient compression, we have first considered the same zerotree coding as the one used by Kho-
dakovsky et al.19 This latter uses an adapted quadtree definition for meshes compared to the algorithm of Said
and Pearlman,29 formerly implemented for images. Their coding exploits the parent-child coefficient correlations,
minimizing the significant bits to code at each step. It is also conceived so as to send the highest order bits of the
largest magnitude coefficients first, in order to obtain for each bitrate, the best reconstructed model producing
the smallest distortion.

Appart from the wavelets, the compression file size also includes the scale coefficients corresponding to the
encoding of the coarsest mesh. We have used the embedded coarsest geometry encoding method of Khodakovsky
et al.,19 where the coarsest geometry is stored with the zerotree representation. The connectivity is compressed
with a single rate coder, such as the Touma and Gotsman30 one we have used. Consequently the r/d results
consider all these coding treatments.

This data flow is now ready to be transmitted on the network and reconstructed on the client side. All the
analysis stages we have described need to be reversed on the decoder side. For a brief recalling, the reader is
invited to refer to Fig. 11.

4. EXPERIMENTAL RESULTS AND APPLICATIONS

We present in this section the experimental results we have obtained with our application implemented in C++.
It uses the Computational Geometry Algorithm Library (CGAL)31 and more specifically the polyhedral surface
package.

There are lots of applications where the redundancy caused by the partitioned analysis could be a benefit,
such as error-resilient coding or watermarking. In order to evaluate this additive information, we first present
a comparison between our local MR framework and the global one for the usual 3D models. Then, in order
to validate our expectations, we have applied different decomposition treatments on a simple synthetic object,
after its segmentation. The r/d improvements we have obtained emphasize that a well adapted decomposition
can counterbalance the redundant information added by our local analysis. Finally, we show some other possible
applications of our framework.

4.1. Magnitude order of the local analysis additional information

Fig. 12 shows the different r/d curves for the preceding 3D objects. PSNR = 20 log10 peak/d where peak is the
bounding box diagonal and d the L2 relative error, corresponding to the following L2 distance d(X, Y ) between
the surfaces X and Y :

d(X, Y ) =
( 1

area(X)

∫

x∈X

d(x, T )2dx
)

1

2 .

This distance was computed with the MESH tool32 which symmetrized it by taking the max of d(X, Y ) and
d(Y, X). The rate is reported in bits per irregular vertex (b/v) according to the number of vertices in the original
input mesh. We can see the amount of the additive information necessary for the local analysis compared with
the global one, using the two different projection rules and a common treatment for all the regions of the surface.
The associated number of created regions for both rules and the percentage of the identified clusters are reported
in Table 1, for a better understanding of the curves.
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Figure 11. Steps involved during the local wavelet analysis and synthesis. The analysis begins with a semi-regular
mesh Msr obtained by applying a remeshing algorithm on an original irregular mesh Mir. Then a global wavelet analysis
decomposes the semi-regular model into n coarser meshes M1, M2, ...Mn. Then we can choose any of these produced levels
Mi to apply the classification and segmentation steps. To compress independently each constructed region, we finally
propose to project them on the coarser resolution levels before separating them and applying the zerotree and entropy
coding. On the synthesis side, the coarsest patches are first glued followed by the addition of the decompressed wavelet,
to form the reconstructed object Mrec that is compared to the original one, so as to evaluate our method.
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Figure 12. Rate-distortion curves for the usual 3D models remeshed by the Normal Mesh algorithm. The shape partitions
used for the local wavelet analysis and synthesis are based on the wavelet coefficient magnitude.
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Table 1. Segmentation characteristics based on the wavelet coefficent magnitude for the usual models. The number of
created regions and rough cluster percentages are associated to the coarse projection using the two different rules.

# vtx # face # reg. (1st rule) % rough # reg. (2nd rule) % rough

Rabbit Normal 70,758 141,312 9 29% 8 63%

Rabbit MAPS 67,039 134,074 8 22% 5 49%

Horse Normal 112,642 225,280 7 25% 5 37%

Horse MAPS 112,642 225,280 10 24% 6 35%

Venus Normal 163,842 327,680 11 43% 9 78%

Venus MAPS 163,842 327,680 6 19% 6 38%

Feline Normal 258,046 516,096 10 39% 8 56%

The additional cost produced by our local framework when using the same treatment on each partition can
be evaluated to 3 or 4 dB in average compared to the global treatment, for a bitrate greater than 0.5 b/v.
Moreover, the partitions constructed with our second rule projection have given better r/d results with this kind
of analysis, because of the smaller number of created regions which implies less redundant information to encode.
The section 4.3 demonstrates also its superiority for a special type of reconstruction.

The redundancy introduced by the partitioning can be compensated by a well adapted method on each region.
For the smooth ones, the prediction produced by the Butterfly subdivision scheme appears really accurate because
the wavelet coefficients are close to zero. For the other regions, higher details are generally needed to represent
the high frequencies.

This information, which greatly contributes to the visual realism of the reconstructued objects, could be
reduced by considering the statistical distribution of the wavelets. Consequently instead of transmitting all
the coefficients, some critical statistical elements can be sufficient to regenerate a surface with the same visual
aspects and high frequencies. We keep this outlook for future work, considering the work done by Golovinskiy
et al.33 They have developped a statistical model for the analysis and synthesis of facial geometry details so as
to improve the 3D face model realism. Moreover, Nguyen et al.34 have implemented a hole filling algorithm for
polygonal meshes that synthesize details based on the close existing geometry. Associated with a determination
of the required details needed for an accurate reconstruction, this approach could allow to reduce the wavelet
amount.

4.2. Global vs Local wavelet analysis with different schemes on a synthetic object

In order to study the compression behaviour when applying different treatments on the segmented regions, we
first wanted to test the application of distinct prediction schemes on a synthesized model. This model, represented
in the picture (b) of Fig. 13, has been conceived by applying four successive subdivisions on the coarse mesh
illustrated in the picture (a) of Fig. 13, with little additional white uniform Gaussian noise. Our aim was to
produce a nearly flat part as opposed to another quasi smoothed region. The following results show that the
flat region can be better predicted with the simple midpoint scheme, whereas a ”smooth prediction” is more
suitable for the other part. This treatment can be realized thanks to the prior segmentation, illustrated in Fig.
13, picture (e). Fig. 14 present the r/d curves associated to the local and global analysis where the bitrate is
computed in bits per semi-regular vertex. The improvements in coding performance are obvious for bitrates up
to 2 bits/vertex.

4.3. Examples of other possible applications

We finally present some of the other possible applications of our framework.

First of all, if the user is not interested in visualizing a given region, we can only send him or her the coarsest
mesh information without the wavelets. Moreover, for the identified smoothed regions, the wavelets are generally
not needed for objects visualized on low resolution screens.
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Figure 13. Segmentation of a synthesized model (b) produced by applying four canonical subdivisions on the (a) poly-
hedron, followed by an additional white uniform Gaussian noise ; (c) Distribution mean of all the Gaussian normalized
coefficient magnitudes on the 1st resolution level, using the midpoint scheme ; (d) Two-clustered first classification on the
same level ; (e) Final classification after the region merging step.

Figure 14. Comparison of the r/d curves obtained with the global and local wavelet analysis (right). The left part
emphasizes the possibility of using different prediction schemes when compressing the object with the local framework.
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Fig. 15 present different possible reconstructions which have been produced considering the maximal bitrate.
For each one, we have specified the corresponding compressed file size in bytes and the L2 error in units of 10−4.
The first column illustrate the result obtained with the global synthesis, whereas the other reconstructions have
been produced by our segmentation framework, without considering the wavelets on the smooth partitions. The
second and fifth columns present the two classifications used to produce the following reconstructions. They
were obtained with the application of our different projection rules.

The first observation is that the single subdivision applied on the smooth regions produces good recon-
structions with a lower L2 error than without subdividing at all. More specifically, for the Horse model, with
approximately twice fewer bytes, we obtain a good reconstruction of the Horse model which preserves the im-
portant characteristics of the object. This decompression can be sufficient for a visualization on a low resolution
device. The Feline model is also well reconstructed with our two local rules, but the file size reduction is less
important because it contains a more important percentage of non smooth parts. Finally, the weaker file size
gain obtained for the Rabbit mesh can be explained by the more important redundancy induced by the shape
of the mesh.

Such as the work published recently by Cheng et al.,35 we propose a part-based mesh reconstruction with
different focuses depending on the user’s waiting. Our method can decode perfectly the full details of a mean-
ingfull part, without doing it for other patches. Moreover we obtain a better rendering for the identified ”non
meaningfull” regions using the subdivision surfaces.

Another interesting application which can benefit from our framework are the error-resilient mesh coding
techniques. In this context, Park et al.36 have recently proposed a two-step partitioning scheme to prevent from
the reconstructed mesh degradations encountered when transmission errors occur. As the majority of the coding
methods uses a redundancy reduction for providing the most compact bitstreams, the information becomes more
sensitive to transmission errors.

Yan et al.37 had previously considered this issue, but had encountered reconstruction problems because
their method could not guarantee a uniform partitioning. For this reason, Park et al.36 have proposed a shape
decomposition into smooth and detailed regions, followed by an additional division into smaller parts to provide
partitions of uniform sizes and overcome the latter problems. Moreover, they have observed that the smoothness
uniformity within each partition has facilitated the faithful concealment of erroneous partitions. Consequently
we could consider to further decompose our patches so as to propose the same kind of algorithm.

5. CONCLUSIONS AND FUTURE WORK

We have presented a new MR analysis local decomposition based on a segmentation of semi-regular meshes
according to their surface smoothness. The main contribution of this work is the development of a framework
that provide the possibility to apply different coding treatments on specific identified regions, to reduce the
compression costs. This compression oriented framework is applicable to any semi-regular polyhedral surface.
We have demonstrated on a synthesized 3D model that the produced redundancy can be compensated by a well
adapted treatment on each analysed region.

Consequently the first perspective of this work is to adapt a statistical analysis and synthesis model for the
non smooth partitions to be decomposed differently, in order to produce better r/d results than with a unique
scheme on the entire surface. A possible issue could consist in collecting only the critical elements to regenerate
the same visual aspects and high frequencies of the studied surface.

The r/d results presented in this work for the local analysis could also be improved considering a rate-
distortion optimization. Following the work done by Payan et al.,38 we would like to further optimize the
wavelet quantization and bit allocation for each produced patch, with respect to its distortion contribution on
the entire surface. Their bit allocation process minimizes the reconstruction error for a given bit budget, with an
error-driven wavelet coefficient quantization and improves the coding performance up to +2.5 dB compared to the
original zerotree coder of Khodakovsky et al.19 Consequently we propose to predict the optimized quantization
for each patch with the same kind of model-based approach Payan et al.38 and Parisot et al.39 have used.
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Figure 15. The possible reconstructions with our flexible local framework and considering the maximal bitrates. 1st

column: reconstructions obtained from a global wavelet decomposition ; 2nd & 5th column: two-clustered classifications
using the two different rules and projected on the 5th level (smooth cluster in blue) ; 3rd & 6th column: reconstructions
produced with the non lifted Butterfly subdivision, followed by the wavelet addition in the non smooth parts ; 4th & 7th

column: same reconstructions but without any subdivision in the smooth parts. We have reported the corresponding
coding file size in bytes and L2 error in units of 10−4 for each considered reconstruction.
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Finally, we could also improve the produced regions, using a different method associated to a remeshing stage.
Given the former partitioning on the 1st resolution level, it could be decimated and remeshed, considering the
surface anisotropy such as the work proposed by Alliez et al.40
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