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Abstract— This paper deals with speech emotion analysis within the context of increasing 

awareness on wide application potential of affective computing.  Unlike the most of works in the 

literature which mainly rely on classical frequency and energy based features along with a single 

global classifier for emotion recognition, we propose in this paper some new harmonic and Zipf 

based features for better speech emotion characterization in terms of timbre, rhythm and 

prosody and a dimensional emotion model driven multi-stage classification scheme for a better 

emotional class discrimination. Experimented on Berlin dataset [1] with 68 features and six 

emotion states, our approach shows its effectiveness, displaying a 68.60% classification rate and 

reaching a 71.52% classification rate when a gender classification is first applied. Using DES 

dataset having five emotion states, our approach achieves an 81% recognition rate when the best 

performance in the literature to our knowledge is 66% on the same dataset [2].     

Index Terms— emotional speech, harmonic feature, Zipf feature, dimensional emotion model, 

Multi-stage classification 

I. INTRODUCTION 
Studies suggest that only 10% of human life is completely unemotional while the rest involves 

emotion of some sort [3]. As a major part of emotion-oriented computing or affective computing [4], 

automatic emotional speech recognition has potentially wide applications. For instance, based on 

automatic speech emotion recognition, one can imagine a smart system routing automatically angry 

customers in a call-center to a human operator, or a powerful search engine delivering speakers in a 

multimedia collection that discuss a certain topic in a certain emotional state. Another application of 

emotional speech recognition concerns the development of personal robots either for educational 

purpose [5] or for pure entertainment [6]. From the scientific point of view, automatic speech emotion 

analysis is also a challenging problem because of the semantic gap between low level speech signal and 
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highly semantic (and even subjective in this case) information. 

However, machine recognition of speech emotion is feasible only if there is sound emotion 

taxonomy model and reliable acoustic correlates of emotions in human speech.  In the following 

subsections, we first discuss emotion taxonomies and acoustic correlates, then we overview the related 

work to further introduce our approach. 

A. Emotion taxonomy  

The theoretical model of emotions is the first problem raised in the research for emotion 

classification. According to different psychological theories of emotion, the emotion domain could be 

cut into different qualitative states or dimensions by different ways. The two traditional theories that 

have most strongly shaped past research in this area are discrete and dimensional emotion theory [7]. 

According to discrete theories,  there exist a small number, between 9 and 14, of basic or 

fundamental emotions that are characterized by very specific response patterns in physiology as well as 

in facial and vocal expression [7]. The term “big six” has gained attention in the tradition of the discrete 

description of emotions and it implies the existence of a fundamental set of six basic emotions while 

there is no agreement on which six ones should be. The terms including happiness, sadness, fear, anger, 

neutral and surprise are often used in the research with this theory. The discrete description of the 

emotions is the most direct way than other descriptions to discuss emotional clues conveyed by audio 

signals. Using such a discrete emotion model, it is more likely to distinguish an emotion from the given 

kinds than to recognize emotions in the whole emotional space. 

In the dimensional theories of emotion [8] [9] [10], emotional states are often mapped in a two or 

three-dimensional space. The two major dimensions consist of the valence dimension 

(pleasant–unpleasant, agreeable–disagreeable) and an activity dimension (active–passive) [8]. If a third 

dimension is used, it often represents either power or control. Usually, several discrete emotion terms 

are mapped into the dimensional space according to their relationships to the dimensions. 

For example, some of the dimensional opinions of the emotions characterize the emotional states in 

arousal and appraisal components [9]. Intense emotions are accompanied by increased levels of 

physiological arousal. An example of arousal vs. appraisal plane of emotions is shown in Fig. 1. In this 
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example, arousal values range from very passive to very active, and appraisal values range from very 

negative to very positive. 

 

Fig. 1 Example of emotions in arousal vs. appraisal plane [9]. 
There exist some other more elaborated emotion models as well, for instance componential models 

of emotion [11] which don’t limit the description of emotions to two or three basic dimensions as 

compared to dimensional theories and also permit to model distinctions between members of the same 

emotion family.  

In practice, it is useful to associate discrete model with the dimensional one by mapping the 

discrete emotional states into dimensional spaces as illustrated in Fig. 1. However, most of the current 

machine learning algorithms [12] only consider classification problems of a finite number of clearly 

labeled classes. Machine recognition of speech emotions is mostly based on discrete emotional model 

whereas the kinds of emotional states and their number of emotional states are typically application 

dependant. 

B. Acoustic correlates of emotions in the acoustic characteristics 

Are there reliable acoustic correlates of emotions in speech signal making feasible machine based 

emotion recognition? As we know, apart from the words, human being expresses emotion through 

modulation of facial expression [13] and modulation of voice intonation [14]. There are some reliable 

correlates of emotion in the acoustic characteristics of the signal: speech emotion is question of prosody 

and expressed by the modulation of the voice intonation parameterized by features such as tonality, 

intensity, rhythm. 

Emotions are considered as cognitive or physical by different theories, and can be discriminated by 

distinct physical signatures [4]. Several researchers have studied the acoustic correlates of 
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emotion/affect in the acoustic features of speech signals [14] [15]. According to [14], there exists 

considerable evidence of specific vocal expression patterns for different emotions. Emotion may 

produce changes in respiration, phonation and articulation, which in turn affect the acoustic features of 

the signal [16]. There are also much evidence points to the existence of phylogenetic continuity in the 

acoustic patterns of vocal affect expression [17]. However, there is currently little systematic 

knowledge on the details of acoustic patterns that describe the specific emotions in human vocal 

expressions. Typical acoustic features which are considered as strongly involved in emotional speech 

signal include the following: 1) The level, range and contour shape of the fundamental frequency (F0), 

which reflect the frequency of the vibration of the speech signal and is perceived as pitch; 2) the level of 

vocal energy, which is perceived as intensity of voice, and the distribution of the energy in the 

frequency spectrum, which affects the voice quality; 3) the formants, which affects the articulation; 4) 

speech rate. For example, several emotional states such as anger and happiness (or joy) are considered 

as with high arousal levels [14], they are characterized by a tense voice with faster speech rate, high F0, 

and broad pitch range, which are caused by the arousal of sympathetic nervous system with increasing 

of heart rate and blood pressure, which are accompanied with dry mouth and occasional muscle 

tremors; yet sadness (or quiet sorrow) and boredom are similar with slower speech rate, lower energy, 

lower pitch, reduced pitch range and variability for both emotions, which are caused by the arousal of 

parasympathetic nervous system with decreasing of heart rate and blood pressure and increasing of 

salivation [14] [15] [18].  

Emotion recognition can be language and culture independent: acoustical correlates of basic 

emotions across different cultures are quite common due to the universal physiological effects of the 

emotions. Abelin and Allwood investigated in [19] utterances spoken be a native Swedish speaker to be 

recognized by persons native of 4 different languages as Swedish, English, Finnish and Spanish. Close 

recognition patterns were obtained by people speaking different languages, showing that the inner 

characters of vocal emotions can be universal and culture independent. Tickle also proved this point by 

asking Japanese listeners to recognize emotions expressed by Japanese or American people using 

meaningless utterance without semantic information [20]. The best recognition score by human was 

about 60%. Similar result was obtained by Burkhardt and Sendlmeier using semantically neutral but 
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meaningful sentences [15]. 

These studies thus show considerable possibilities to achieve machine recognition of vocal 

emotions. On the other hand, as the human recognition of vocal emotion, with roughly 60% recognition 

rate, is far from accurate, we probably cannot expect perfect machine recognition. This rather average 

recognition rate of vocal emotion by human mainly comes from similar physiological correlates 

between certain emotional states, and thus similarities in acoustic correlates. While human beings make 

use of all contextual information, such as expression, gesture, etc. for resolving ambiguity in actual 

situations, machine based emotion recognition using only vocal modality should focus on a few kinds of 

basic emotional states to achieve reasonable performance. 

C. Related works 

Along with increasing awareness of wide application potential from affective computing [4], there 

exist active research activities on automatic speech emotion recognition in the literature. According to 

underlying applications, the number of emotion classes considered varies from 3 classes to more classes 

allowing a more detailed emotion description [2] [21] – [25]. All these works can be compared 

according to several criteria, including the number and type of emotional classes for the application 

under consideration, acoustic features, learning and classifier complexities and classification accuracy. 

In [21], Polzin and Waibel dealt with emotion-sensitive human-computer interfaces. The speech 

segments were chosen from English movies. Only three negative emotion classes, namely sad, anger 

and neutral, are considered. They modeled speech segments with verbal and non-verbal information: 

the former includes emotion-specific word information by computing the probability of a certain word 

given the previous word and the speaker's expressed emotion, while the latter includes prosody features 

and spectral features. Prosody features include mean and variance of fundamental frequency and the 

jitter information presented by small perturbations in the contour on the fundamental frequency, and 

mean and variance of the intensity and tremor information presented by small perturbations in the 

intensity contour. The spectral features include cepstral coefficients derived from a 30 dimensional mel 

scale filterbank. The verbal features, prosody features and spectral features were evaluated separately in 

their work. Accuracy up to 64% was achieved on a significant dataset from English movies containing 
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more than 1000 segments for each of the three emotional states. According to their experiments, this 

classification accuracy is quite close to human classification accuracy. One of originalities in this work 

is preliminary separation of speech signals into verbal signal and non verbal signal. Specific feature set 

is then applied to each group for emotion classification. The major drawback is that the verbal 

information only works with language dependent problems and doesn’t reflect acoustic characters of 

vocal emotions. Among the non-verbal features, the pitch, intensity, and cepstral coefficients 

information were used to describe prosody, spectral characteristics of vocal expression; but the prosody 

features only contained simple features related to fundamental frequency and intensity contour. The 

other features such as features related to the formants, energy distribution in the spectrum and the other 

higher level features concerning the whole structure of emotional speech signals is absent in their 

feature set. 

Slaney and Mcroberts also studied three emotion classes problem in [22] but within another 

context. They considered the 3 attitudes as approval, attention bids, and prohibition from adults talking 

to their infants aged of about 10 months. They made use of simple acoustic features, including several 

statistics measures related to the pitch and MFCC as measures of the formant information, and also 

timbre cepstral coefficients. 500 utterances were collected from 12 parents talking to their infants. A 

multidimensional Gaussian mixture model discriminator was used to perform the classification. The 

female utterances were classified at an accuracy rate up to 67%, and the male utterances at 57% 

accuracy rate. Their experiment also tends to show that their emotion classification is language 

independent as their dataset is formed by sentences whose emotion was understood by infants who do 

not speak yet. Their work also suggests that gender information impacts on emotion classification. 

However, their three emotion classes are quite specific and very different from the ones usually 

considered in the literature, thus cannot be used as reference directly for other applications. As the main 

object of Slaney’s work was to prove that it is possible to build machines that sense the “emotional 

state” of a user. The emotion sensitive features were not the key point of this research. Only simple 

acoustic features were used in their experiment, and relationships between the features and emotions in 

terms of prosody, arousal or rhythm were not discussed in details. 

Gender information is also considered by Ververidis et al [23] [24] [2] with more emotion classes. 
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In their work, 500 speech segments from DES (Danish Emotional Speech) database are used. Speech is 

expressed in 5 emotional classes, namely anger, happiness, neutral, sadness and surprise. A feature set 

of 87 statistical features of pitch, spectrum and energy was tested, using the feature selection method 

SFS (Sequential Forward Selection). In [23], a correct classification rate of 54% was achieved when all 

data were used for training and testing with a Bayes classifier using the 5 best features: mean value of 

rising slopes of energy, maximum range of pitch, interquartile range of rising slopes of pitch, median 

duration of plateaus at minima of pitch and the maximum value of the second formant. When 

considering gender information in [24], correct classification rates of 61.1% and 57.1% were obtained 

for male and female subjects respectively with a Bayes classifier with Gaussian Pdfs (Probability 

density functions) using 10 features. The best result in their work is obtained by a GMM for male 

samples at 66% classification rate in [2]. 

Prior to the work of Ververidis et al, McGilloway et al [25] also studied 5 emotion classification 

problem with speech data recorded from 40 volunteers describing the emotion types as afraid, happy, 

neutral, sad and anger. They already made use of 32 classical pitch, frequency and energy based 

features selected from 375 speech measures. The accuracy was around 55% with a Gaussian SVM when 

90% of data were used as training data and 10% as testing data. An extension of this work was carried 

out by P.Y.Oudeyer within the framework of personal robot communication [26]. He considered 4 

emotional classes as joy/pleasure, sorrow/sadness/grief, normal/neutral, and anger in a cartoon-like 

speech. Using similar features as applied by McGilloway et al. and making a large-scale data mining 

experiment with several algorithms such as neural network, decision tree, classification by regression, 

SVM, naïve bayes, and Adaboost on WEKA platform [27], P.Y. Oudeyer displayed an extremely high 

success rate up to 95.7%.  However, a direct comparison of this result with the others is quite difficult as 

the dataset in their experiments seems not to be highly accorded with the natural speech emotions but 

exaggerated ones as depicted in the cartoon situation. Moreover, emotion recognition is speaker 

dependant as the robotic pet basically only needs to understand his master’s humor. 

The feature sets used in experiments by McGilloway et al [25], Ververidis [24], and Oudeyer [27] 

were basically spectral, pitch and energy (intensity) based features and thus similar to each other. The 

spectral features include low frequency energy (energy below 250Hz) and the formants information. 
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The pitch features mainly concern the properties of pitch contour, including the statistical values of the 

pitch value, the duration and value at the plateaus of the pitch contour, and the rising and falling slopes 

of the pitch contour. Similar statistical values of the energy contour as the ones with the pitch contour 

were used as energy features. Their experiments show that classical pitch, frequency and energy based 

features, while partially capturing voice timber, intensity and rhythm, are quite useful for emotion 

classification. However, these features are likely to mostly reflect nonspecific physiological arousal, 

and the existence of emotion-specific acoustic profiles may have been obscured [14]. They are thus not 

enough for capturing speech intonation, because tonality is not only question of pitch and formants 

patterns and prosody needs to be better captured. Moreover, except the low frequency energy, all the 

other features are derived from frame based short-term features. Long-term features enabling a better 

characterization of vocal tonality and rhythms in emotional expression are missing. In addition, all these 

works rely on a global one step classifier using a same feature set for all the emotional states while 

studies on emotion taxonomy suggests that some discrete emotions are very closed each other on the 

dimensional emotion space and there is confusion of emotion class borders as evidenced in [14] which 

states that acoustic correlates between fear & surprise or between boredom & sadness are not very clear, 

thus making very hard an accurate emotion classification by a single step global classifier.  

D. Our approach 

In this work, as our primary motivation is multimedia indexing for enabling content-based 

retrieval, some rough and basic emotion classes are investigated here. However, our approach is rather 

general and can be applied for various discreet emotional states which are, as we have seen previously, 

mostly application dependent. While we fully develop and illustrate our approach using the following 

“big six” emotion classes from Berlin dataset, namely anger, boredom, fear, happiness, neutral and 

sadness, we also show the effectiveness of our approach on DES dataset having some different five 

emotion classes.  

Unlike the most works in the literature, our contributions for vocal emotion recognition are 

twofold: first, as a complement to classical frequency and energy based features which only partially 

capture the emotion-specific acoustic profiles, we propose some additional features in order to 
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characterize other information conveyed by speech signals: harmonic features which are perceptual 

features capturing more comprehensive information of the spectral and timbre structure of vocal signals 

than basic pitch and formants patterns, and Zipf features which characterize the inner structure of 

signals, particularly rhythmic and prosodic aspects of vocal expressions ; Second, as a single global 

classifier using a same feature set is not suitable for discriminating emotion classes having similar 

acoustic correlates, especially for emotional states close to each other in the dimensional emotion space, 

we propose here a multi-stage classification scheme driven by the dimensional emotion models which 

hierarchically combines several binary classifiers. At each stage, a binary class classifier makes use of a 

different set of the most discriminant features and distinguishes emotional states according to different 

emotional dimensions. Finally, an automatic gender classifier is also used for a more accurate 

classification. 

Experimented with 68 features on Berlin dataset considering six emotional states, our emotion 

classifier reaches a classification accuracy rate of 68.60% and up to 71.52% when a first gender 

classification is applied. On DES dataset with five emotion classes, our approach displays an 81% 

classification accuracy rate. So far as we know, current works in the literature display a best 

classification rate up to 66% on the same DES dataset. 

The remainder of this paper is organized as follows. Section II defines our feature set, especially 

the new harmonic and Zipf features. Our multi-stage classification scheme is then introduced in section 

III. The experiments and the results are discussed in section IV. Finally, we conclude our work in 

section V. 

II. ACOUSTIC FEATURES OF EMOTIONAL SPEECH 
As our study on acoustic correlates and related works highlighted, popular frequency and energy 

based features only partially capture the voice tonality, intensity and prosody of an emotional speech. In 

complement to these two groups of classical features also used in our work, we introduce in this section 

two new feature groups, namely harmonic features for a better description of voice timber pattern, and 

Zipf features for a better rhythm and prosody characterization.  
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A. Harmonic features 

Timbre has been defined by Plomp (1970) as “… attribute of sensation in terms of which a listener 

can judge that two steady complex tones having the same loudness, pitch and duration are dissimilar.” It 

is multidimensional and cannot be represented on a single scale. An approach to describe the timbre 

pattern is to look at the overall distribution of spectral energy, in another word, the energy distribution 

of the harmonics [28]. 

In our work, a description of sub-band amplitude modulations of the signal is proposed to represent 

the harmonic distributions. The first 15 harmonics are considered in extracting the harmonic features. 

 

Fig. 2  Harmonic analysis of a speech signal 

The extraction process works as follows. First, the speech signal is put into a time-varying 

sub-band filter bank with 15 filters. The properties of the sub-band filters are determined by the F0 

contour, which is derived in section II-C. The center frequency for the ith sub-band filter at a time instant 

is ith multiples of the fundamental frequency (ith harmonic) at that time, and the bandwidth is the 

fundamental frequency. The sub-band signals after the filters can be seen as narrowband amplitude 

modulation signals with time-varying carriers, where the carriers are the center frequency of the 

sub-band filters mentioned before, and the modulation signals are the envelops of the filtered signals. 

We call these modulation signals as harmonic vectors (H1, H2, H3…in Fig. 2 and Fig. 4 (a)). That is to 

say, we use the sum of the 15 amplitude modulated signals using the harmonics as carriers to represent 

the speech signal as 

0

15
2 ( )

1
( ) ( )* j if n n

i
i

X n H n e π

=

≈ ∑  (Eq. 1) 
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where X(n) is the original speech signal, Hi(n) corresponds to the ith harmonic vector in time 

domain, and f0(n) is the fundamental frequency. 

As the harmonic vectors Hi are in time domain and do not present typical patterns in the timber 

structure, the amplitudes of spectrums of the harmonic vectors on the whole range of a speech segment 

are thus used to represent the voice timber pattern: 

_ ( ( ))i iF FFT H n=  (Eq. 2 ) 

The spectrums are shown in Fig. 2 and Fig. 4 (b) (F_1, F_2, F_3…). These 15 spectrums are 

combined together into a 3-D harmonic space, as shown in Fig. 4 (c).  

 

Fig. 3  Calculation process of the harmonic features: (a) waveform in time domain, (b) Zoom out of (a) 

during 20ms, (c) F0 contour of  (a), a1 – a6 are the frequency points of 1 to 6 multiples of the 

fundamental frequency at the selected time point (d) spectrum of selected time point, the amplitude at 

a1, a2, a3, a4, a5 and a6 

In order to simplify the calculation, we derive the amplitudes at the integer multiples of the F0 

contour from the short time spectrum over the same windows as computing the F0 to form the harmonic 

vectors instead of passing the filter bank, as shown in Fig. 3. As the F0 is derived in our work based on 

frames of 20ms with 10 ms’ overlap (see section II-C), we derive the amplitudes of the 15 harmonic 

points from the short time spectrum of each frame to approximate the harmonic vectors. Thus, the 

harmonic vectors in time domain obtained in this way are with sampling frequency of 100Hz, and the 

frequency axis in the 3-D space ranges between ±50Hz (Fig. 4 (c)). 
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Fig. 4  The amplitude of the harmonic vectors in time domain and their spectrums (a) amplitude 

contour of the first 3 harmonic vectors in time domain, the dark solid line, dark dashed line and grey 

dashed line show the first 3 harmonic vectors respectively, (b) the spectrums of the first 3 vectors, (c) 15 

spectrums combined in 3-D harmonic space 

The 3 axes in the 3-D harmonic space are amplitude, frequency and harmonics index Fig. 4 (c). In 

these 3 axes, both the frequency axis and the harmonics index axis are in the frequency domain. The 

harmonics index axis shows the relative frequency according to the fundamental frequency contour, and 

the frequency axis shows the spectrum distribution of the harmonic vectors. Normally, this space has a 

main peak at the frequency center of the spectrum of the 1st or the 2nd harmonic vector, and a ridge in the 

center of the frequency axis, which corresponds to the peak in the spectral center of the harmonic 

features. The values in the side part of this space are relatively low. 

 

Fig. 5  3-D harmonic space for the 6 emotions from a same sentence: (a) anger, (b) fear, (c) sadness, 

(d) happiness, (e) neutral, (f) boredom 

As the spectrum is symmetric due to FFT properties, we only keep the positive frequency part. Fig. 

5 shows the 3-D harmonic space of examples of the 6 emotions from speech samples with a same 

sentence. The axes in Fig. 5 are the same as in Fig. 4(c). This harmonic space shows obvious difference 

among the emotions. For example, the emotion ‘anger’ and ‘happiness’ have relative low main peak 
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and many small peaks in the side parts, and the difference between the harmonic vectors with higher 

indexes and lower indexes are relatively low, while the ‘sadness’ and the ‘boredom’ have high main 

peaks but are quite flat in the side part, and the difference between the harmonic vectors with higher 

indexes and lower indexes are relatively high, the ‘fear and ‘neutral’ have properties between the 

previous two cases. 

In our work, the properties of such a 3-D harmonic space are extracted as features for 

classification. From the difference in the harmonic space among the emotions, we divide the harmonic 

space into 4 areas as shown in Fig. 6. The ridge, which shows the low frequency part (lower than 5Hz) 

in the frequency domain, is selected as area 1; the other part (ranging from 5Hz to 50Hz according to the 

frequency axis) is divided into 3 areas according to the index of harmonics. Referring to the definition 

of octaves in the music, these 3 areas are divided with double frequency range to their previous area 

according to the harmonic index axis. Thus, the area 2 contains the 1st to 3rd harmonic vectors, the area 3 

contains the 4th to the 7th harmonic vectors, and the area 4 contains the 8th to the 15th harmonic vectors. 

The mean value, variance value of each area and the value ratios between the areas are used as features 

to be selected. 

 

Fig. 6  4 areas for FFT result of 3-D harmonic space 

List of harmonic features: 

51 – 63. Mean, maximum, variance and normalized variance of the 4 areas 

64 – 66. The ratio of mean values of areas 2 ~ 4 to area 1 

B. Zipf features 

Features derived from an analysis according to Zipf laws are presented in this group to better 

capture the prosody property of a speech signal.  
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Zipf law is an empirical law proposed by G. K. Zipf [29]. It says that the frequency f(p) of an event 

p and its rank r(p) with respect to the frequency (from the most to the least frequent) are linked by a 

power law: 

( ) ( )f p r p βα −=  
(Eq. 3) 

Where α  and β  are real numbers. 

The relation becomes linear when the logarithm of f(p) and of r(p) are considered. So, this relation 

is generally represented in a log-log graph, called Zipf curve. The shape of this curve is related to the 

structure of the signal. As it is not always well approximated by a straight line, we approximate its 

corresponding function by a polynomial.  

Since the approximation is realized on logarithmic values, the distribution of points is not 

homogeneous along the graph. So we also compute the polynomial approximation on the resampled 

curve. It differs from Zipf graph as the distance between consecutive points is constant. In each case, the 

relative weight associated with most frequent words and with less frequent ones differs. 

The Inverse Zipf law corresponds to the study of the event frequency distributions in signals. Zipf 

has also found a power law which holds only for low frequency events: the number of distinct events I(f) 

of apparition frequency f is given by: 

I(f) = δ f-γ        (Eq. 4) 
Where δ and γ are real numbers. 

Zipf law thus characterizes some structural properties of an informational sequence and is widely 

used in the compression domain. The most famous application of Zipf law is statistical linguistic. For 

example, in [30], Zipf law has been evaluated to discriminate natural and artificial language texts; 

Havlin proved that [31] that the authors can be characterized by the distance between Zipf plots 

associated with the text of books with shorter distance between the books written by the same author 

than by different authors. 

In order to capture these structural properties from a speech signal, the audio signals are first coded 

into text-like data, and features linked to Zipf and Inverse Zipf approaches are computed, enabling a 

characterization of the statistical distribution of patterns in signals [32]. Prosodic information, in 

particular rhythmic features can be represented by Zipf patterns. Three types of coding as temporal 
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coding, frequency coding and time-scale coding were proposed in [32], in order to bring to the front 

different information contained in signals.  

For example, the coding principle denoted as TC1 in [32] is to enable to build up a sequence of 

patterns based on the coding of the original audio signal (Fig. 7). First, three letters – U for Up, F for 

Flat, and D for Down – are used as a symbolic representation for the signal sample values. The letter U 

is used when a positive difference between the magnitude values of two successive samples of the audio 

signal occurs. The letter F is used when the difference is close to zero; and the letter D is used when the 

difference is negative. Then the letters are assembled by three character long sequences with totally 

33=27 different possible patterns. Each of them can be associated with a letter of the alphabet; and 

indicates the local evolution of the temporal signal on three consecutive samples. Adjacent patterns are 

obtained by shifting the analysis window one step to the right. A sequence of patterns is finally obtained 

from the audio signal. The pattern sequence can then be formed into words with given length. In the 

example of Fig. 7, the words length is set to 5. 

 

Fig. 7  Description of TC1 coding [32] 

From Zipf studies of theses codings, several features are extracted. In this work, 2 features are 

selected according to their discriminability for the emotions that we consider. 

List of Zipf features: 

67. Entropy feature of Inverse Zipf of frequency coding 

68. Resampled polynomial estimation Zipf feature of UFD (Up – Flat - Down) coding 
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C. Others – frequency features and energy features 

We also considered the classical frequency features and energy features as they partially capture 

voice tonality and intensity and have shown their efficiency from the overview on the related works in 

the literature. The frequency features include the statistics of fundamental frequency F0 and the first 3 

formants; and the energy features include the statistical features of the energy contour.  

The range of F0 is assumed between 60 Hz and 450 Hz for sonant. The F0 and the formants are 

computed over windows of 20 ms with overlaps of 10ms because the speech signal can be assumed 

stationary in this time scale and the statistical properties of the F0 and the formants over the length of 

the speech segments are used as features. The F0 is computed by autocorrelation method, and the 

formants are computed by solving the roots of the LPC (Linear Predict Coding) polynomial [33]. The 

F0 and the formants are only computed through the vowels periods, which are segmented by short time 

energy (STE) and zero crossing rate (ZCR) of signal [34] [35]. For the consonants, the F0 and the 

formants are assumed as 0, and are not considered in the statistics. See F0 and the formants in Fig. 8 (b). 

The energy values in the energy contour are also calculated over windows of 20 ms with overlaps 

of 10ms as the F0 and the formants. See the solid line in Fig. 8 (c). The edge points of the plateaus of the 

energy contours are defined as the points at 3 db to the peak points. The energy plateaus and the slopes 

are obtained by approximating the energy contour with straight lines, see the dashed line in Fig. 8 (c). 

The examples of energy plateaus and the rising and falling slopes are marked in the figure. The first and 

last slopes of energy contour of each speech segment are ignored to avoid error values. 
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Fig. 8  Basic acoustic features of a speech signal: (a) waveform, (b) fundamental frequency F0 and 

the first 3 formants (F1, F2, and F3), (c) energy contour 

List of frequency features: 

1 - 5. Mean, maximum, minimum, median value and the variance of F0 

6 – 20. Mean, maximum, minimum, median value and the variance of the first 3 formants 

List of energy features: 

21 – 23. Mean, maximum, minimum value of energy 

24. Energy ratio of the signal below 250 Hz 

25 – 28. Mean, maximum, median and variance of energy plateaus duration 

29 – 32. Mean, maximum, median value and variance of the values of energy plateaus 

33 – 36, 42 – 45. Mean, maximum, median and variance gradient of rising and falling slopes of 

energy contour 

37 – 40, 46 – 49. Mean, maximum, median and variance duration of rising and falling slopes of 

energy contour 

41, 50 Number of rising and falling slopes of energy contour per second 

Subsequently, frequency-based features and energy-based features are respectively referred as group 

1 and group 2 features while the newly defined harmonic feature set and Zipf one respectively referred 

as group 3 feature set and group 4 feature set. 

III. HIERARCHICAL CLASSIFICATION OF EMOTIONAL SPEECH 
Fuzzy neighborhood relationship between some emotional states, for instance between sadness and 

boredom. As evidenced by studies on acoustic correlates, leads to unnecessary confusion between 

emotion states when a single global classifier is applied using the same set of features. In this section, 

we propose a dimensional emotion model guided multi-stage classification method dealing with the 

emotional classification in several stages. The basic idea here is that emotional states can first be 

categorized into some broad and rough emotional classes according to the dimensional emotion model 

in one of the dimensions, such as arousal dimension, and then each broad emotional class can then be 

further classified into final emotional states according to other dimensions, such as appraisal dimension. 
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At each classification step, a set of the most relevant features is selected by the SFS feature selection 

scheme. In doing so, our hierarchical classification scheme enables the use of different relevant feature 

set for better discriminating emotional states at each stage. Moerover, a gender classifier is also defined 

which tops our multi-stage emotion classification to further decrease the perturbations between 

different emotion classes.  

A. Feature selection 

As the list of audio features introduced in section II is quite important which may lead to the well 

known phenomenon of “the Curse of Dimensionality” [36], a feature selection is performed as a 

preprocessing step for each classifier in our hierarchy of classifiers to simplify the computation 

procedure and to decrease the interference among the features.  

There exist two main approaches of feature selection methods according to their dependency to a 

classifier or not: filter one or wrapper one. Filter methods normally evaluate the statistical performance 

of the features over the data without considering the underlying classifier. The irrelevant features are 

filtered out before the classification process. In wrapper methods, the good subsets are selected by using 

the induction algorithm itself. The criterion of the selection is the optimization of classification 

accuracy rate. 

Filter methods are often fast in the feature selection process, but the resulting classification 

performance may be relatively low. For example, the PCA (principal component analysis) is too 

sensitive to data outliers. In our work, we thus made use of a wrapper method, namely SFS algorithm 

[37] which is a reasonable compromise between speed and performance.   

SFS begins with an empty subset of features. The new subset Sk with k features is obtained by 

adding a single new feature to the subset Sk-1 which performs the best among the subsets with k-1 

features. The correct classification rate achieved by the selected feature subset is used as the selection 

criterion. The selection process stops when the correct classification rate begins to decrease. 

All the features are normalized before the SFS by (Eq.5):  

0 0

0 0

min( )
max( ) min( )

n n
n

n n

F FF
F F
−

=
−

 
(Eq.5) 

Where Fn0 is the original value of feature n, and Fn is the normalized value of feature n, which is 
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used in the SFS and classification. 

B. Dimensional emotion model driven hierarchical classification of emotional speech 

As our study on emotion taxonomy and acoustic correlates highlighted, some emotional states can 

have similar acoustic correlates. Thus a relevant feature with good discrimination to a certain pair of 

emotional classes may be a feature with high confusion to another pair of emotional classes. Moreover, 

coming back to our study on emotion taxonomy in section I-A, the relationship between discrete 

emotion models and dimensional ones reveals that some emotional classes have some similarities with 

certain features according to their position in the dimensional distribution. Clearly, a hierarchical 

emotion classification scheme is needed.  

In our work, emotion classes come from two public datasets (Berlin dataset [1] and DES dataset 

[41], see section IV-A).  Referring to these discrete emotion states in arousal vs. appraisal plane (Fig. 1, 

[9]), they can also be mapped into a 2-D emotional space as in Fig. 9 : anger and happiness stand in very 

active position, and sadness and boredom stand in very negative position according to the arousal 

dimension, etc.. We thus propose a hierarchical dimensional emotion model driven classification 

scheme which combines at its early stage, according to neighborhood relationship in arousal or 

appraisal dimension, some close emotional classes into intermediate broad classes, reducing the number 

of the classes at each stage to simplify the overall classification complexity.  

 

Fig. 9 The emotions in the dimensional space 

Fig. 10 illustrates such a hierarchical classification scheme with two stages [39], called 

subsequently Dimensional Emotion Classifier (DEC), applied on emotion classes from Berlin dataset.  

As we can see from the figure, speech signal is first divided into two intermediate emotional classes 

according to arousal dimension: active one including anger and happiness, and non active one including 
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the rest of emotional states. Further, speech samples labeled as active class are categorized into terminal 

emotional classes, i.e. anger and happiness classes, according this time to appraisal dimension. It is 

much the same for speech signals labeled as non active class. They are first categorized as median and 

passive classes according to arousal dimension, and then as fear and neutral, sadness and boredom 

according to appraisal dimension.  

 

Fig. 10 Dimensional Emotion Classifier (DEC) on Berlin dataset: a Two-stage hierarchical 

classification scheme of emotional speech driven by the dimensional emotion model 

Any machine learning algorithms may be used for the classifiers in such a multi-stage 

classification scheme. In our work, neural networks have been chosen for their abilities of 

discriminating non linear data and generalization. We made use of BP (Back Propagation) neural 

networks with 2 hidden layers, 15 neurons in each layer, and the log-sigmoid function as transfer 

function. For each network, the inputs are the feature subset, and there is only one output node 

separating 2 classes by a threshold of 0.5.  

1) Stage 1: classification in arousal dimension 

Emotional states are first classified according to arousal dimension in two steps into three states, 

namely active, median and passive state [40]. In the first step, the active state is separated from the 

median and the passive states (classifier 1 in Fig. 10); and in the second step, the median state and the 

passive state are further separated (classifier 2 in Fig. 10).   

2) Stage 2: classification in appraisal dimension 

The first stage of classification in arousal dimension achieves an emotional classification into three 

rough states (Fig. 9). For each of these three rough emotional states, we further proceed to achieve an 
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appraisal dimension-based classification to obtain final emotional classes. 

Similar classifiers as those proposed in stage 1 are used at this stage. According to Fig. 10, 

classifier 3 is used for the active state, separating the “anger” from the “happiness”, classifier 4 is used 

for the median state, separating the “fear” from the “neutral”, and classifier 5 is used for the passive 

state, separating the “sadness” from the “boredom”. 

C. An automatic gender detection based hierarchical classification of emotional speech 

The related works in the literature prove that gender difference in the acoustic features also 

influences the emotion recognition [22] [24]. We thus extend our previous dimensional emotion model 

driven hierarchical classifier (DEC) by a gender classification to allow different models being used for 

the speech samples according to the gender.  Fig. 11 illustrates the final classification scheme, 

subsequently labeled Automatic Gender Recognition based DEC, which tops a gender classifier on two 

DEC schemes as defined in the previous section. 

 

Fig. 11 Gender-Based DEC: a gender classification tops two DECs according to the detected gender  

As we can see from this figure, the two two-stage Dimensional Emotion Classifiers (DEC) have 

the same structure (as shown in Fig. 10), but work with different feature set according to the underlying 

gender information delivered by the gender classifier.   

Any gender classifier might be used. In our work, we build a gender classifier similar as the one 

defined in our previous work [38] and make use of a neural network with SFS feature selection. The 

selected feature subset contains 15 features from the whole feature set (see section 2): 19, 55, 1, 58, 44, 
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28, 59, 63, 14, 16, 4, 5, 8, 11, and 64 (ordered by the sequence of selection). The average recall rate with 

this feature subset is 94.65% using 10 groups of cross validation on Berlin dataset introduced below. 

IV. EXPERIMENTAL RESULTS 
The effectiveness of our approach is experimented both on the Berlin dataset and DES dataset. 

Recall that frequency-based features and energy-based features as introduced in section II rare 

respectively referred as group 1 and group 2 features while the newly defined harmonic feature set and 

Zipf one respectively referred as group 3 feature set and group 4 feature set. In the following, we first 

describe quality of database and introduce Berlin and DES datasets. Then, our experimental results are 

presented and discussed. 

A. Emotional speech datasets 

Generally, there are 3 major categories of emotional speech samples. They are natural vocal 

expression, induced emotional expression, and simulated emotional expression [7]. Natural vocal 

expression is recorded during naturally occurring emotional states of various sorts. Induced emotions 

are caused by using psychoactive drugs or some particular circumstances, such as in some kind of 

games or by using inducing words to get the speech sample of desired emotion. The third category for 

getting emotional speech samples is the simulated emotional expression which consists of asking actors 

to produce vocal expressions of certain emotions. In this way, the content and the emotions are given, 

and the process can be controlled to get more typical expressions. In the literature, the most preferred 

way of getting emotional speech samples is the third one, the most common used databases being Berlin 

database [1] and DES (Danish Emotional Speech) database [41]. 

Berlin emotional speech database is developed by Professor Sendlmeier and his fellows in 

Department of Communication Science, Institute for Speech and Communication, Berlin Technical 

University [1]. This database contains speech samples from 5 actors and 5 actresses, 10 different 

sentences of 7 kinds of emotions: anger, boredom, disgust, fear, happiness, sadness and neutral. There 

are totally 493 speech samples in this database, in which 286 speech samples are of female voice and 

207 samples are of male voice. The length of the speech samples varies from 3 seconds to 8 seconds, 

and the sampling rate is 16 kHz. 
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The DES dataset is recorded by Center for Person Komunikation (CPK), Aalborg University, 

Denmark, as a part of the VAESS project (Voices, Attitudes and Emotions in Speech Synthesis). The 

sound files were recorded in mono with 16-bit PCM under sample rate of 20 Khz. Four actors were 

employed for the recording of the DES, two males and two females. Five emotions are considered in the 

DES: neutral, surprise, happiness, sadness, and anger. 

In our work, these two datasets are both used for experimental evaluation of our approach. As there 

are more emotional types and more actors in the Berlin dataset than the DES dataset, full scale 

experiments are driven using the Berlin dataset and the preliminary results were reported in the research 

report [42].   

B. Experimental results on Berlin dataset 

In our experiments, the data in each case is divided into 10 groups randomly for cross validation 

and the average of these 10 results is adapted as final result. In each time of experiment, 50% of the 

samples are used as training set and the other 50% samples are used as testing set. As there are only 8 

samples of “disgust” in the male samples, which is much less than the other types, and the acoustic 

feature for this emotion is inconsistent [14], this type is omitted in training and testing. The influence of 

gender information on the emotion classification accuracy is also highlighted. For each classification 

scheme, three experimental settings, using respectively only the female speech samples, the male 

speech samples and the combination of all the samples (mixed samples), are evaluated and compared.   

1) Harmonic and Zipf features vs frequency and energy based features 

This first experiment aims at studying the contributions of our harmonic and Zipf features for 

improvement of emotion classification accuracy when they are used in complement to classic frequency 

and energy based features. For this experiment, no innovation is brought in classification scheme and 

we only make use of several well known global classifiers all using the same feature set. Two sets of 

experimental results are thus produced. The first one contains results produced by the global classifiers 

when only classic frequency and energy based features are used.  The second set of experimental results 

is obtained when the previous classic frequency and energy based features are extended to also include 

harmony and Zipf features.   
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The experiments are carried out on TANAGRA platform [43]. Five types of classifiers are tested: 

Multi-layer Perception (Neural Network, marked as MP in the following text), C4.5, Linear 

Discriminant Analysis (LDA), K-NN, and Naive Bayes (NB). Each classifier is tested with several 

parameter configurations, and only the best results are kept. The correct classification rates are listed in 

Table I. 

Table I. Best recognition rates with one-step global classifiers 
 Frequency and energy  feature set 

(FES) 

All features (FES+Harmonic +Zipf 

features) 

 Female Male Mixed Female Male Mixed 

MP 60.38±2.26 57.91±2.56 60.38±2.26 65.73±2.85 64.45±2.47 64.47±1.93 

C4.5 54.27±1.80 53.90±3.93 52.04±2.21 55.46±2.7 58.60±3.70 53.16±1.52 

LDA 61.03±1.89 57.09±1.73 59.09±1.25 60.92±2.56 51.16±3.05 64.71±1.64 

K-NN 58.24±2.63 53.56±2.89 56.34±1.38 60.14±2.37 60.92±2.71 60.89±1.69 

NB 60.70±1.85 56.61±2.26 58.16±1.48 62.67±1.45 62.12±2.47 62.07±1.75 

Best 61.03 57.91 60.38 65.73 64.45 64.71 

The confusion matrixes with the highest recognition rates are listed in Table II and Table III.  As 

we can see from these tables, the additional features that we have proposed help to improve by at least 4 

points the performance achieved by all the global classifiers fed by frequency and energy features, the 

best amelioration being obtained on male emotional samples with a performance gain of 6 points. The 

next experiment will precisely show the relevance of our harmonic and Zipf features in the 

classification process.  

Table II. Confusion matrix of the global classifier with frequency and energy features with TANAGRA 
(%) 

 
Predicted 

 Actual 
Ang. Hap. Fea. Neu. Sad. Bor. 

Female 

Ang. 67.55 23.67 6.24 1.39 0.00 1.15 

Hap. 35.56 45.60 12.50 3.70 0.00 2.64 

Fea. 14.87 23.85 37.18 12.31 4.87 6.92 

Neu. 0.20 1.22 3.47 61.43 3.27 30.41 

Sad. 0.00 0.00 0.27 8.02 86.96 4.76 
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Predicted 

 Actual 
Ang. Hap. Fea. Neu. Sad. Bor. 

Bor. 2.00 1.85 6.62 30.92 8.15 50.46 

Male 

Ang. 82.67 8.80 6.80 0.67 0.53 0.53 

Hap. 36.18 39.12 20.00 3.53 0.00 1.18 

Fea. 12.82 10.26 55.38 11.54 6.92 3.08 

Neu. 1.52 3.26 5.00 48.91 10.87 30.43 

Sad. 0.20 0.82 2.86 10.61 61.22 24.29 

Bor. 1.84 1.43 1.84 27.96 26.73 40.20 

Mixed 

Ang. 71.82 21.71 4.73 0.46 0.00 1.27 

Hap. 43.31 41.02 8.63 3.52 0.35 3.17 

Fea. 13.85 25.90 38.72 6.92 7.44 7.18 

Neu. 1.84 1.22 3.27 57.14 6.73 29.8 

Sad. 0.00 0.41 1.63 5.84 80.16 11.96 

Bor. 2.62 2.46 3.54 24.00 12.31 55.08 

Table III. Confusion matrix of the global classifier with all features (FES+harmonic+Zipf features) 

(%) 

 
Predicted 

 Actual 
Ang. Hap. Fea. Neu. Sad. Bor. 

Female 

Ang. 73.44 21.71 2.66 0.46 0.12 1.62 

Hap. 38.03 50.53 6.51 1.94 2.11 0.88 

Fea. 12.56 23.59 41.79 5.9 10.51 5.64 

Neu. 1.02 1.02 0.61 60.00 6.12 31.22 

Sad. 0.00 0.14 0.68 5.30 86.68 7.20 

Bor. 1.69 1.23 2.00 22.62 8.77 63.69 

Male 

Ang. 84.93 9.33 5.33 0.27 0.00 0.13 

Hap. 30.88 46.18 17.65 2.94 0.88 1.47 

Fea. 11.03 18.72 55.38 7.44 6.15 1.28 

Neu. 3.26 0.65 3.26 58.04 7.39 27.39 



26 

Sad. 0.00 1.63 3.06 4.29 73.27 17.76 

Bor. 1.22 0.20 1.22 22.65 24.49 50.20 

Mixed 

Ang. 74.57 18.40 5.19 1.05 0.00 0.80 

Hap. 38.81 44.76 11.14 1.76 1.76 1.76 

Fea. 10.53 15.4 56.48 5.52 8.99 3.08 

Neu. 0.95 1.48 2.63 62.7 5.69 26.55 

Sad. 0.00 0.49 2.04 4.89 79.97 12.62 

Bor. 1.50 1.14 2.73 23.66 14.95 56.02 

2) The two-stage Dimensional Emotion model driven Classification (DEC) 

The second experiment aims at highlighting contributions on performance improvement from the 

innovation that we have proposed on classification scheme, namely DEC scheme as represented in (Fig. 

10). Recall that all the sub-classifiers in DEC are neural networks and the SFS is applied for each 

sub-classifier for each gender. The selected feature subsets and the recognition rates for the 

sub-classifiers are listed in Table IV where the superscript indicates the feature group number which a 

selected feature comes from (see section II).  

Table IV. Selected features and recognition rates for the sub-classifiers (The groups of the features are 
marked with superscripts) 

  
Selected feature subset  

(Ordered by the sequence of selection) 

Recognition rate 

(%) 

Active  

vs.  

non-active 

Female 674, 653, 252, 613, 262, 513, 212, 533, 282 91.13±1.46 

Male 242, 41, 91, 191, 523, 513, 171, 653, 674, 121 92.32±2.21 

Mixed 563, 684, 252, 11, 141, 262, 282, 292, 422, 51, 653, 272 90.31±4.59 

Median  

vs. 

 Passive 

Female 653, 41, 272, 262, 573, 533, 663, 282, 563, 513, 11, 242 84.98±0.78 

Male 663, 674, 91, 563, 613, 543, 533, 51, 212, 262, 573 88.23±3.03 

Mixed 663, 282, 272, 573, 653, 533, 262, 322 84.73±0.14 

Anger  

vs.  

Happiness 

Female 61, 71, 643, 41, 533, 322, 573, 242 80.21±3.43 

Male 242, 332, 653, 91, 392, 603, 282, 21, 141, 181 85.37±6.25 

Mixed 684, 312, 181, 91, 131, 533, 563, 583, 653, 342 80.62±7.58 

Fear  

vs.  

Neutral 

Female 41, 523, 372, 91, 482 90.85±1.02 

Male 643, 603, 372, 533, 573, 442, 513 92.85±0.80 

Mixed 
41, 472, 372, 442, 492, 131, 603, 462, 502, 422, 543, 

382, 563 
84.31±5.43 

Sadness  Female 51, 674, 81, 242, 192, 91, 482, 161, 21, 462, 653, 553, 92.88±0.93 
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vs.  

Boredom 

131, 563 

Male 593, 502, 201, 222, 623, 482, 603, 583 91.30±0.29 

Mixed 
51, 91, 112, 663, 131, 302, 502, 573, 412, 81, 242, 543, 

161 
89.26±2.47 

From Table IV, we can see that frequency features (group 1) and energy features (group 2) deliver 

standard performance for the five sub-classifiers. While group 1 with frequency features is more 

efficient in classifier 3 (“anger” vs. “happiness”) and classifier 5 (“sadness” vs. “boredom”), harmonic 

features (group 3) are selected most frequently in all the five sub-classifiers, and especially dominate 

the feature subsets for classifier 2 (“median” and “passive”). For example, feature 65 (the ratio of mean 

values of areas 3 to area 1 in harmonic space) shows very high discriminality in stage 1 – arousal 

classification (separating the 3 states), but less efficient in stage 2 – appraisal classification. Although 

there are only two features in feature group 4 (Zipf features), they show great importance in the feature 

subset for classifier 1 (“active” vs. “non-active”), which confirms our assumption that the Zipf features 

have high ability in describing the prosody patterns. 

DEC achieves a classification accuracy rate of 71.89%±2.97% in cross-validation for female 

samples, and 75.75%±3.15% for male samples, and 68.60%±3.36% for mixed samples. The mean 

confusion matrixes from DEC scheme for the two genders and the mixed case in cross-validation are 

listed in Table V. 

Table V. Mean confusion matrix achieved by DEC (%) 

 
Predicted 

Actual 
anger Happiness. Fear. Neutral. Sadness. Boredom.

Female 

Ang. 83.43 13.76 3.76 3.61 1.67 2.12 

Hap. 19.13 69.00 8.63 3.38 1.38 5.38 

Fea. 8.71 11.47 73.45 5.61 3.88 4.23 

Neu. 2.01 4.51 5.01 75.75 2.51 17.76 

Sad. 1.83 1.83 2.69 6.97 91.43 4.40 

Bor. 2.99 2.10 1.88 14.55 3.66 83.11 

Male 
Ang. 89.33 9.12 3.46 2.79 1.79 2.46 

Hap. 18.80 65.00 13.80 4.63 1.30 2.97 
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Fea. 1.96 10.04 78.85 5.43 6.58 5.04 

Neu. 2.46 2.72 3.78 83.68 4.56 11.14 

Sad. 1.86 1.86 1.86 4.21 92.94 6.57 

Bor. 2.07 2.66 1.78 7.66 5.90 88.82 

Mixed 

Ang. 85.35 11.16 3.91 4.39 1.71 2.02 

Hap. 25.15 61.88 10.46 5.93 1.24 1.55 

Fea. 12.38 12.38 55.27 15.11 4.75 5.66 

Neu. 2.47 2.72 7.21 78.33 4.01 13.11 

Sad. 2.42 2.80 2.61 7.80 82.31 10.30 

Bor. 2.39 1.76 2.90 13.78 5.68 81.65 

The weighted average recognition rate according to the number of speech samples for female 

samples and male samples is 73.58%, which is 4.78% higher than the result for mixed speech samples 

(68.60%). From Table V, we can see that the mixing of the gender cause more misjudgment for the 

emotion “fear” than for the other emotions. 

3) Automatic Gender Recognition-based DEC  

The third experiment makes use of automatic gender detection on the top of a DEC scheme as 

introduced in section III-C.  The confusion matrix of the multi-stage classification is listed in Table VI. 

The automatic gender recognition DEC achieves a recognition rate of 71.52%±3.85% which is 2.92% 

higher than the result from simple DEC (68.60%±3.36%).  

Table VI. Confusion matrix of automatic gender recognition based DEC (%) 

Predicted  

Actual 
Anger. Happiness. Fear. Neutral. Sadness. Boredom. 

Anger. 85.35 12.34 3.44 3.44 1.71 2.26 

Happiness. 21.89 63.28 12.05 3.77 1.27 4.08 

Fear. 6.39 11.12 74.18 5.66 5.12 4.93 

Neutral. 2.19 4.50 5.52 77.56 3.60 14.37 

Sadness. 1.73 1.73 5.19 8.65 86.35 5.00 

Boredom. 3.33 2.69 1.93 11.30 4.97 84.18 
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4) Synthesis and Discussion  

Table VII summarizes the overall performances achieved by the different classification scheme 

through the previous three experiments.  For both global classifier and DEC scheme, the recognition 

results for the mixed samples are lower than the weighted average result of the 2 genders. The use of an 

automatic gender recognition classifier can reduce such degradation. As we can see from the synthesis 

table, when harmonic and Zipf features sets are used in complement to frequency and energy features, 

single global classifier achieves at least an accuracy gain of 4 points. We further improves the previous 

classification accuracy when our multi-stage  DEC scheme is used, leading to a 71.52% accuracy 

classification rate with an automatic gender recognition engine on the top of DEC schemes.   

Table VII. Synthesis of recognition rates by the four classifiers (%) 

 Male Female 
Average of 

the 2 genders 
Mixed 

Mixed 

with 

gender info 

Global with Grp 1 (frequency based 

features)+ Grp.2 (energy based feature) 
57.91±2.56 61.03±1.89 59.55 60.38±2.26 -- 

Global (Grp.1+2+Harmonic+Zipf 

features) 
64.45±2.47 65.73±2.85 65.12 64.71±1.64 -- 

DEC scheme 75.75±3.15 71.89±2.97 73.58 68.60±3.36 -- 

Automatic Gender recognition based 

DEC 
-- -- -- -- 71.52±3.85 

From these experimental results, we can draw the following lessons: 

First, our hierarchical classification scheme  (DEC) combining several two-class classifiers 

according to dimensional emotion model helps to decrease disturbance between neighbor emotion 

classes and results in an increased recognition rate. 

Secondly, the four groups of features show their importance at the different stage in our DEC 

scheme, thus confirming our intuition for a hierarchical classification scheme. Indeed, feature group 3 

(harmonic features), while characterizing the high level timbre structure of speech signals and selected 

by SFS at every classification stage, displays higher discriminality than the other 3 feature groups. For 

the DEC scheme, the feature groups 1 (frequency based features) and 2 (energy based features) seem to 

be more important for stage 2 in appraisal dimension, and our newly proposed features, feature groups 3 

with harmonic features and 4 with Zipf features, appear to be more important for stage 1 in arousal 
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dimension. The ability of different groups of features to discriminate the emotional states in different 

dimensions in the emotional space shows the possibility to develop automatic classification systems for 

emotional speech even if the number and types of emotional states change in the applications.  

Thirdly, these experimental results confirm the conclusion from several works in the literature 

stating that there exist much difference between the two genders in the way of expressing their emotions, 

and an automatic gender discrimination before the 2-stage DEC scheme in our case has helped to 

improve the recognition rate for some emotions, especially for “fear” - the most confused emotion state 

for the mixed samples.  

C. Experimental results on DES dataset 

Encouraged by the previous results on Berlin dataset, we further evaluate the effectiveness of our 

new features and our multi-stage dimensional emotion model driven classification approach on DES 

dataset. Recall that there only exist five emotion states in DES dataset which are Anger, Happiness, 

Neutral, Sadness, and Surprise. Using first arousal dimension and then appraisal dimension in 

dimensional emotion model as we did for our previous six emotion classification problem, we derived 

the following hierarchical classification scheme as illustrated in Fig. 12 which splits first all the emotion 

states, according to arousal dimension, into two broad emotion classes gathering Anger, Happiness and 

Surprise on one hand, and Neutral and Sadness on the other hand. These broad emotion classes are 

further divided through three other classifiers to attain the final emotion states.    
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Fig. 12 DEC on DES dataset 
In order to compare this result with the work of Ververidis et al, the same ratio between training 

and testing set as 90% and 10% with a cross-validation is applied in this experiment. Table VIII 

summarizes the accuracy rates, and Table IX gives the confusion matrix of such an evaluation. As we 

can see, average classification accuracy rates of 81% are achieved in our work. For comparison, the best 

performance in the literature to our knowledge on the same dataset is 66% classification accuracy rate 

for only male samples by Ververidis et al [2].   

Table VIII. Accuracy rates on DES dataset (%) 
Female Male Mixed 

85.14±2.02 87.02±1.44 81.22±1.27 

Table IX. Confusion matrix on DES dataset (%) 

Female 

 Anger Happiness Neutral Sadness Surprise 

Anger 76.86 14.71 2.94 1.37 4.12 

Happiness 9.22 86.08 0 1.18 3.53 

Neutral 1.37 2.55 85.88 8.43 1.76 

Sadness 0 0.96 8.46 89.04 1.54 

Surprise 4.81 4.81 1.67 1.11 87.59 

Male Anger 84.51 5.49 2.16 2.35 5.49 
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Happiness 4.63 85.37 3.15 0.37 6.48 

Neutral 4.91 3.27 87.09 3.64 1.09 

Sadness 0.37 0.74 6.85 90.93 1.11 

Surprise 5.9 6.56 0.49 0 87.05 

Mixed 

Anger 73.43 13.14 2.84 3.63 6.96 

Happiness 6.86 80.67 1.62 1.62 9.24 

Neutral 3.68 3.49 81.89 8.87 2.08 

Sadness 0.38 0.94 8.21 88.77 1.7 

Surprise 7.22 7.83 1.39 2.52 81.04 

V. CONCLUDING REMARKS 
In this work, we have proposed, in complement to classic frequency and energy based features, two 

new feature groups, namely harmonic and Zipf features, for a better characterization of emotional 

speech in terms of timbre, prosody and rhythm. Moreover, dealing with fuzzy neighborhood of some 

discreet emotion states having similar acoustic correlates, we have also proposed a hierarchical 

classification scheme (DEC scheme) using alternatively arousal and appraisal dimension from a 

dimensional emotion model.  Experiments carried out on Berlin dataset show first that our newly 

proposed Harmonic and Zipf feature groups help to improve emotion recognition rate when used in 

complement to classic frequency and energy based features, and second, that our DEC scheme further 

improves the classification accuracy. The effectiveness of our approach has also been validated on 

another public dataset, DES dataset.    

However, there still exist several issues which need to be addressed in a future work. 

First, as there is no common agreement on the number and types of discrete emotions, the types of 

emotions considered in practice are usually application or dataset dependent. Our DEC scheme relies on 

intuitive mapping of the discreet emotion states into the dimensional emotion model. In this work, this 

intuitive mapping was thus made manually. An automatic mapping scheme is clearly needed especially 

when the number of emotions increases and their types vary. We are currently investigating this 

problem with some preliminary results [44]. 
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Second, as the emotions are very subjective and the emotion borders between closed emotions in 

the dimensional space are usually not very clear, judgment on emotional state conveyed by an utterance 

may be between some emotional states or even multiple according to person. Thus ambiguous or 

multiple judgments also need to be addressed.  

As another future research direction, we envisage to further validate our approach in considering 

other datasets and assess the generality of our work by considering also music signals using similar 

classification system that we have built for speech signals.  
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