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Abstract. A new circularity measure for discrete objects is introduced
and an algorithm to compute this measure is presented. This measure
equals 0 for all discrete circles and is strictly positive for all discrete
objects which are not discrete circles.

1 Introduction

The study of geometric properties of discrete objects, i.e. connected sets of dis-
crete points, for shape recognition or shape description, is an important topic
of Discrete Geometry. A classical way to describe discrete objects shapes is to
compute global estimators like perimeter, area, eccentricity, compactness, etc.
See [Lon98] or [ZL04] for a review of shape representation and description tech-
niques.

In this paper, we focus on circularity. A classical circularity measure in the
Euclidean plane is P 2/A − 4π where A is the area and P the perimeter. The
discrete equivalent of this circularity measure was introduced in [Har74], but
coarse estimation of perimeter makes the measure unsatisfactory: discrete cir-
cles may have neither the same circularity value nor the smallest circularity
value. Since [Har74], lots of progress have been done on length estimation. In
[DT03], it has been shown that length estimations computed with local defini-
tion of length are never convergent. In [CK04], it has been shown that perimeter
estimation based on DSS recognition (see [DRR95]) is convergent and behave
very well with respect to other perimeter estimation methods. However, even
with these improvements, one problem remains: discrete circles have not the
same circularity value.

To our knowledge, only one paper dealt with this problem, more than twenty
years ago. In [KA84], a discrete disk recognition algorithm in O(n2) is presented
in the first part, and a discrete compactness evaluation algorithm for discrete
convex objects in O(n3

√
n) is presented in the second part (where n is the

number of pixels of the discrete curve). The new discrete compactness measure
is the ratio between area A and area A′ of the smallest enclosing discrete disk
(where “the smallest” is expressed in area unit, i.e. in number of pixels). As a
smallest enclosing discrete disk may not be unique and as the smallest enclosing
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euclidean disk may not be a smallest enclosing discrete disk, areas of many
discrete disks have to be compared. This is why the computational cost is rather
high. This first attempt show us that the problem is not trivial because none
point such as the center of the smallest enclosing circle, the center of the biggest
inscribed circle or the centroid, are always a circle center, the discretization of
which is the discrete object to be described.

Since [KA84], lots of progress have been done in discrete disk or circle recog-
nition, but not in discrete circularity computation, whereas both problems are
linked. Several authors based their methods on the classical separating arc prob-
lem in Computational Geometry. Fisk [Fis86] presents an algorithm to detect if
a set of grid points in a N × N image is a discrete disk in O(N2). In addition,
this algorithm constructs the complete solution domain, contrary to Kim’s one
[KA84]. Based on a similar approach, Kovalevsky [Kov90] proposes a discrete
circle recognition, the computational cost of which is estimated by Coeurjolly et

al. [CGRT04] in O(n2.log(n)). Coeurjolly et al. [CGRT04] solve the classical sep-
arating arc problem using classical tools and improve the computational cost due
to an arithmetical approach. Their algorithm, which may be incremental, con-
structs the complete solution domain in O(n4/3.log(n)). However, it is possible
to reach a linear time computional cost, giving up the incremental construction
of the complete solution domain. Damaschke [Dam95] proves that the separat-
ing arc problem in one quadrant is equivalent to solve a set of 2n inequalities in
dimension 3. Thus, the Megiddo’s [Meg84] algorithm can be used to decide if a
discrete curve is a discrete circle in O(n).

The objective of the paper is to propose a consistent discrete circularity mea-
sure (i.e. the measure equals 0 for all discrete circles). To do this, our approach
is to transform the boolean output of an existing discrete circle recognition al-
gorithm into a real output.

The paper is organised as follows. In section 2, we recall the algorithm pre-
sented in [CGRT04] to solve the separating arc problem. In section 3, we in-
troduce a new discrete circularity measure, prove that it gives 0 for all discrete
circles, and presente the algorithm which computes it. Experiments are given in
section 4 with synthetical images. The paper ends with some conclusions and
future works in section 5.

2 The separating arc problem

In this section, we recall the algorithm presented in [CGRT04] to solve the
separating arc problem, and we extend it in order to compute a new discrete
circularity measure. We opted for the notation used in [CGRT04].

Let S ant T be two finite sets of points of Z
2. S is called circularly separable

from T if there exists an Euclidean disk C(ω, R) centered at ω and with radius
R, such that: ∀s ∈ S, ∀t ∈ T , s ∈ C and t /∈ C.

If such a circle exists for given S and T , then ω ∈ acd(S, T ), where acd(S, T ),
nammed the arc center domain, is such that:



acd(S, T ) = {ω|∀s ∈ S, ∀t ∈ T , s ∈ C and t /∈ C}

⇔ acd(S, T ) =
⋂

∀s∈S,∀t∈T

H(s, t)

where H(s, t) is the half-plane bounded by bisector of [st] and containing s.

⇔ acd(S, T ) =
⋂

∀s∈S,∀t∈T

{P |~st. ~MP < 0}

where M is the midpoint of [st].

⇔ acd(s, T ) =
⋂

∀s∈∫ ,∀t∈T

{(xp, yp)|2(xt−xs)xp+2(yt−ys)yp+xs
2+ys

2−xt
2−yt

2 < 0}

⇔ acd(s, T ) =
⋂

∀s∈∫ ,∀t∈T

{(x, y)|a.x + b.y + c < 0}

where P (xp = x, yp = y), a = 2(xt − xs), b = 2(yt − ys), c = xs
2 + ys

2 −
xt

2 − yt
2.

Given a discrete curve, the authors of [CGRT04] show how to linearly com-
pute a small set of pixels S and T such that S is circularly separable from T
if and only if the discrete curve to process is the OBQ digitization of a circle
(Proposition 6 in [CGRT04]). S is the convex hull of the discrete curve, whereas
points t ∈ T are the closest points to the middle of [sisj ], an edge of S. Fig-
ure 2(a) and (b) give an illustration of digital curves together with the sets T
computed after [CGRT04].

Let us suppose that b 6= 0. Each half-plane H(s, t) is bounded by a straight
line having equation y = −a

b .x − c
b . This straight line is the bisector of s and t.

Each half-plane H(s, t), containing s but not t, is :

– the set of points located below its boundary when b > 0, such that:

{(x, y)|y < −a

b
.x − c

b
}

– the set of points located above its boundary when b < 0, such that:

{(x, y)|y > −a

b
.x − c

b
}

As in [CGRT04], we use a dual space to represent these sets of inequalities.
However, where the authors use this transformation only to improve the compu-
tation of acd(s, t), we propose to go further in its use to propose a new measure
of circularity.

Figure 1 recalls the definition of the classical point-line duality. In our case,
we do not deal with straight lines but with inequalities that are represented by
oriented half-planes.
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Fig. 1. Point-line duality : a line of the primal space is represented by a point in the
dual space and conversely. Three lines intersecting in the primal space map to three
colinear points in the dual space.

We define the dual of a half-plane H = {(x, y)|y < −a
b .x− c

b} as the labelled

point Hl∗(−a
b , c

b ), where l = ’+’ when b > 0 and l = ’-’ when b < 0. Similarly,
we denote N∗ = {(−a

b , c
b )| cb < −a

b .x − y} the half-plane dual of labelled point
N l(−a

b , c
b ). See Figure 2 for an illustration of this transformation. In lemma 1,

we suppose that b > 0, and omit the label l in the notations. The case where
b < 0 is symmetric. Proposition 1 of [CGRT04] is stated in a different way in
the following lemma :

Lemma 1. N ∈ H if and only if H∗ ∈ N∗.

Proof.

N ∈ H
⇔

⋂
{N(x, y)|y < −a

b
.x − c

b
}

⇔
⋂

{H(−a

b
,
c

b
)|c

b
< −a

b
.x − y}

⇔ H∗ ∈ N∗

⊓⊔
As stated above, two kinds of inequalities may be defined according to the

sign of b. Let us denote K+ (resp. K−) the set of half-planes H where b > 0 (resp.
b < 0). Let us also denote L+ =

⋂H, ∀H ∈ K+ (resp. L− =
⋂H, ∀H ∈ K−). The

image in the dual space of the set L+ (resp. L−) is a set of points denoted by L+∗

(resp. L−∗
). L+∗

(resp. L−∗
) is the upper convex hull (rep. lower convex hull)

of the points of K+∗
(resp. K−∗

). Figure 2 shows the link between intersection
of half-planes in the primal space and convex hull of points in the dual space.

Lemma 2. L+
⋂L− 6= ∅ if and only if L+∗ ⋂L−∗

= ∅. Moreover, L+∗
is below

L−∗
.



(a) (b)

Fig. 2. Half-plane/labelled point duality : (a) a set of oriented half-planes. Half-planes
labelled from a to e (resp. f to k) are such that b > 0 (resp. b < 0) ; (b) dual points of
the half-planes, labelled with corresponding upper-case letters.

Proof. Suppose that L+
⋂L− 6= ∅. Then there exists a point N such that N ∈

L+
⋂L−. Applying lemma 1, it is clear that N+ ∈ L+ ⇔ L+∗ ∈ N+∗

i.e. the
whole set of points L+∗

is located below (since b > 0) the boundary straight
line of half-plane N+∗

. It is also clear that N− ∈ L− ⇔ L−∗ ∈ N−∗
i.e. the

whole set of points L−∗
is located above (since b < 0) the boundary straight

line of half-plane N−∗
. Consequently, there exists a half-plane N+∗

(or N−∗
)

that contains L+∗
but not L−∗

(or L−∗
but not L+∗

), i.e L+∗ ⋂L−∗
= ∅. The

reverse implication is proved in the same way. ⊓⊔
Lemma 2 shows how to detect if S is circularly separable from T :

– compute L+∗
and L−∗

;
– check if the two polygonal lines intersect or not. If not, then S is circularly

separable from T .

We can derive the following property from Lemma 2 :

Corollary 1. A discrete curve is a discrete circle if and only if L+∗
and L−∗

do

not intersect each other. Otherwise, L+∗ ∩L−∗
is a non-empty convex polygon.

This property is used in the following to define a new circularity measure.

3 A new discrete circularity measure

3.1 Definitions

Let us recall that H(s, t) (H for short) is the half-plane bounded by bisector of s
and t and containing s. L+ (resp. L−) is the intersection of half-planes H where
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Fig. 3. S is the convex hull of the set of black points (the discrete curve). T is the set
of white points. Sets L+∗

and L−∗

in the dual space are depicted respectively in c)
and d) for discrete curves drawn respectively in a) and b).

b > 0 (resp. b < 0) and L+∗
(resp. L−∗

) the convex hull of points H∗, where x∗

is the dual of x.

Definition 1. Given a discrete curve, we call circularity the vertical width of

L+∗ ⋂L−∗
. If L+∗

and L−∗
do not intersect each other, the circularity is set to

zero.

The vertical width of a polygon is the minimum distance between two hori-
zontal parallel lines encompassing the polygon.

Property 1. The circularity is ranging from 0 to +∞. Moreover, the cirularity is
0 if and only if the digital curve S is the OBQ digitization of a circle.

This property is straightforward from Corollary 1 : S is a digital circle if and
only if L+∗ ⋂L−∗

= ∅, and thus the cirularity is 0. Otherwise L+∗ ⋂L−∗ 6= ∅
and the vertical width of the intersection polygon is a strictly positive value.

The idea under this definition is to associate the distance from a discrete
curve to a discrete circle with a measure of the polygon L+∗ ⋂L−∗

. Among
all the measures one could imagine, the vertical distance has the nice following
property:



Property 2. Let l and v respectively be a line and a vertex, and denote l∗ and
v∗ their respective images in the dual space. Then d(l∗, v∗) = d(l, v), where d
denotes the vertical distance.

This property implies that the vertical width of L+∗ ⋂L−∗
can be geomet-

rically interpreted in the primal space where the bisectors are defined. Figure
4 illustrates this interpretation: if the vertical width is attained between the
point l∗ and the straight line v∗ (see (a)), then if v∗ is moved vertically by a
distance d′ > d(l∗, v∗) (see (b)), L+∗ ⋂L−∗

becomes empty. Similarly, in the
primal space, the distance between the upper convex hull L+ and the lower con-
vex hull L− is also the vertical width d(l∗, v∗) from Property 2, and the sets of
constraints becomes satisfiable if the point v is moved vertically by a distance
d′ > d(l∗, v∗). Note that Property 2 is not true if the vertical width is replaced
by the width of the polygon. Such a geometrical interpretation could not be done
with this measure.

Thus, the measure we propose seems to be a good candidate to estimate
the distance between a discrete curve and a discrete circle. Nevertheless, this
geometrical interpretation supposes that all the constraints we deal with are in-
dependent one from another, such that moving one constraint does not affect the
others. But this is not true for the data we deal with since each constraint (i.e.
bisector) is computed from two pixels (one in S, the other in T ) and one pixel is
used in the definition of more that one bisector. We see that the general frame-
work that should be studied to get a precise estimation of the circularity by this
method is a very difficult combinatorial problem. However, in the next section,
experimental results show that the measure we propose gives good results for
some classes of objects.

3.2 Algorithm and complexity

Algorithm 1, summarized hereafter, has been detailed in section 2.

Algorithm 1: The algorithm which computes our new circularity measure

Input: a closed discrete curve
Output: a circularity measure
Compute S and T from the input;1

Compute parameters (a, b, c) of half-planes H(s, t);2

Compute K+ and K− according to the sign of b;3

L+∗

= ConvexHull(Dual(K+));4

L−∗

= ConvexHull(Dual(K−));5

return VerticalWidth(L+∗T
L−∗

);6

The overall complexity of the algorithm is the same that the one of the
recognition algorithm [CGRT04], that is O(n4/3.log(n)). Indeed, step 1 is in O(n)
thanks to the arithmetical approach described in [CGRT04]. Steps 2 and 3 are in



L−∗ l∗

d(l∗, v∗)

L+∗
v∗

(a)

d′ > d(l∗, v∗)

L−∗

v∗

l∗

L+∗

(b)

l

L+ d(l, v)

L− v

(c)

d′ > d(l, v)

L−
v

l

L+

(d)

Fig. 4. Geometrical interpretation of the vertical width of L+∗T
L−∗

: L+∗T
L−∗

becomes empty when v∗ is moved by d′, while in the primal space, the constraints
become satisfiable.

O(n′2) where n′ = card(S) = card(T ). Steps 4 and 5 are in O(n′2log(n′)) using
classical convex hull computation algorithms. Steps 6 is in O(log(n′′)) where n′′

is the number of vertices of L+∗ ⋂L−∗
. Knowing that n′ is bounded by O(n2/3)

([CGRT04]) and n′′ < n′, we can conclude that the overall complexity of the
algorithm is O(n4/3.log(n)).

4 Experiments

By definition, our new circularity measure is minimum and equals 0 for all dis-
crete circles whatever its center or its radius (see section 3). In this section we
study the behavior of this measure with other classes of objects, either smooth
objects that are not circles, such as ellipses and polygons or noisy objects.



4.1 Smooth objects

First, we generated hundreds of discrete ellipses (OBQ discretization) with var-
ious parameters : a (resp. b), small (resp. great) semi-axis, θ, the angle between
the main axis of the ellipse and the x-coordinate axis, Ox and Oy the coordi-
nates of the ellipse center. Figure 5 and Figure 6 show that circularity linearly
inscreases with size whereas it exponentially inscreases with eccentricity. This
behavior recalls the true circularity measure apart from the fact that the pro-
posed measure is not yet normalized.
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Fig. 5. One hundred of discrete ellipses were generated according to the following rules:
O(0, 0), θ = 0, a/b = 1/2 and b is ranging from 5 to 105. Circularity is plotted against
b, the size of the ellipses.

Next, we generated fifty regular polygons of fixed perimeter. Their number of
sides is ranging from 3 to 53, whereas their perimeter is approximatively equal
to 1325 (the unit is pixel). In Figure 7, circularity decreases with the number
of sides and converges towards 0. The bigger the number of sides, the more the
polygons look like a circle and the more circularity is close to 0. Note that the
artefacts are related to the parity of the number of sides.

4.2 Noisy objects

Finally, we generated hundreds of noisy circles. In order to study the impact of
the amount of noise onto circularity, we implemented a degradation model very
close to the one in [KHB+00]. This model was proposed and validated in the
context of document analysis and assume that: (i) the probability to flip a pixel
(i.e., label ’object’ or ’1’ a pixel labelled ’background’ or ’0’ and conversely)
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Fig. 6. One hundred of discrete ellipses were generated according to the following rules:
O(0, 0), θ = 0, b = 50 and a is ranging from 10 to 50. Circularity is plotted against
a/b, the eccentricity of the ellipses.
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Fig. 7. 50 regular polygons, the perimeter of which is approximatively equals to 1325.
Circularity is plotted against the number of sides.



depends of its distance to the nearest pixel of the complement set and (ii) other
acquisition defaults, such as blur, may be simulated with a morphological closing.
Thus, in practice:

– we perform a squared euclidean distance transform (see [Hir96]),
– we process each pixel according to formula 1 which is a simplified version of

the one of [KHB+00]:

p(0|1) = p(1|0) = exp (−d2

α
) (1)

where d2 is the squared euclidean distance of the pixel to process to the
nearest pixel of the complement set and α is a parameter which controls the
amount of noise.

– we apply a morphological closing with a circular structuring element, the
radius of which is 5, in order to make the object connected again.

Figure 8 gives some results of the algorithm applied to a discrete disk.

α = 1 α = 15 α = 30

Fig. 8. Three disks, the radius of which is 50. The added noise depends of parameter
alpha, according to the degradation model of [KHB+00]. The circles we want to process
are the 8-connected boundaries of the disks.

In Figure 9, circularity increases with the amount of noise, but not in a
smooth way, contrary to previous plots. Globally, the noisier the circle, the more
it looks different from a circle and the higher circularity is. However, we have to
keep in mind that both noise and circularity definitions are subjectives.

5 Conclusion and perspectives

In this paper, a new circularity measure for discrete objects is introduced and
an algorithm to compute this measure is presented (section 3).

An important property is fulfilled: the measure equals 0 for all discrete circles
and is strictly positive for all discrete objects which are not discrete circles. Ex-
periments show good and encouraging results (section 4). However, the measure
proposed need to be normalized (Figure 5), in order to be scale invariant with
discrete objects such as discrete ellipses. In addition, the measure proposed is
not rotation invariant and it is one of our future works.
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Fig. 9. Nine sets of circles that are more and more noisy have been generated. Para-
meter alpha ranging from 1 to 30 controls the amount of noise (see Figure.8). Average
circularity measure is plotted against parameter alpha.

The problem of computing a consistent circularity measure is formulated in
terms of sets of inequalities and we use a dual space to represent these sets. In
this dual space, a measure of a polygon is computed to estimate the distance
from a discrete curve to a discrete circle. Very tight links between this method
and the field of linear programming need to be studied, especially the case of sets
of constraints insatisfiable. This method is very general and could be applied to
other objects.
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