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Abstract

In this report, I propose my vision of what could be a general constraintless statistical framework
for the probabilistic characterization of potentially all sets, finite or infinite, discrete or continous,
symbolic or numerical, and which can be sumarized as follows : a statistical process is represented
by a theoretical function f that assigns a positive theoretical absolute weight for each theoretical
element of the theoretical set S. First, one has to realise the set S, real existence of S, in which
one wants to do statistics, thus also realising what are the elements of S. Then, one can go to the
realisation, with respect to S, of each possible theoretical object asking by f in order to obtain the
realised function f , real existence of f . Finally, one has made it possible to deal with probabilities
in S, producing the realised relative weight of each element x of S (also known as mass or density
of probability), thanks to its now realised absolute weight f(x), and by the way of an adequate
normalization process. I detail these steps, provide some examples, discussions, and propositions,
more particularly centered on the string case.
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1 Introduction

Statistics is related to the measurement of the influence, or weigth, of each element, or cluster of
elements, in the shape and behaviour of a set of such elements. In order to deal with probabilistic
issues, the classical framework imposes that the function responsible for this measurement has
a total weigth of 1 over all the elements of the set. This results in a different funtion for each
possible set in which one would translate the same underlying process, i.e. a process that has the
same general behaviour, in which all elements would have the same amount of relative influence in
the behaviour and shape of the set.

I think that this constraint makes classical statistics only a special and restrictive case, in
the sense that it forbids the most part of positive mathematical functions to express themselves,
their underlying shape and behaviour, in a probabilistic framework. I believe in a more general
statistical framework in which all of these functions could potentially be considered, by cancelling
the stochastic constraint on them, and reporting it in an independant probabilistic part, by the
way of an adequate a posteriori normalization phase of the absolute contributions of each element
of the set, to obtain their relative ones, their amount (mass or density) of probability. I thus believe
in the separation of a pure mathematical part, reponsible for the absolute definitions of the weigth
of each element in a set, and a probabilistic second part, that permits to take stochastic constraint
into account in order to do probabilistic studies of the evolution of a general process, when realised
in a particular set within its particular associated objects. Moreover, I think that there is the same
undelying funtion for the same general stochastic behaviour (uniform, normal. . . ), regardless to its
possible future realisation in a specific set to be considered. To accept this vision, one first have
to accept the notion of theoretical existence of a mathematical object, like a function, i.e. the not
mathematically complete expression of it, with a possible theoretical part.

2 The framework

2.1 Theory

The theoretical function f : S −→ R+ assigns to each theoretical element x of the theoretical set
S, a value f(x) called the theoretical absolute weight of x. f is composed of a fixed mathematical
part, and a possible realisation-dependant theoretical one, composed of what we call theoretical
objects.

Example
• f(x) = 3, with no theoretical part, that assigns the same constant theoretical absolute weight

to each element of S

• f(x) = 1√
2π

exp
(
−d(x,µ)2

2

)
, in which the theoretical part has two theoretical objects, namely

the function d and the constant µ.

There is no constraint on f . But theoretical objects could be constrained by f or other theo-
retical objects in f to be valid. In the last example above, d must give a numerical value and µ
must take its value in the domain of definition of the second parameter of d.

Remind not to make this mistake: thoretical objects are not mere parameters. In fact, they could
be considered as second-order parameters, i.e. parameters that affect the nature of a realisation
of the theoretical function, whereas first-order parameters are those that affect the value of this
realised function.

But for the moment, S and f have only theoretical existences, and one have to decide what one
wants as their real exitences. This is the realisation step.

2.2 Realisation

In this phase, one chooses the set in which one wants to make statistics given the theoretical
function.

The choice of the set S gives a real existence to S, and thus to each element of S. Once the
set has been realised, the only step remaining is the realisation of the theoretical objects, with
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respect to their respective theoretical constraints and the possible new specific ones created by the
set realisation, finally obtaining the real existence f of f .

Example
• f(x) = 3. Let S = [5; 6]. Then f(x ∈ S) = 3.

• f(x) = 1√
2π

exp
(
−d(x,µ)2

2

)
. Let S = N, d(x ∈ S, y ∈ S) =

√
(x− y)2, and µ = 0. The

constraint on µ is respected (0 ∈ S), and so is that on d (numerical value). Then f(x ∈ S) =
1√
2π

exp
(
−x2

2

)
.

Now that we don’t have any more theoretical existences, we are able to compute any abolute
weigth in S to any element of this set. But a more interesting task is that of the probabilistic
characterization of S by the distribution inherent to the underlying statistical process driven in S
by the realisation of f as f . Let us talk about it now.

2.3 Probabilities

A very simple well-known issue to obtain a distribution from a set of alternatives is the normal-
ization process. Here the set of alternatives is driven by the absolute weight f(x) from f of each
element x ∈ S. Normalizating f(x) by the total weigth of S is the only right way to obtain the
realisation in S of the distribution that is perfectly faithful to the underlying process represented
by f , and driven in S by f after the realisation of the theoretical objects of f . What I want to say
is that the representation of this underlying statistics is also realisation-dependant in S, because of
the choices of the theoretical objects that compose the theoretical part of f ; but once them chosen,
this normalization step is the true one to translate, independantly of all possible realisation issue,
the stochastic constraint on S.

There is two well-known operators that permit to compute the total value of a function in a set
S, depending on the nature of S: if S is discrete, this operator is the sum over S, and controversery
if S is continous this is the integral one.

So computing the relative weigth of x ∈ S is given by the equation:

rf(x) =
f(x)∑

y∈S f(y)

in the discrete case, and:

rf(x) =
f(x)∫

y∈S
f(y)dy

in the continous one.
Passing from f(x) to rf(x) is no more than taking stochastic constraint into account and thus

realising a distribution in S. Now we can call rf(x) the mass of probability of x in S by f in the
discrete case, and its density of probability in the continous one.

Example
• f(x ∈ [5; 6]) = 3. Then:

rf(x) =
3∫

y∈[5;6]
f(y)dy

=
3∫

y∈[5;6]
3 dy

=
3
3

= 1

• f(x ∈ N) = 1√
2π

exp
(
−x2

2

)
. Then:

rf(x) =
1√
2π

exp
(
−x2

2

)

T

with:

T =
∑

y∈N

(
1√
2π

exp
(
−y2

2

))
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The only difficulty is the analytical computation of the normalization denominator so has to
be able to use rf as a distribution for infinite sets, which is a difficult task in general. Moreover
this could lead to divisions by a null or positive infinity value, and so the strictly rejection of the
possibility for f to have a reprentative distribution in S with respect to its realised objects. It
could not be the same negative fact in the same set when other ojects are chosen. But we are
talking about it again in 4.2 and 5.1.

2.4 Discussion

We can say that this general framework is divided into two independant parts: the mathematical
and probabilistic ones. Moreover it is as itself constraintless, in the sense that the only constraints
that one may uncountered are not added by this framework but are due to the mathematical one:
one has to be rigourous when confronted to realisation tasks, so as to obtain a valid mathematical
expression of a positive computable function.

The probabilistic step also doesn’t exhibit any constraint, neither in itself nor retroactively
in f or its objects realisations, but only potential computational difficulties that are also merely
mathematical ones, inherent in the way that mathematics has historically been defined to (superbly
[Pen89]) fit and explain the real physical world around us.

In summary and conclusion, this framework potentially allows to statistically characterize all
sets with all positive functions, by throwing away the stochastic constraint from the function to
an independant normalization process. We are now seeing how the classical numerical statistical
framework is subsumed by our general one, thus being a special case.

3 Where is the constraintful classical statistical framework?

By classical statistical framework, you have probably guessed that I am talking about the well-
known numerical representation of the Kolmogorov axiomatical probabilistic theory [Kol33] in
some subsets of the Euclidian space, i.e. a subset of Rn within all the well-known powerful objects
of the Euclidian geometry (distance. . . ). I believe that the motivation for using this formalism
is the power of numericity added with the seemingly great accuracy ([Pen89]) of the Euclidian
geometry to represent the physical space of the world in which we live.

But the Kolmogorov axiomatics and the Euclidian space could now be considered as unsufficient
and thus the classical framework could itself be considered as too restrictive. The scientist has
always tried to understand the physics that we undergoes from natural processes, so as to explain it,
and possibly control and reproduce it as accurately as possible. I think that the classical framework
has been developed with respect to that desire, especially for the stochastic part of such processes.
But now that we are dealing with artificial processes, who are we to decide that the underlying
laws governing these artificial statistics could still be driven by the Euclidian theory? The question
is of important relevance because of the profound symbolic nature of the interactions between the
human and its created pseudo-physics. Who are we to consider that the human creations are faith
enough to the natural ones, and so decide that we can still use the classical framework by the way
of applying pseudo-adequate discretisation or symbolisation processes to laws for which we have
experimentaly proven that they could be the ones for which we could have confidence enough to
use it as natural representations?

That is why I think that it could be interesting to be free from this context and try to have a
general vision of the statistics field in order to be able to realise some (not necessary) well-known
processes for the caracterization of sets of complex symbolic structures that one is likely to handle
thanks to our artificial machines creations. We would not like to see this symbolic system as a
new special one, totally independant from the classical numerical framework, but it could be more
interesting to have an overview of what could be the features of a statistical process, to be able
to reproduce it in all environments, within the variables we have to deal with in some particular
context. Then we could study the possible properties of symbolic distributions with respect to
this general framework, and thus make it possible for us to use the maximum of the power of the
symbolic system, like this has been done in the numerical case.
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Finally, I don’t need some mathematical proof and I am quick by merely saying that the classical
framework is effectively represented, in the general one, by the realisation in each subset S of Rn

of each theoretical function f for which all theoretical objects have been chosen as the ones of
the Euclidian geometry, and for which the such realised function f gives to S a total weight of
1, thus respecting the stochastic contraint of the Kolmogorov axiomatics, and thus for which the
normalization process changes nothing. This classical framework is a little part of the general one,
avoiding all functions that don’t possess such native features in some considered sets, thus avoiding
most part of positive functions to be expressed within a considered set in a probabilistic fashion.
This is not the case of the general framework that could be, I think, an overall representation of
probabilistic mathematics. The key is the separation of the mathematical and probabilistic parts,
thus cancelling the stochastic constraint on f , that makes classical framework a constraintfull one:
this constraint in f is not due to mathematical limitations but added by the framework itself
because of the desire for respecting the Kolmogorov axiomatics.

4 Theoretical functions related to the uniform and normal
processes

We are now trying to embed more particularly these two well-known distributions in our framework,
this for three possible sets, which are, respectively, finite, infinite discrete, and (infinite) continous.

4.1 The uniform law

In fact, you have probably guessed that the first one of the two running examples given above is
representative of a uniform process. More generally, any theoretical function that, after realisation,
always gives the same positive abolute weight to any element of any realised set, is representative
of a uniform process. The only restriction is that this constant must neither be 0, nor +∞, because
of the mathematical constraint that is imposed to have a valid normalization process.

The running example given above belongs to the most simple class of such theoretical functions:
those that have no theoretical part, and thus for which the realisation part only consists of the set
one. Here is another one example:

Example
f(x) = V . There is a constraint of numerical value on the theoretical constant V .

• For the finite case, let S = {a, b}, V = 12. The constraint on V is respected and rf(x) =
12/24 = 1/2.

• For the infinite case, let S = N, V = 12. The constraint on V is respected and rf(x) =
12/ +∞, which violates the constraint on the normalization denominator, and confirm the
impossibility to realise an uniform process in infinite discrete sets.

• For the continous case, let S = [1; 4], V = 12. The constraint on V is respected and
rf(x) = 12/36 = 1/3.

4.2 The normal law

Once again, you have probably guessed that the second case of the two running examples given
above could be related to a normal process. The normal law is known as well representing the
distribution of errors around a true value. In contradiction with what we proposed in [RJ08],
directly derivated from ideas exposed in [Jol03], I really think now that this error is mesured in terms
of numerical distance (or even maybe only dissimilarity) from the true value, and more generally
that the standard deviation is an universally defined concept, independant of all realisation issues,
as the expectation of the distance between an element and the expected element of a distribution.

My vision is that the normal process is represented by those classes of theoretical functions:

fσ(x) =
1√
2π

exp

(
−d[S](x, µ)2

σ2

)
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with d[S] belonging to the class of bi-parametered theoretical functions that take their parameters
in S, and fulfill the three mathematical constraints of distance in S (or maybe only dissimilarity if
one accepts the violation of the triangular inequality). Thus d[S] adds a mathematical constraint
on µ, as being member of S.

Let us see some realisation examples of one of these functions, namely f5:

Example
f5(x) = 1√

2π
exp

(
−d(x,µ)2

25

)
.

• For the finite case, let S = {a, b}, µ = a, d[S](a, a) = d[S](b, b) = 0, d[S](a, b) = d[S](b, a) =
10. Mathematical constraints are fulfilled, and rf(a) ' 0.88, rf(b) ' 0.12.

• For the infinite case, let S = N, µ = 0, d[S](x ∈ S, y ∈ S) =
√

(x− y)2. Mathematical
constraints are fulfilled.

• For the continous case, let S = [1; 4], µ = 1, d[S](x ∈ S, y ∈ S) =
√

(x− y)2. Mathematical
constraints are fulfilled.

Like observing in 2.3, the difficulty is situated in the computation of the denominator of the
normalization process, so as to obtain the distribution rf from f , with a possibility of violation of
the strict mathematical constraint that imposes this value as neither being 0 nor +∞. This fact
especially arises in infinite discrete cases, when the sum of the values of a function in one of such
sets is +∞. I think this is because of the sum operator that is not as powerful as the integral one,
that can deal in a elegant way with the continous case in order to compute the total value of a
function in an infinite set.

Two solutions are offered to us, in order to make probabilistic studies in infinite discrete sets:

1. Propose to mathematicians to discover a new total operator that can be used especially for
infinite discrete sets, thus letting the sum one especially for finite ones. This operator would
have to be valid when using within probabilistic issues, and could have a power between the
two philosophically opposite other total operators that are the sum and the integral.

2. One could believe that the first solution is totally inconsistant, incoherent, and irrelevant with
the profound nature of mathematics. So one could finally prefer to take into consideration
only the functions for wich the value is not null for only a finite number of elements of the
set.

The second solution is that of restricting the probabilistic influence in the set for only a finite
number of elements, and thus acting like in the finite case. Remind that this solution still doesn’t
tackle the problem of computing this total value, if one hasn’t any analytical solution for doing it
in finite time, i.e. a solution that is proven to take all elements into account in finite time, i.e. a
way of ignoring the null valued elements of the set, which is a general difficult problem if one hasn’t
any powerful information or property related to the adequation between the set and the function
to be considered (for example

∑
e∈N = (−1)e

2e+1 = π
4 ). This computation process is not a problem in

the finite case, which has the advantage of being the bounded special one of the discrete one.
This general difficulty is thus potentially inherited by all infinite discrete sets, more particularly

in symbolic structural cases, for which I am talking about now, and proposing to apply a special
already known solution, that takes into account the structural specificity. We are only seeing the
string case in order to have a first simple viewpoint of the task.

5 How to make statistics for strings?

Before trying to answer to this question, let us just recall some necessary definitions and notations.
We say that a string is a concatenation, or succession, of letters that are taking their values in a
set called alphabet. In the rest of this paper, we are identifying this alphabet as A, the set of all
finite length strings on A as A∗, and the empty string of length 0 as λ, where the length of a string
X is obviously given as the number of letters that are to be concatenated in order to obtain X,
and where we are saying that a letter is no more than a string of length 1, except, for simplicity,
λ, that can even represent the empty letter.
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5.1 The univariate general difficulty

The problem that has arised to us in 2.3, and that we have more particularly developed in 4.2, is
to be considered for all discrete infinite sets where one wants to deal with probabilities. Thus, even
if A is taken as finite, we would have general difficulties to define some distributions in the infinite
set A∗.

We can not enumerate all strings of A∗ in order to compute the total value of a function f
to be considered, because of an infinite time asking by this procedure. So we can apply the two
possible solutions given in 4.2, or take into account the structural specificity of a string, i.e. see a
distribution of strings as merely being a succession of distributions of letters, i.e. possibly benefit
of a multivariate paradigm to statistically handle sets of strings.

5.2 The multivariate possible solution

This solution could possibly be considered for all types of complex structure, i.e. seeing a complex
structure distribution as a multivariate distribution of more simple primitives that are composing
a structure. This primitives could even be expressed as complex structures, and thus we could
apply this paradigm in a recursive way, until have reached a simple enough computational point,
namely P .

Notice that this solution could only be totally applied in the cases where the primitives that are
underlying of P are not even expressed within a discrete infinite primitive alphabet. In this case,
we could only apply the two general solutions in P , if we are necessary to deal with probabilities
in the first-order most complex set A∗. Notice also that this solution avoids a great part of the
potential distributions that one would like to discover in A∗, but the multivariate solution is the
only one that I currently see in order to tackle a part of this difficult problem, when one would
like to potentially handle the entire set A∗ (waiting for this new powerful mathematical operator
(cf. 4.2). . . ).

Obviously, this solution is not a discovery for us, only a confirmation. I especially think of
this powerful machine, namely probabilistic grammar [VTdlH+05a, VTdlH+05b] (with numerous
less powerful derivatives: automata, HMM, n-gram. . . ), that is a simple structure representing
a potentially infinite set of probabilistic strings in a multivariate fashion, and has been initially
devoted to the representation of the uncertainty in a formal language.

In [RJ08], we have proposed the formalisation of what could be realisations of some uniform
and normal laws of strings, with respect to the multivariate paradigm, and a mutual independancy
assumption. This work has lead to encouraging results for the control and estimation of these
string distributions, but has suffered from a lack of theoretical justification, that I hope doesn’t
exist any more now, thanks to the framework I am proposing to you. These definitions could
easily be adapted to this framework, thus having a real theoretical value, but I think that the most
interesting work to do could not be to try to translate what could be some or others well-known
properties of the numerical paradigm to the symbolic one, but much more to discover the inherent
ones that could arise in the symbolic case. We could thus discover that there is effectively a part
of universality in statistics, but this must be, I think, done in a general manner, and not in a
discretisative or symbolicative one, even if this could be a difficult challenge. . .

6 Conclusion

In this paper, I propose my ideas for the development of a new general formalism that could lead
to an universal framework for the potential caracterization of each set by each positive function
taking its parameters in the set, and representing a special realisation of a statistical process. The
two keys are, first, the abstraction of some mathematics that are realisation-dependant for the
statistical process, and, second, the rejection of the stochastic constraint from the function to an
independant probabilistic part, by the way of an adequate normalization step, that depends on the
nature of the set.

Combining these two issues leads to a more general framework than the classical one, and I have
shown that the later is effectively subsumed by the new one. I have also proposed some discussions,
and raises some difficulties that could arise while trying to handle some distributions in infinite
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sets of complex discrete structures. Some partial solutions are given to us, but that still remains a
great challenging task.

Finally, I am working to understand why this general paradigm could be considered as a relevant
one with respect to some possible phylosophical issues that are hidden in the nature of statistics,
and also how it could effectively bring us some new knowledge, and thus being useful in practice,
not being regarded as a mere mathematical game. . .
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