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Abstract

Given the huge quantity of the current available textual
information, Text Mining process tackles the task of search-
ing useful knowledge in a natural language document.

When dealing with a free-format textual corpus (e.g. a
Job announcement) where the linguistic rules are not re-
spected, the time consuming morpho-syntactic analysis is
not of a great help. However, text mining techniques pro-
cess may exploit linguistic sub-structures in the text.

In this paper, we present an applications of Grammati-
cal Inference (GI) in a machine learning system applied to a
text corpus. We specify and use the process of the Grammat-
ical Inference as an instance of the Constraint Satisfaction
Problem that instantiates automata in a (language inclu-
sion) lattice.

1 Introduction

Textual databases constitute the major part of the cur-
rent available information. Significant research work con-
centrates on the Information Extraction (IE) from these
databases.

Given a textual corpus, the information extraction pro-
cess applied by the techniques ofText Mining(e.g. [24],
[27], [26], [13]) consists of the search for no-explicit in-
formations in such corpora. As an example, Text Mining
can extract significant information from Marine catastrphes
bulletins like the prior event sequence of such disasters.

In a basic approach, IE task would be tedious if noa pri-
ori structural information is available about the text. On
the other hand, given the cost of a syntactical analysis, an
IE process based on a whole morpho-syntactic analysis of
documents would not often be realistic. When dealing with
free-format texts, such analysis would not be of a great in-
terest in a text mining process usually based on key patterns.

In the case of free format texts, the rules of linguistic
grammars are seldom respected. These texts rather contain
few words without using entities such as determinant, verb
and other punctuation.

In the current work, we are interested in the structures
of sub-languages in free-format texts. For example, sup-
pose an advertisement of an exposition onEgypt that will
take place inParis. The knowledge of the structure of the
sub-language representing theaddress(where the exposi-
tion takesPlace) may avoid concluding too quickly (and
wrongly) on the place of the exposition upon the simple
presence ofEgyptcity name.

Text Mining research field has been focused on since
1991 through MUC programs. However, it is still domain
specific and time-consuming to build a new system or to
adapt an existing one to a new domain. Although symbolic
and statistical methods have been applied in some IE sys-
tems (e.g. [21], [28]), not a lot have combined Grammatical
Inference with (naive) statistical information.

Techniques of Grammatical Inference (GI) ([15], [16],
[17]) promise to be useful in this field. They carry the
process ofText Miningto capitalize the (partial) morpho-
syntactic structure of patterns (or of sub languages) with a
few amount of information on the contents structure. These
techniques attempt to induce the structures of a source data
(flow of signs) by a set of production rules of a regular
grammar. The induced grammar being an element of a
(language-inclusion) lattice, the text mining is concerned
by an informed search (seen as ageneralization) within this
lattice carrying required information and semantics.

This paper describes a research work on the design and
implementation of GI process that was successfully applied
first in a Pattern Recognition project on documents like
summaries, dictionaries, scientific reports and so on. Here,
whenever thelinguisticstructure of these documents are ex-
tracted, Textual DataMining technics ([24], [27], [25], [26],
[20], [23]) are applied to such documents and extract valu-
ableknowledgefrom the data.

For example, a given report document (among the cor-
pus) can be (logically) structured by a production rule like:

report← abstract, outline, chapter, sub-chapter,
chapter, references.

Having one rule per example, the objective is to general-
ize these rules in a GI process and to propose an automaton
that describes the underlying language.



A second application of this process was on a seminar
announcement corpus. A seminar announcement may have
the following structure (one of the possible formats):

seminar← heading, subject, speaker, date, hour,
address, organizer

In this second experiment, the aim is first to learn how
to recongnize slot values (and their structures), and then to
capture slot fillers from new announcements.

In this paper, we focus on the extraction of the structure
and the content of the above announcementcorpus of doc-
uments using the Grammatical Inference. We apply the pro-
cess of Grammatical Inference to a set of regular production
rules. As in the above examples, each rule (one for each el-
ement of the sample set) represents the (logical) structure
of the sample1. Negative descriptions (and samples) can be
provided in order to denote those structures that must be
rejected. The inference engine then produces a representa-
tive regular grammar that will recognize documents in their
respective context.

In the following, some background about the Regular In-
ference is reported.

2 Grammatical Induction

The problem of grammatical inference can be consid-
ered in a Constraint Satisfaction Problem framework (see
e.g. [6]). Although some work (e.g. [10]) tackled this prob-
lem as an instance of graph coloring, the proposed approach
gave an interesting but a quite general idea of the question.

In [8], Gold showed that any recursively enumerable
class of language is identifiable using acompleterepre-
sentation with the positive and the negative data. Hence,
the class of regular languages cannot be correctly identified
from only the positive examples. Although the usual case in
document handling is to learn from only positive examples
(given in the setI+), the induced grammar can be drasti-
cally refined by some negative examples (the setI−) and
avoidover generalization2.

It is known that any algorithm that would construct a de-
terministic finite automaton (DFA) with a minimum number
of states compatible with all the data already processed can
identify any regular language in the limit ([7]).

To achieve that, we developed an original and complete
algebraic framework for the Grammatical Inference. In this
framework, we define a relation over the (language inclu-
sion) lattice of automata represented by the set of all sam-
plesI = (I+ ∪ I−) that leads to the construction of parti-
tions over that search space. To realize that, an initial alge-
braAGI

is assigned to a regular grammarGI associated to

1Various sectionslike theaddresssection of a seminar announcement
are handled in turn.

2Opposite tooverfitting, the extreme case of the over generalization for
an alphabetΣ is the languageΣ*.

the sample setI. Then we focus on the definition of a quo-
tient algebraAGI/R of AGI

that leads to a uniquely defined
isomorphism fromAGI/R to the language of the induced
automaton A. This automaton is supposed to govern and
generalize the language structuring the sample set.

Within this algebraic framework (describing why the
logical description is processed in that way), we discuss a
general Constraint Satisfaction specification that character-
izes the search space of the GI problem. Then, we define
a set of constraints that outlines the quotient algebra above
and constructs the final induced DFA (the automaton A).

2.1 The Regular Inference

The Inductive Inference paradigm is the basis of the au-
tomatic learning problem (see also [19]). In the Syntactical
Pattern Recognition (see e.g. [18]), many grammatical in-
ference algorithms are proposed that are used in the learn-
ing step of the pattern recognition tasks ([15], [16], [17]).
As mentioned above and in order to correctly identify regu-
lar languages, positive (I+) and negative (I−) examples are
to be provided to represent the language to be learned.
Example : partially from a seminar announcement textual
database (see the section 5 for an announcement example),
we may have some announcement message rules in the sets
I+={r1, r2, r3, r4, ...}, I−={r5, r6, ...} below:

r1 : Message← ”seminar”, Det,
Organization, Name.

r2 : Message← ”seminar”, Organization, Theme.
r3 : Message← ”seminar”, P ro, City,

” : ”, Theme.
r4 : Message← ”seminar”, Name, Theme.
r5 : Message← Det, ” : ”, Theme.
r6 : Message← ”seminar”, Organization,

Organization.

Here, each valid announcement begins with the wordsemi-
nar. The ruler5 denotes that a message can not begin with
a Determinant(Det) whiler6 denotes that a message with
two successivesOrganizations must be rejected. Note that
saying naively thatOrganizationwill always follow semi-
nar word is wrong.

In the next section, an algebraic specification of the
GI problem is stated. Then, in the sections 4 and 4.1,
some practical issues, the implementation of the proposed
CSP framework together with some examples are reported.
Then, some relationships with other works in this field are
recalled in the section 9.

3 Algebraic View of the GI

In the algebraic specification below, and relative to the
sample set (I = I+ ∪ I−), the properties of the partitions



over the terms ofAGI
-algebra associated to the grammar

GI are depicted. Then we formally characterize a rela-
tion from these partitions toL(A), the language of the fi-
nal induced automaton. This is done by the definition of
a set of constraints defining a congruence relationR over
the terms ofAGI

. The latter produces a quotient-algebra
AGI/R whose terms are isomorphic to those ofL(A).

Quotients of theAGI
-algebra give a (language inclusion)

lattice. Here, ourmain aimin the Grammatical (regular) In-
ference is to characterize this lattice and to guide the search
in it.

The Grammatical Inference problem can be specified by
using the relation between an initial many sorted algebra
and context-free grammars ([11])3. To construct the algebra
associated to a context-free grammar G, each non terminal
of G is assigned to a class of derivation tree. Consequently,
the non terminals of G are sorts of a many sorted algebra
whose operations are defined by the production rules of G.
The derivation tree (and the language) of any non terminal
X denotes the carriers of the sort X of the algebra.

Let G = (N, T, P, S) be a context-free grammar and LG

be its language withN=non terminals,T : the terminals,P
: Production rules andS : the start symbol . Let associate to
G theAG-algebra whose signature is ((N ∪ T ), Op) where
Op is the set of names given to the productions inP . The
terms of this algebra are (possibly partial) derivation trees
starting from any non terminal of G.

An AG-algebra isinitial in a category C based on the
same signature if for all algebra B of C, there exist a unique
homomorphismf : AG → B.

Let’s now consider the sample setI = I+ ∪ I− (with
I+ ∩ I− = ∅), the grammarGI from the setI , the
AGI

-algebra associated toGI and the languageL(A) (A
is the final induced DFA). We are interested inf such that
f : AGI

→ L(A). Consider the set of finite automata as-
sociated to elements ofI (one automaton per element ofI)
and letTree(I) denote the tree of all these automata.

We define the automatonGI = (Q ∪ {S}, Σ, Pδ, S,F)
associated toTree(I) whereQ is the set of all states in
Tree(I), Σ is the set of terminals inI and Pδ is the set
of the names given to the transitions inTree(I). The start
symboleS is such thatS → p01| p02|... where pij ∈ Pδ, j
is the rank of the transition in theith automaton associated
to each element ofI. F is the set of final states in Tree(I).
GI associated toTree(I) is possibly a no deterministic but
ǫ-free (circuit-free) automaton.

If LI+ is the language of the positive samples (resp.
LI

−

for the negative ones) generated by the final induced
automatonA (that accepts onlyLI+ ), then, for any parti-
tion of Q containing equivalent states (cf. the section 4),
I+ ⊆ LI+ andI− ⊆ LI

−

. We haveLI+ ⊆ Σ* - LI
−

and
LI

−

∩ LI+ = ∅.

3This relation is easily extended to the regular grammars.

Let consider R a congruence relation, a partition
Tree(I)/R from Tree(I) and its regular grammarGR,
AGI

andAGI/R are the algebra assigned toGI and GR.
In the following section, we will define a homomorphism
homo

R
fromAGI

toAGI/R that formally defines the equiv-
alence classes of AGI

-algebra. Then, we will state a con-
straint satisfaction specification of the (language inclusion)
lattice induced byhomoR and propose a Constraint Logic
Program (CLP [6]) that will search, under some constraints,
for a (not necessarily minimal4 canonic) DFA in that lattice.

3.1 The Quotient Algebra

Let AGI
= ((Q ∪ Σ), Op) be an algebra associated to

the (regular) grammar of the sample set I. Terms ofAGI

are derivation trees (let note them byâ or b̂) of the form
ri(rj, rm(..., rk(rn)...) and of some sort q∈ Q. Let R a
congruence relation onAGI

. Op is the set of names (likeri )
of rules ofGI of the form(q’, α→ q) or (α→ q), α ∈ Σ,
q,q’ ∈ Q. The quotient algebra induced by R is defined by
AGI/R = ((Q ∪ Σ), Op) with :

1- (Q ∪ Σ) = {[ â] | â a derivation tree whose type is q∈
Q} where the congruence class [â] is defined by [̂a]={ b̂ a
derivation tree of type q∈ Q | (â,̂b) ∈ R};

2- Op=set ofri for each element ofΣ, if ri is the name
of a production rule of the formα→ q with q∈ Q and
ri : [α] → [q];

3- Op= set ofri : ([q’], [q"]) → [q] if ri is the name of
a production rule(q’, q")→ q with q, q’, q"∈ Q is defined
by ri(rj,rm( ...,rk (rn)...)=[ ri(rj, rm(..., rk(rn)...)].

A derivation tree [̂a] in AGI/R is constructed using ele-
ments congruent tôa ∈ AGI

.
Although a term̂a of AGI

is like ri(rj, rm(rl, ..., rk(rn)...)
with ri, rj , ... ∈ Op, for the sake of clarity, we will rewrite
â by ri(α, rm(β,..., rk(γ)...) whenrj (resp.rl , rn, etc.) is the
name of a production rule likeα→ q (resp.rl : β → q and
rn : γ → q, etc.). This is also motivated by the fact that [α]
denotes the equivalence class of the constantα whenever
[â]=[α]. We set [α]=α for eachα ∈ Σ.

Operations ofAGI/R are well defined since R is reflex-
ive, symmetric, transitive and compatible such that from
[â]=[ b̂] we conclude that (̂a,̂b) ∈ R.

Thus,
((AGI

) ri1(α1, rj1(α2, ..., rk1(αn)...) , (AGI
) ri2(β1, rj2(β2, ...,

rk2(βn)...))∈ R

implies :

4"not necessarily minimal" is to be considered in a grammatical point of
view, w.r.t. the number of states. The induced grammar is actually minimal
w.r.t. all constraints specified in the Congruence predicate (section 4)



[(AGI
) ri1(α1, rj1( ..., rk1(αn)...)] ≡ [(AGI

) ri2(β1, rj2(...,
rk2(βn)...)].
Equivalently, (ri, rj)∈R implies ri ≡ rj (same as [ri] ≡
[rj]).

Quotient algebra are characterized by the universal prop-
erty (up to an isomorphism [12]). This property is stated
by the following (homomorphism) theorem applied toAGI

(proofs out of the scope, avoid self reference) :

Theorem 1. Let AGI
associated to Tree(I) be the algebra

and R a congruence relation onAGI
. Then

homoR : AGI
→ AGI/R

defined by homoR(â) = [ â] for â ∈ AGI
is a homomor-

phism that has the following property.
Let f : AGI

→ L(A) a homomorphism with the (former)
congruence relation R, then there exists a unique homomor-
phismf̄ such that the following diagram of mapping is com-
mutative, i.e.,f = f̄ ◦ homoR .

-
P

P
P

P
P

P
PPq�

�
�

�
�

�
��1

f

homoR

L(A)AGI

AGI
/R

f̄
=

Figure 1. Commutative Mapping Diagram

It can be first showed thathomoR is a homomorphism
before proving the above theorem. One may note that the
quotient algebra will define equivalence classes onAGI

.
Definingf̄ will let us reach our goal which is to defineL(A)
from AGI

. In the next section, we define a CSP specifica-
tion by the Congruence predicate that defines the congru-
ence relation R (over the of termsAGI

) and hence char-
acterizes the search spaceLatR (see figure below) and the
instantiations in it. Then we discuss the properties ofI+

andI− with respect toLI , LI+ , LI
−

andL(A).
In the following figure, the top elementΣ∗ of the lattice

LatR represents the set of all thewords that can be con-
structed over the alphabetΣ, and the button element∅ repre-
sents the empty set. This search space contains all automata
(one for each element ofΣ∗) in which the final automaton
L(A) is searched.

4 The Congruence Predicate

Recall thatR is a congruence relation over (the sorts of)
AGI

. Let â1 , â2 ∈ AGI
where

â1 = ri1 (α1, ri2(α2, ri3 (α3, ri4(α4,..., rin−1
(αn−1,

rin
(αn)...)
and

#

" !

 Σ
∗

∅

L(A) ?

Figure 2. The search space LatR

â2 = rj1(β1, rj2 (β2, rj3(β3, rj4(β4,..., rjn−1
(βn−1,

rjn
(βn)...).
The Congruence predicate constructs the storeθ (a set

of constraints) and assigns an equivalence class [qi] to each
qi ∈ Q. The setθ may contain constraints likex in r, =
and6=. Whenever the set of final constraints is satisfiable, if
there is more than one solution, then we will choose the one
which minimises the number of equivalence classes. Ini-
tially, θ = ∅.

In order to extract equivalence classes, this predicate is
applied to every pair of (compound) terms ofAGI

. Within
each couple of terms, the predicate is applied to every cou-
ple of sub-term of̂a1 andâ2. Backtracking is used to com-
pute a consistentθ (which characterizes LatR). Initially,
[qi] is the equivalence class of each qi ∈ Q. Elements of
I+ andI− are distinguished, hence we recognize final states
(F+ andF− with F = F+∪F− andF+∩F− = ∅) of these
two sets from each other and from any other equivalence
class.

Predicate Congruence(r1, r2) :
adds constraints to the constraint storeθ

Let r1 and r2 be transition rules (for̂a1, â2) with α,β ∈ Σ
r1 : [α] × s′1 → s1 r2 : [β] × s′2 → s2

(1) if s1 ands2 are different final states in (F+ × F−) then
add [s1] 6=[s2].

(2) if [α] = [β] then
add ([s′1] = [s′2] ⇒ [s1] = [s2]) (The DFA condition)

(3) if [α] 6= [β] then add [s1] 6= [s2]

Givens the rulesr1 and r2 above (depicted in the fig-
ure 3 below) , the application of the Congruence predicate
can produces 3 different configurations (i.e. [s’1]=[s’2] ∧
[s1]=[s2], [s’1]=[s’2] ∧ [s1] 6= [s2], [s’1] 6= [s’2] ∧ [s1] 6=
[s2]).

Although [α]=α is in its simplest form, we introduced
the notion of equivalence class for the alphabet using the
lexical class function CL(α)=[α] where:

[α]=[β] iff α = β or CL(α)=CL(β), α,β ∈ Σ.



For example, different city names or two (possibly dif-
ferent) organizations (university, research laboratory)are
equivalent.

��
��
��
��

[α]s’1 s1- ��
��
��
��

[β]s’2 s2-

Figure 3. transitions for r1 and r2

Obtaining the final induced automaton is a matter of
search inLatR. This automaton is the solution of a con-
sistent instantiation in the constraint storeθ. Among all so-
lutions, we pick up the one the minimizes the number of
states.

The Congruence predicate is implemented as a (com-
piled) CLP program in GNU-Prolog5.

This predicate takes as input the setsI+ andI− and gen-
erates the final DFA which is in turn an executable CLP
program representing the induced Grammar. In the appli-
cation (i.e. test) phase, we try to match the automaton of a
new input seminar announcement. In the case of a success,
further processing can take place (e.g. slot fillers value as-
signment in the announcement corpora, as stated briefly in
the next section).

The following figure shows a more general case. Note
that if we considerα1 (resp. β1) as theleft contextof α2

(resp. β2) andα3 (resp. β3) as itsright context, we will
cover, to some extent, the case studied in [21]:

��
��
s11 ��
��
s12 ��
��
s13

-
[α1] ��

��
s14

-
[α2]

-
[α3]

��
��
s21 ��
��
s22 ��
��
s23

-
[β1] ��

��
s24

-
[β2]

-
[β3]

Figure 4. contextes and states

Applying the Congruence predicate to above case will
produce 5 different configurations (depending on the equiv-
alence classes ofαi,βi) with various number of states in
which the final induced minimal DFA has 4 states. Con-
straint store then will decide the final induced DFA consid-
ering all transitions and the negative examples.

It is worth emphasize that the Grammatical Induction
applied only to positive examples (I+) tends to over-
generalizeL+ (see e.g. [20]). Hence, one may express
negative descriptions that are representative of thewords
to be rejected. For example, we may state that aseminar
announcement heading containing the Hour valuemust be
rejected. TheI− set of the section 5.5 contains some nega-
tive examples for an announcement heading.

5The final induced automaton is an extended DCG ([5])

4.1 An Example

The theoretical aspects and the implementation issues of
the related work were validated first by using the experi-
mental protocol cited in [9]. The following example reports
an original one that shows some interesting aspects of the
grammatical inference engine.

Example : Consider thatI denotes the regular language
anbm, n, m > 0. We have,Σ={a, b} with I+ = {ab, aabb,
aaabbb, aaaabbbb, ...} and I− = {a,b, aab, abb, baa, bab,
...}.

The generated automatonA andL(A) are given below.
L+ = {a (aa)∗ b(bb)∗} ∪ {aa (aa)∗ bb(bb)∗}
L− = {aa (aa)∗ b(bb)∗} ∪ {a(bb)+} ∪ {b(bb)+} ∪

{a(aa)+}

0 2 3 4

1

5

6

a/s,f

b/f

b/s,f a/s

a/s,f
$/f

$/s

b/s,f

b/sb/s,f

$/f

Here, notations likea/s,f over an arc means that the
transition is a part of success (s) or failure (f ) derivation.
The tag< s, f > means that the transition can possibly
take to a success or to a failure. It is interesting to note
that even thoughI contains words of the Context Free
languageanbn, the above DFA extracts the following
underlying knowledge from the sample setI (cf. anbm):
the DFA recognizes either an even number of
a’s followed by an even number of b’s or
an odd number of a’s followed by an odd
number of b’s. But it rejects an even number ofa’s
(resp. b’s) followed by an odd number ofb’s (resp.a’s) at
the same time (which are words inL−). Obviously,A can
not generate that context free language butlearnsa part of
it.

Relative to this induction is the notion of grammatical
enrichment6 that may be defined as follows. Suppose that
the state [q] is originated fromI−. If there is any successful
derivation ofω ∈ L(A) containingL([q]), then we say that
I− enrichesL+. In the above example, For example,bb
derived throughq0q5q2q3 is in the enriched L+ if ever we
do not constrain that derivation to only use success (< s >
or <s, f > tag) edges.

5 The Text Mining Application

As mentioned above, we used the GI system to extract
linguistic structure of different parts of a seminar announce-

6similar to the well knownversion spaces.



ment database. An example of such announcement is given
below.

Seminar of the Institute of Nuclear
physics of Lyon

problem of the mode conversions
Yves Colin de Verdiere
Fourier Institute of Grenoble
14:30 H - Room 27
Paul Dirac Building

We want to extract various information such as theDateor
theSubjectin a seminar. Finals measurements like the re-
search fields of a university (or a researcher, etc.) can then
be extracted. In this process whose goal is to extract slot
fillers, valuable template slot fillers are already defined by
an expert7 : he/she knows in advance which kind of infor-
mation is contained (and sought) in the data base.

It is also appropriate to note that a seminar announce-
ment can be incomplete. For instance, theHour may be
missing within an announcement or it can be expressed in a
different form (for example, by the "Friday afternoon" ex-
pression).

The reminder of this paper describes the use of the Gram-
matical Inference engine (consolidated by a Bayesian anal-
ysis, see the section 5.3) with respect to the textual IE task
applied to the seminar announcement corpus.

5.1 Slots and Fillers of the Corpus

The following slots are defined for the seminar an-
nouncements corpus (abbreviations are further used in the
paper).

<Sub> the (general)Topic and theSubject
of the seminar,

<Org> the organizer, i.e. a university, lab.,...
<Adr − P lc> the address and/or the place where

the seminar takes place,
<Sp> the person who will make the talk,
<OrgSp> the organization of the Speaker (e.g.

the research lab. of the Speaker),
<Date> the date of the seminar,
<Hr> the beginning hour (or the time range)

of the seminar.

An announcement starts with theseminar (séminaire in
French) keyword.

5.2 Related Grammatical Inference

In the IE process applied to natural language texts, there
are major differences between the Sentence Analysis and

7The expert in this domain is just a scientifique-researcher familiar with
such seminar announcements

the traditional NLP parsers . The goal of syntactic analysis
in an IE system is not to produce a complete parse tree for
each sentence in the text. Instead, our system needs only to
perform partial parsing. That is, it needs only to construct
as much structures as the IE task requires.

Current methods (see e.g. [2], [1]) use generally global
constraints to resolve local ambiguities. But because of the
gaps in the grammatical and lexical coverage, full sentence
parsers may end up making poor local decisions about struc-
tures in order to create a parse spanning the entire sentence.

Furthermore, the syntactic analysis in a text mining pro-
cess is avoided for several more reasons:
- the cost and the complexity of this analysis,
- the very few use of the results of this analysis (the goal is
not to correct errors or to translate the text),
- the texts may not follow the correct and complete syntax
rules (of French in our case), etc.

A partial parser looks up for fragments of text that can
be reliably recognized, e.g.,nounandverbgroups. Because
of its limited coverage, a partial parser can rely on general
pattern-matching techniques, particularly finite-state ma-
chines, to identify these fragments deterministically based
on pure local syntactic elements. Partial parsing is well
suited for information extraction applications for an ad-
ditional reason : the ambiguity resolution decisions that
makes full parsing difficult can be postponed until later
stages of the processing where top-down expectations from
information extraction task can guide the system’s actions.

In our seminar announcement corpus, the subject is sim-
ilar to anoun groupbut may not follow its rigorous syntax.
Then, the inference stage helps, in this case, to retaineffec-
tive rules used in the examples. Therefore, the correspond-
ing text mining process will rather be a syntax directed pro-
cess.

Starting from a sample set (positive examples and neg-
ative cases description, see the section 5.5 for an example
of GI), the Grammatical Inference (GI) induces a regular
grammar8 (a DFA) of this sample set. In the test phase,
sentences presented to the grammar will be regarded as per-
taining (or not) w.r.t. the language generated by induced
grammar.

The Grammatical Inference carries out a classification of
the sentences (acceptor rejectmeans belonging or not to a
given language) but, in its original form, it does not han-
dle the semantics of these constructions. Hence, Bayesian
measures will guide the process by predicting the slot and
its value (in its context) to be submitted to the grammar.
The IE process is then achieved with more precision and
reliability (see also [35]).

8We note that the Context-Free grammar induction is an actualand
active research filed facing hard constraints making the general Context
Free induction problem no-decidable.



5.3 Naive Bayesian use

Several techniques of text mining use the Bayesian anal-
ysis that (even in its naive form) gives interesting results.
In the method known asnaive Bayesian, the document is
presented as a vector of characteristics (e.g. various sec-
tions of an announcement). Other presentations such as
bag of wordsconsider the text in the form of a collection
of words where any internal structure (physical, logical,
morpho-syntactic or semantics) is inhibited.

The Bayesian rule is recalled below. Given a hypothesis
(e.g. to have such a section of the classC in such a context
inside a seminar announcement) and an announcementE
overC, we have:

Pr(C/E) =
Pr(E/C) . P r(C)

Pr(E)

The idea is to express the weighted probability of the
membership of a pattern or a sub-language within a class
C according to the characteristic of the textE and those of
other texts classified as such.

To summarise the current process, key patterns leading
to recognize the various (but not all) fillers of an announce-
ment are first defined during the training stage. Together
with the key patterns, the frequency measurements and the
regular production rules will help to decide (toclassify) a
section of the announcement. During the test phase, a pat-
tern p first gets a probability to belong to a slot filler by
the presence of a deterministic keyword (100 %) and/or by
the probability (from the frequency table) of its (possibly
left and right) contexts.p is then submitted to the induced
grammar according to these probabilities. Failure cases are
postponed to the postprocessing step9. The process uses the
backtracking to consider other possibilities (see section6
for theSub filler).

5.4 Details of the GI process

It is easy to note that a simple textual search (based on
keywords) cannot be appropriate for extracting knowledge
from our seminar announcements. Methods of knowledge
extraction based on the Bayesian analysis allow to predict
the position of a given information in the text together with
its average length (see e.g. [35]). This technique, based on
the learning of the position of a section (e.g. the<Sub>
section) would not be appropriate here because of the free
format of the announcements. In addition, an announce-
ment can be incomplete. Thus, getting the induced grammar

9e.g. in the case of ambiguity (or failure onp), if a patternp′ (p′ 6= p)
has been successfully recognized to fulfill a slot filler, thepatternp is tried
against other related sections. Several lookup may be necessary in more
complex cases. Ablind application of the induced production rules is the
last chance.

of e.g. the<Adr−Place> section will make it possible to
analyse the content of that sub-language.

We use the grammatical inference in various sub-
languages (e.g. theheadingor thesubjectof an announce-
ment) that may contain relevant information. As an exam-
ple, the heading can contain a topic, a subject or an orga-
nizer that can be possibly extended in the reminder of the
announcement. The subject (Sub) can add precise details
to the Topic of the seminar and vice versa. Such comple-
mentary data are registered both in the frequency table and
hard coded in the production rules. The sequence of opera-
tions is governed by the key patterns, the probabilities from
the frequency table (table 1) and, finally, by the production
rules10.

It may be noted that if the Grammatical Induction is pro-
cessed only upon positive examples (the setI+ set below),
then the result tends to over-generalise the language in-
duced. Hence, the expert may express negative descriptions
that are representative of thewordsthat must be rejected11.
For example, he may state that aseminar announcement
heading containing the Hour valuemust be rejected. The
following example contains some negative examples for an
announcement heading (the setI−).

5.5 An Example of GI

As an example, the results of the grammatical inference
on theheading of announcement follows. The grammar
below partially describes what the headings of the sample
set contained. Hence, the followingI+ does not cover all
possible headings in all seminar announcements, but those
of the sample set.
I+={’SDON’, ’S:T’, ’S’, ’ST’,’SDT’,’SàV:T’,’SN:T’, ...}
I−={’Sa’, ’SS’, ’S::T’, ’S::L’, ’S::N’,’SDD’,’SOO’, ’Sàà’,

’Sa:’, ’SD:’, ’SaVV’, ...} where

S : the "séminaire" keyword (seminar in English),

D : <Det>, a determinant (e.g.,’du’ , ’de la’, ’des’) like ’of ’ or
’of the’ in English

T : <Thème> , an exposedTopic − Subject (e.g. Algorithm,
Complexity , Internet and Security, etc.),

N :<Nom>, a Noun, e.g. name of a research laboratory ,

O : < Org >, an organization name (e.g.institute, laboratory,
university, school...)

V : Ville, name of a City, e.g.Toulouse

’:’ : this character,

’à’ : this character (stands for’at’ or ’in’, ... in English).

10However, we are not in the context of the so-calledProbabilistic
Grammars

11For the seminar announcement case, negative examples are quite
straightforward.



The induced grammar accepts the language L+ (the induced
language of I+) and rejects those of L− (the induced lan-
guage of I−). The final induced automaton accepts the lan-
guage given below12. The rules that reject unsuitable con-
structions (i.e. words in L−) are not reported here for the
sake of clarity. However, one may observe that a rejection
takes place in the induced DFA when a derivation (upon a
token) leads to a finalfailure stateF− (see the section 5.4).
The language of the induced finite state automaton
The language induced from the setI = (I+ ∪ I−) for the
headingpart of announcements is given below. Recall that
this definition gives only the successful derivation paths.
L+ = "Séminaire" . L1
L1 = ǫ || (’:’ ‖ ’à’) . L3 || <Nom> . L5 || <Thème> . L6
L3 = <Org> . L6 || (<Thème > ‖ < V ille>) . L1
L5 = ’:’. L3 L6 = ǫ || <Nom> . L1

Nota Bene: the induced grammar is an operational logi-
cal grammar (extended DCG). Predicates expressing con-
straints and actions are then added to its rules (see theDate
example below). As an example of action, while recogniz-
ing (in their context):
- a <Thème> may contain a part of theSubject; then the
value corresponding to theSubject will be added to the
<Sub> filler;
- for a<V ille>, the corresponding city value will be added
to <ADR− Place> filler13.

Other possible adjustment actions are achieved during
the post-processing phase.

5.6 An example: the Date analyser DCG

Below, some of the induced grammar rules (annotated
by theirsemantical actions14 given inside brackets) for the
< Date > filler are given. The lack of any part of aDate
(e.g., theday-name) is not reported here15.
< Date >:: [”date”][” : ”][”le”][< Day − name >]

[< Mid − day >][”le”] < Day > [< Sep >]
< Month > [< Sep >] < Y ear > .

<Mid− day>:: <Word>
{$1 ∈ {”matin”} ;

add(part_of_Heure, ”8h − 12h”, 100) OR
$1 ∈ {”après − midi”} ;

add(part_of_Heure, ”14h − 18h”, 100)}.

< Month >:: < Number >
{$1 ∈ {1..12} ; add(part_of_Date, $1, 100)}

12Notation: (X‖Y ) means (X or Y ). The dot denotes the monoid con-
catenation andε denote the empty string.

13In the<Adr − P lc> context.
14a semantical action is a term from thesyntax directedand theAt-

tributed Grammarsparadigm which denotes (no syntactic) actions based
on the attribute values. Distinguished from the pure syntactical analysis,
such actions take place in a production rule if the rule applied.

15[x] means an optionalx; $k denotes the value of the kth literal (a.k.a.
yacc compiler compiler).

‖ < Word >
{$1 ∈ {”jan”..”dec”} ; add(part_of_Date, $1, 100)}.

<Day−name>:: < Word >
{$1 ∈ {”lun”..”sam”} ; add(part_of_Date, $1, 100)}.

< Day >:: < Number >
{$1 ∈ {1..31}; add(part_of_Date, $1, 100)}.

< Year >:: < Number >
{$1 ≥ 1990}; add(part_of_Date, $1, 100)}.

< Sep >:: ′/′ ‖ ′ :′ ‖ ′ −′ ‖ ... −− a separator

Nota Bene: the value 100 (parameter of the predicateadd)
indicates the confidence coefficient of the filler assigned to
the slot. Here, the case of< Date > is rather simple and
follows a known format. We may however note that the
presence of "matin/après-midi" (AM/PM in English) of the
<Date> will complete the<Hr> slot filler.

5.7 Frequency Measurements

The following percentage values is constructed from the
input samples. Here,OrgSp abbreviates′Organizer −
Speaker′, Pres stands for′Present′ , Sub for ′Subject′,
Plc for ′Place′, Hr for ′Hour′ andSp for ′Speaker′ :

Sub Org Date Hr Plc Adr Sp OrgSp End Pres
Ance 14 9 41 4 14 14 9 0 0 100
Sub 0 0 4 0 9 0 23 0 9 45
Org 0 0 4 0 4 0 0 0 0 9
Date 0 0 0 77 9 0 4 0 4 95
Hr 9 0 4 0 41 0 18 0 14 86
Plc 4 0 23 0 0 36 4 0 23 91
Adr 4 0 9 0 4 0 0 0 32 50
Sp 4 0 9 0 4 0 0 36 4 59
OrgSp 14 0 0 4 4 0 0 0 14 36

Table 1. Frequency table of an announcement sections

In the above table, a cellCij gives the frequency (or the
Support, see below for a definition) of the columnj that
followed the linei in the training set. ThePres(Presence)
column (the last one) gives the frequency of each element
of the line in the training set (e.g. theSub is present only in
45% of the announcements). We add to this table two other
values: 77% of the announcements contain aTopic in their
heading, and 18% of the headings contain an indication on
the organizer (Org).

The cells containing 0% are of a particular interest be-
cause they give indications on the cases that do not occur.
For example,< OrgSp > never follows the heading of an
announcement.

As an example, we apply the conditional probability to
the sectionSub of the example of section 5 where the slot
of the second line is not determined. This example shows
how the post-processing will help deciding that slots filler.
Given the table 1 above, the probability so that the unknown
section (in the example given in the section 5) is aSubject
(surrounded by theHeadingand theSpeaker) is 12%. How-
ever, this announcement does not contain a Subject in its
heading and, the Speaker is the successor of aSubject in
23

45
cases. Therefore, the filler is predicted at 23% (weighted

51%) to be theSubject.



Note that the strongest probability of the section that fol-
lows theheadingis theDate section. However, one can
recognize aDate by the keywords in the induced grammar.

The depth of the Morpho-Syntactic analysis engine is
a system parameter. In some cases, the (partial) linguis-
tic class from this filler can be extracted giving a (partial)
Noun Group (even without any initial determinant, see e.g.
[1]).

6 Results for the Example

This section describes briefly some experimentations on
the seminar announcement corpus.

For the grammatical induction, the GI process is applied
within the morphological step in order to learn to reject use-
less combinations like those constructions that are liguisti-
cally ambiguous and useless for us16. Once the learning step
is achieved on the seminar corpus, we obtained the follow-
ing results for the seminar example of the section 5 (confi-
dence coefficient for a filler value is reported at right when
it is less than 100; the original database is in French):
Org = "Institut de Physique Nucleaire de Lyon"
Sub = "Le probleme des conversions de modes" (51)
Sp = "Yves Colin de Verdiere" (51)
OrgSp = "Institut Fourier Grenoble" (61)
Hr = "14:30 H"
Adr_Plc= "Salle 27-Rez de chaussee-Bât. Paul Dirac"
Adr = "Institut de Physique Nucleaire de Lyon"
Date = ""

7 Performances Evaluation

Several textual IE systems, notably those of MUCs, in-
volved large training corpora with thousands of documents
(see e.g. [26]). However, such large training corpora (and
their associated templates) may not be available for most
real tasks.

Experiments with smaller training collections (such as
the 100 documents provided for MUC-6) suggest that fully
automated learning techniques applied to a few text exam-
ples with minimal automatic syntactic processing may not
be able to achieve sufficient coverage (see e.g. [34]).

We paid a special attention to the over generalization pit-
fall of the GI engine. An amount of work was done in test-
ing the GI engine on several different corpora (bibliography,
abstract, table of content, etc.) in order to improve the in-
duction algorithm. The GI engine is parametric such that
several different degrees of generalization17 can be set (by
varying the constraints over the language-inclusion lattice
of automata). The output automaton is then tested against

16Here, some linguistic knowledge is required to eliminate useless lexi-
cal class combinations from morphological analysis.

17Three for the moment

the training set and the one (that accepts all positive ex-
amples rejecting all negative one) with the least number of
states is chosen. One may observe that the refinement oper-
ator is hard-coded within the theCongruence Predicateof
section 4

In addition, another parameter is available in the GI en-
gine the turns on-off the so-calledenrichmentissue (section
4.1).

However, we are aware that larger sample sets (and
other domain specific corpora such asabstractscanning)
are needed to improve the system. Larger sample set has
however an inconvenience. Recall that the search space is
given by the lattice of language-inclusion specified by the
GI process and illustrated by theCongruence Predicate.
This search space grows exponentially with the size of sam-
ple setI.

Starting with 300 examples, we applied a ten-fold cross
validation and observed that the results were not signifi-
cantly changed for more examples.
Metric used : in the IE task (i.e. the corpus is known to
contain announcements), evaluation metrics are based on
the filler presence and prediction.

Precision =
Number of Correctly assigned slots

Number of assigned slots

Recall =
Number of Correctly assigned slots

Number of correct present slots

In addition, an harmonic measure called F-measure (see e.g.
[29]) is used to give the mean of the above values:

F −measure =
Precision×Recall

1

2
(Precision + Recall)

Figure 5. Performance evaluation
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The diagram of the figure 5 shows the performance per-
centages we obtained.For the seminar announcements cor-
pus, it is not surprising to have high performance values
(95% and 80%) given the intended slots and the relative low



risk of error. The system is quite domain specific and may
even be enhanced. Student work is currently done to adapt
the system to other corpora.

8 The Related Work

Several textual IE system have been proposed since the
focus on researches started by MUC program of DARPA
(e.g. [22], [29]).

The use of pattern dictionary is common to many sys-
tems. Some uses clustering to create patterns by generaliz-
ing those identified by an expert (see e.g. [33]). The dic-
tionnary used during the analysis. step contains basically
keywords (and their lexical class).

Syntactic information can be used as in Autoslog ([31],
[32]) that uses a set of general syntactic patterns validated
by an expert. Among these systems, some uses advanced
syntactic analysis to identify the relationship between the
syntactic elements and the linguistic entities (e.g. in [28]).
This analysis is costly (when the semantic information is
not used) and may limit the system specially if linguistic
rules are not respected (like in our seminar examples).

In many IE systems, human interaction is highly re-
quired through different phases of training. Machine Learn-
ing techniques like decision trees are used ([30]) to extract
coreferences using the annotated coreference examples.

Among these systems, the current work is closed to PA-
PIER system ([21]). RAPIER is an ILP system that takes
pairs of documents and filled templates and induces rules
that directly extract fillers for the slots in the template. This
system uses constraints on words and part-of-speech tags
surrounding the fillers’ left and right contexts. To some ex-
tent, our system can be seen from this point of view since, as
mentioned in the GI (section 4), our grammatical Inference
engine implements this technique implicitly. In addition,
these results should be compared with those of theNamed-
Entity research work (see e.g. [3]) and aims to learnnames
by identifying all named locations, persons, organizations
dates and so on.

9 Conclusion

In this paper, a new constraint satisfaction framework for
GI has been presented and implemented by an operational
constraint logic program that outputs the final DFA. Here,
the algebraic specification gives a theoretical framework to
statewhy some processing are done (e.g. merged states)
before explaininghow we do process. This specification
allows to show that the homomorphismf (section 3.1) ex-
ists and we gave an implementation of it by theCongruence
predicate which produces a set of constraints. If this set is
satisfiable, then we choose a solution with the fewest num-
ber of states.

Among other works in the field, [13] and [14] proposed
similar methods for document analysis. But in the algebraic
and constraint satisfaction frameworks of the Grammatical
Inference, the logical aspects for the direct grammar extrac-
tion have, as well as known, not yet been investigated.

This work was initiated in a (paper) document process-
ing project where GI results are used to classify and then
translate documents into machine readable form. Other ap-
plications dealing with more general multimedia contents
(video in particular) are under the study.

The code in GNU-Prolog of the realization is available
from the author.

On top of the GI part, we designed and implemented an
IE system that fills slots of a template associated to sem-
inar announcements using Bayesian measurements. Once
the template are slots filled, usual techniques of Data Min-
ing can applied to the results since the resulting values of the
slots describe simply a relational database scheme. One cur-
rent use of the system is to extract information like the re-
search field of universities, laboratories or researchers.That
is, to guide PHD students in their researches.

This is a work in progress and the performance results
are encouraging to continue the project. We plan to first en-
hance and then extend the system to other corpora like job
announcements and marine weather announcements. The
aim is to establish statistics on marine catastrophes and
previsions. The system will be integrated to a (database)
Datamining engine in order to establish valuable informa-
tion on marine events.
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