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Abstract

In this paper we propose a new way to identify commu-
nities in evolving graphs like collaborative networks. We
apply this approach on the Infocom co-authorship network
to determine stable collaborations and evolving communi-
ties. Finally, we analyse the impact of the co-authorships
relation topology on the formation of the program commit-
tee board of the conference.

1. Introduction

In a social network, nodes represent social entities (e.g.,
people) and links indicate social interactions (e.g., friend-
ship, collaboration). Social networks have been central ob-
jects of study in the social sciences for a long time, since
they have the potential to highlight how social outcomes
can arise not just from the properties of individuals in an
isolated manner, but from the pattern of interactions among
them. More precisely, we are interested by the intrinsic
structure of the network, by identifying patterns of contacts
or interactions between groups of people. Most of the in-
teresting features of real-world social networks that have
attracted the attention of researchers in the last few years
reveals that such networks are not like random graphs (first
studied by Rapoport [10], Solomonoff and Rapoport [11]
and Erd̈os and Ŕenyi [4]).

Relations between researchers are very dynamic. New
links may appear all the time due to the network growth or
his change over years. So it is interesting to focus the ana-
lyze of social networks to the dynamics of these relations in
order to better understand the evolution of the interactions
between people [1, 7]. As state above, social networks are
non random. This important feature suggests that network
structure formation should be investigate. It is also widely
assumed that most social networks show “community struc-
ture”, i.e., groups of vertices that have a high density of

edges within them, with a lower density of edges between
groups. The study of groups and communities appears to be
a key feature in the analysis of phenomena based on soci-
ological data since it may help illuminate how the organi-
zation’s global decision-making behavior is structured. Un-
derstanding the structure and dynamics of social groups is a
natural goal for network analysis, since such groups tend to
be embedded within larger social network structures.

Our specific contributions in this paper are as follows.
First we propose two methods to identify stable collabora-
tions and time evolving communities within a co-authorship
network in the section 2. Then, we apply this method to the
co-authorship network of one major conference, namely IN-
FOCOM1 in the section 3. To do this, we propose a com-
plete data set about Infocom. Our database includes 23 con-
ference’s years among 26. Finally, to study the Infocom
social network, we add the members of Infocom Program
Committee boards so we can analyse relations between au-
thors and committee members in the Section 4. Finally, the
section 5 offers some concluding remarks.

2. Methods to identify evolving communities

Scientific collaborations are often influenced by demo-
graphic locations (e.g., authors may be in the same lab-
oratory, institute, research group), personal choices (e.g.,
friendship between authors, field of publication) or oppor-
tunities. In time, this promotes new collaborations between
scientific authors, and changes the behaviour of the co-
authorship network structure of a conference or a group of
conferences. The nodes of the co-authorship network are
the authors and there is an edge between two nodes/authors
u andv if u andv have been co-author of at least one paper.
Each year, new authors may appear extending the node set
of the network and new collaborations may append leading
to new links between nodes.
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The analysis of such a social evolving graph can be
achieved by the identification of communities. Community
definition is very general and depends on the context. The
most employed one is that the community structure repre-
sents a group of nodes within the connections are denser
than those to the other groups. In a co-authorship network,
communities exist further to many collaborations within a
group of authors. Such entities allow identifying persons
sharing a similar part in the network, which allow to have
a global vision of the interactions between persons who are
in the same group not only with the neighbors. In scientific
collaboration field we can examine the relations between
authors, the impact of these relations on the scientific board
(e.g., the dominance of certain authors, the program com-
mittees board construction).

The community structure brings out much information
about the network and raised a great interest the last years,
especially the community detection problem in a static net-
work [8, 9]. This notion of community is however difficult
to define formally. Most recent approaches have reached a
consensus, and consider that a partitionP = {C1, . . . , Ck}
of the vertices of a graphG = (V,E) (i = 1 . . . k, Ci ⊆ V )
represents a good community structure if the proportion of
edges inside theCi (internal edges) is high compared to the
proportion of edges between them. For example, [6] et al.
propose to use the temporal evolution of the degree as de-
scriptive feature of each node and use the EM clustering al-
gorithm to identify communities. It can be easier to identify
communities in a static graph than considering the dynamic
aspect of the network actors. Hopcropft et al. [5] propose
a first approach in that direction. It consists to first iden-
tify natural communitiesas stable clusters obtained using
an agglomerative clustering algorithm at different pointsin
time, and then associate to each natural community the best
matching natural community in the next time step.

In the following, we propose two approaches to identify
communities. In the first one, time stable collaborations are
captured thanks to an exhaustive computation approach that
consists to define the searched patterns thanks to constraints
and to use an algorithm that output all and only all patterns
that satisfy the constraints. The second approach consists
to identify evolving communities in a single step process
based on a random walk clustering approach. This approach
enables to define a distance between nodes that is related to
the eigenvectors and the eigenvalues adjacency matrix of
the graph, known to be important characteristics to identify
communities. The random walk computation approach is
more computationally efficient than the traditional approach
that enable to obtain the spectral properties of the matrix.

2.1. Identifying stable collaborations

Dynamic communities in a co-authorship network can
be considered as groups of authors that frequently co-sign
papers. Considering the co-author relationship of one year
as a graph, a first approach can consist in computing fre-

quent maximal cliques in this set of graphs. More formally,
let us define a graphGt as the co-author graph for year
t. We haveGt = (Vt, Et) with Vt the set of authors that
published a paper during yeart, andEt is the set of edges
{x, y} such thatx, y ∈ Et and,x andy co-sign a paper
that was published the yeart. A maximal cliqueC onGt is
such thatC ⊆ Vt such that ∀x, y ∈ C, {x, y} ∈ Et and
∀z ∈ Vt \C, ∃x ∈ C such that {x, z} 6∈ Et The size ofC
is its cardinal|C|.

Let us now consider a set ofT such graphs, i.e.G =
{G1, · · · , Gt, · · · , GT }. A clique C in G is such thatC ⊆
⋃T

t=1
Vt and its associated set of graphsS that supports it is

defined byS = {t | ∀x, y ∈ C, {x, y} ∈ Et}. We say that
a such clique is frequent w.r.t.σ if |S| ≥ σ and maximal if
∀z ∈

⋃T

t=1
Vt \C, ∃x ∈ C and ∃s ∈ S such that {x, z} 6∈

Es. Efficient algorithms [3, 2] enable to compute frequent
maximal cliques in large evolving graph and thus enable the
identification of stable collaborations in the co-authorship
network.

2.2. Identifying evolving communities

To discover evolving communities, we adapt the random
walk based method of Pascal Pons to evolving graphs. Pas-
cal Pons [9] proposes to identify social communities in a
single graphG = (V,E) using random walk. Such com-
munities are defined as dense area in the graph, where ver-
tices of a community are strongly connected, whereas they
have fewer links towards outside. The main idea is that ran-
dom walks would be trap into dense area thanks to the high
density of links in the community. Using a short distance
walk (let say 4 steps), a walker may stay in its original com-
munity. A random walk from a vertex defines a vector of
probabilities to reach others vertices. Comparing the vec-
tors associated to two distinct vertices enable to evaluate
their proximity. The identification of communities is done
by the algorithm WALKTRAP which computing a hierarchi-
cal clustering algorithm on this similarity matrix and then
selecting the partitionP that maximizes the coefficient of
modularity. Each cluster of the partition is thus considered
as a community. The coefficient of modularity of a partition
P is defined by:Q(P ) =

∑
C∈P

e(C)−a(C)2 wheree(C)
is the proportion of edges that are intern of the clusterC, i.e.
e(C) = 1

2 |E| |{{x, y} ∈ E such that x ∈ C and y ∈ C}|.
a(C) is the number of edges that are linked to the commu-
nity: a(C) = 1

2
|{{x, y} ∈ E | x ∈ C and y ∈ V }|. In

a random graph, the expected proportion of intern links is
equal toa(C)2 and thusQ compares the effective propor-
tion of intern links to the expected one on a random graph.

Here we propose to use this approach to analyze dynamic
social communities. To capture the proximity between au-
thors using random walk, we propose to view the evolving
network as a single evolving graphGevol = (V,E) where
E is a set of author-year pairs andE is defined as follows:
(i) there is an edge between the node[i, t] (the authori at



time t) and the node[j, t + 1] (the authorsj at timet + 1) if
there exists an authork such thati andk are co-authors at
time t and,k andj are co-author at timet + 1. These edges
are calledtransversal edges; (ii) there is an edge between
[i, t] and[j, t] if i andj are co-authors at timet; (iii) there
is an edge between[i, t] and [i, t + 1] if i has published a
paper at yeart andt + 1.

Fig. 1 illustrates the graph construction. This graph links
authors that are co-authors but also authors that have a com-
mon co-author in one year of interval. For example, authors
1 and2 co-sign a paper at yeart − 1 and authors2 and7
co-sign another paper at yeart. Thus there is a transversal
edge between(1, t − 1) and(7, t). We do that because it
is usual to continue collaboration with co-authors even if it
does not leads to a publication. It can also append that a co-
author finishes a work alone, but the two authors still belong
to the same community. We will see in the following that
removing such links leads to communities of worst quality.
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Figure 1. An example of graph.

3. Infocom communities

In order to apply the proposed method to a co-authorship
network, we consider the co-authorship network of the Info-
com conference. First, we collected the Infocom data from
the period between 1985 and 2007. For each year, we gather
the papers published and their authors. The main source
for our data was DBLP2 where we found a lot of paper ti-
tles and the authors’ names and we got miscellaneous data
from INRIA document centers by ordering facsimile of old-
est data that were not online. An important work has gone
into disambiguation of similar names, so co-authorship re-
lationships are relatively free of name resolution problems.

Based on the information gathering, we were able to
build a database of4030 unique papers from 1985 to 2007.
The database contains also5164 unique authors over a 23
years time period. Table 1 describes the general character-
istics of the co-authorship network of Infocom. We also
add in Table 1 the same general characteristics for the co-
authorship network of arXiv3. The arXiv graph is larger
than the Infocom graph (3 times), but many properties of

2DBLP: Digital Bibliography & Library Project,http://dblp.
uni-trier.de/

3arXiv.org is an open access site to 427136 electronic prints in
Physics, Mathematics, Computer Science and Quantitative Biology

both graphs are close. The average degreek of all nodes
of both co-authorship networks is approximately 3.5 (i.e.,
on average, an author has 3.5 co-authors). We also have, in
both cases, an average distanced close to 7. We can notice
here one property of thesmall worldphenomena where the
number of nodesn is large, the graph is sparse (m is roughly
linear inn) whereas the distance between two nodes is rel-
atively small. Thus, Infocom data is quite representative of
general co-authorship networks.

arXiv Infocom
n (nb. of vertices) 16 401 5 164
m (nb. of edges) 29 552 8 918

k (average degree) 3.60 3.45
δ (density) 2.2e-4 6.6e-4

d (average distance) 7.18 6.92
diameter 20 18

Table 1. General characteristics of co-
authorship network.

To identify stable collaborations in the Infocom co-
authorship network, we first construct the co-authorship
networkGevol from 1985 to 2007. We use DATA -PEELER

[2] to compute maximal frequent cliques. In this algorithm,
in addition to the frequency, man can also use a minimal size
constraint on the sizes of the computed cliques. Thus the al-
gorithm enables to compute only large and frequent cliques,
which are the most interesting ones. We run DATA -PEELER

on theT = 23 co-author graphs of Infocom enforcing the
clique size to be above or equal to 3 and the frequencyσ

was also fixed to 3. We obtain the 25 cliques presented in
table 2. By analyzing the groups which we found, we can
see that in 15 cases, people who form the groups are authors
having the same order of degree. But in other cases we find
authors with a high degree who publish with authors hav-
ing a much lower degree. We find in these cases that the
authors are a part of the same research group which support
their many collaborations.

To identify evolving communities, we construct the
graphGevol on the Infocom co-authorship data. The ob-
tained graph contains 8 692 vertices and 29 972 edges. We
apply the WALKTRAP algorithm on it and we obtained 90
communities having a Maximal modularityQ of 0.502547.
Fig 2 (top) shows the distribution of the sizes of these com-
munities : half of them are quite small, but few of them are
quite large. If we remove the transversal edges, the graph
has 8 692 vertices and 12 467 edges, i.e. more than the half
of edges of the previous graph are transversal edges. On
this graph, WALKTRAP computes 126 communities with
Q = 0.366183, and thus the quality of these communi-
ties is below the one obtained on the graph with transversal
edges. If we compare the distribution of the sizes of the two
sets of communities (see Fig 2 top and bottom), we can ob-
serve that transversal edges prevent the computation of lots



# Author cliques C Associated set S of Years
1 M. Ahamad (2) M. Ammar (34) J. Bernabeu-Auban (2) 1988 1989 1990
2 C. Barnhart (2) A. Ephremides (8) J. Wieselthier (6) 1991 1993 1994
3 D. Dutta (2) A. Goel (19) J. Heidemann (15) 2003 2004 2005
4 L. Kalampoukas (4) K. Ramakrishnan (23) A. Varma (2) 1997 1998 2000
5 R. Doverspike (7) G. Li (6) D. Wang (5) 2002 2006 2007
6 M. Conti (4) E. Gregori (4) L. Lenzini (8) 1990 1992 1993
7 S. Acharya (3) B. Gupta (4) P. Risbood (4) A. Srivastava (4)2003 2004 2005
8 M. Kodialam (16) T. Lakshman (26) S. Sengupta (6) 2004 2005 2006
9 S. Low (30) A. Tang (5) J. Wang (8) 2003 2004 2005
10 S. Donatelli (4) M. Marsan (24) F. Neri (18) 1990 1991 1992 1993
11 D. Figueiredo (7) J. Kurose (53) D. Towsley (88) 2001 2003 2006
12 O. Frieder (6) X. Li (10) P. Wan (18) 2000 2001 2004
13 Q. Fang (6) J. Gao (10) L. Guibas (6) 2004 2005 2006 2007
14 M. Azizoglu (8) A. Somani (9) S. Subramaniam (10) 1996 1997 1998
15 G. Iannaccone (7) S. Jaiswal (9) J. Kurose (53) D. Towsley (88)2003 2004 2006
16 Y. Breitbart (9) M. Garofalakis (14) R. Rastogi (18) 2000 2001 2002 2003
17 C. Hollot (9) V. Misra (16) D. Towsley (88) 2001 2002 2003
18 I. Cidon (24) A. Khamisy (7) M. Sidi (26) 1992 1993 1994 1997 1998
19 A. Bianco (7) E. Leonardi (18) M. Marsan (24) F. Neri (18) 1993 1996 1997 2001
20 A. Bianco (7) E. Leonardi (18) F. Neri (18) 1993 1996 1997 2001 2004
21 S. Bhattacharjee (18) K. Calvert (10) E. Zegura (19) 1996 1998 2000
22 P. Giaccone (9) E. Leonardi (18) F. Neri (18) 2001 2003 2004
23 P. Giaccone (9) E. Leonardi (18) M. Marsan (24) 2001 2003 2004
24 E. Leonardi (18) M. Marsan (24) M. Mellia (12) F. Neri (18) 2000 2001 2002 2005
25 E. Leonardi (18) M. Marsan (24) F. Neri (18) 1993 1996 1997 2000

2001 2002 2003 2005

Table 2. The 25 cliques (the degree of each author is given bet ween brackets)

of small communities of few interest. The transversal edges
enable the computation of larger communities.
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Figure 2. Distribution of the sizes of the com-
munities (top) with transversal edges, (bot-
tom) without.

To have a closer look to the obtained communities on the
graph with transversal edges, we consider those that extend
one of the previous cliques (the clique 13). Fig 3 shows the
dynamic community that corresponds to the clique 13. The
community gathers the three previously identified frequent
co-authors (Q. Fang, J. Gao and L. Guibas) but also other

authors that have been identified as belonging to the same
community. All these authors are co-author which was not
mandatory due to the way we constructed the graph. The
way communities are computed support dense sub-graphs,
i.e. co-author links play an important role.

Some of the cliques have no corresponding community
in the WALKTRAP approach. For example, the second
clique is one of them. It can append for not temporally con-
tinuous one (e.g. clique numbers 2, 5, 6, 12, 19, 20, 25).
This clearly due to our graph definition that considers only
edges betweent and t + 1. But some of the not tempo-
rally continuous cliques have been successfully identified
as communities: cliques 4, 11, 15, 18, 21. We can notice
that cliques 4 and 11 are not identified as communities in
the graph without transversal links. Cliques numbered 21,
22 and 23 have been merge in a single community.

4. Impact of the co-authorship topology struc-
ture on program committee boards

The fact of joining the Infocom PC can be considered
as a mechanism of diffusion of innovation [1] such that PC
members are co-opted by one of their relations/colleagues.
The underlying hypothesis in diffusion studies is that indi-
vidual’s probabilities of adopting a new behavior increases
with the number of friends already in the community. Fig-
ure 4 shows the proportionP (k) of authors who join the In-
focom PC as a function of the numberk of their co-authors
who are already member of the PC for three different years.

We can observe that globally there is a positive correla-
tion between writing a paper with PC members and entering
the program committee. The decreases of the curves and
irregularities are mainly due to the small number of data.
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Figure 3. Community that corresponds to the clique 13 of tabl e 2.

Note that if we increase the co-authoring relation up to dis-
tance 2 in order to increase the number of data (i.e. by con-
sidering co-authors of co-authors), the correlations is not
relevant any more. The fact is that the number of co-authors
in the PC has a positive impact even if it is not preponder-
ant but the relation between co-authors does not impact so
much.

To have a closer look at the dependencies that may exist
between the co-authorship graph topology and the PC mem-
bership property, we follow the methodology described in
[1]. It consists of using features that describe the structure
of the graph to construct a predictive model of PC member-
ship property. To make estimates about joining the Infocom
PC, we compute a decision tree based on the features de-
scribed in table 3. A decision tree is a tree-structured plan
of a set of features to test in order to predict the output. In
our context, we want to construct a model that enables to
predict the PC member property. To decide which feature
should be tested first, one can simply find the one with the
highest information gain. Our goal is to describe the link
that may exist between the features listed above and the PC
property. We will not use it for a prediction purpose.

We obtain the tree shown in Figure 5. This tree enables
us to characterize with a high level of precision authors that
are not member of the PC. Among the4441 authors of this
class,4350 are correctly classified. PC member are more
difficult to characterize: the tree manages to correctly clas-
sify 363 PC authors among the723 individuals of this class.
Currently, the large majority (341 of 360) of misclassified
individuals of this class has less than three publications in
the Infocom conference and thus there are not enough topo-

Feature number Feature description
1 Connected component size
2 Number of co-authors (degree)
3 Number of years where an author has pub-

lished at least one paper
4 Number of co-authors of a given author that

are also co-authors together (similar to the
clustering coefficient)

5 Proportion of co-authors of a given author
that are also co-authors together

6 Number of co-authors that are PC members
7 Number of published papers
8 Number of co-authors at distance at most 2
9 Number of co-authors at distance at most 3

Table 3. Features related to an author used by
the predictive model.

logical elements that allow us to characterize them. This is
also the case for the additional232 PC members that had
never published in Infocom during this period.

In the tree, one may remark that PC members have more
than 3 published papers. It also appears that PC members
have published more than 4 times at Infocom, or they have
more than 4 co-authors that are PC members. Another way
to characterize PC members is to remark that they have
a large proportion of co-author that are also adjacent co-
authors and they belong to connected component of large
size (greater than 8). Finally, the last case is when the num-
ber of co-authors at distance at most 2 is important (greater
than 33). If the number of co-authors that are also PC mem-
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Figure 4. Prob. of entering the PC w.r.t. the
nb. of co-authors that are already in the PC

bers seem to be an important feature, one may also note
that the structure between co-authors of a given author play
an important role. It seems that having co-authors that are
densely connected impact on the PC member property.

5. Conclusion

In this paper we emphasized the importance of detect-
ing and investigating the communities in a dynamic collab-
orative network. We propose two methods that enable the
identification of stable collaborations and evolving commu-
nities while taking into account their temporal evolutions.
We apply these approach on the co-authorship network of
the Infocom conference where authors represent nodes and
co-authoring a paper represent link between paper authors.
We also examine the influence of the co-authorship struc-
ture on the PC board formation of the same conference. We
show that direct co-authors in the Infocom co-authorship
network have a significant impact on the PC board.

Understanding the structure and dynamics of social
groups is a natural goal for network analysis, since such
groups tend to be embedded within larger social network
structures. In order to better discern the full dynamics of all
scientific authors several works are on going and remain for
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<= 8 > 8<= 33 > 33

Non PC authorPC author PC author

PC author

3: Number of years

6: Number of PC member co−authors

7: Number of published papers

Non PC authors

5: Proportion of adjacent co−authors

<= 0.29 > 0.29

Non PC author

9: Number of co−authors (dist 2) 1: Connected component size

PC author

Figure 5. Decision tree

future investigations. A first on going work is to investigate
more about communities embedded within larger social net-
work structures, we plan to extract larger data (from arXiv
and DBLP) and see if the Infocom communities remain the
same in a larger context. Another investigation is to study
the influence of PC members viewed as an Infocom commu-
nity. Also we plan to gather PC board information of some
other famous conferences (e.g., ACM SigCOMM) and de-
termine if one can found a small world structure between
different boards such that some communities are able to sit
in different boards and gain a strong influence on the whole
scientific domain.
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