
Fast and cheap object recognition by linear combination of
views

Jérome Revaud
LIRIS UMR 5205 CNRS,

INSA-Lyon
F-69621, France

jerome.revaud@insa-
lyon.fr

Guillaume Lavoué
LIRIS UMR 5205 CNRS,

INSA-Lyon
F-69621, France

glavoue@liris.cnrs.fr

Yasuo Ariki
Dept. of Computer and

System Engineering, Kobe
University

1-1 Rokkodai, Kobe,
657-8501, JAPAN

ariki@kobe-u.ac.jp

Atilla Baskurt
LIRIS UMR 5205 CNRS,

INSA-Lyon
F-69621, France

abaskurt@liris.cnrs.fr

ABSTRACT
In this paper, we present a real-time algorithm for 3D ob-
ject detection in images. Our method relies on the Ullman
and Basri [13] theory which claims that the same object un-
der different transformations can often be expressed as the
linear combinations of a small number of its views. Thus,
in our framework the 3D object is modelized by two 2D im-
ages associated with spatial relationships described by local-
invariant feature points. The recognition is based on feature
points detection and alignment with the model. Important
theoretical optimizations have been introduced in order to
speed up the original full alignment scheme and to reduce
the model size in memory. The recognition process is based
on a very fast recognition loop which quickly eliminates out-
liers. The proposed approach does not require a segmenta-
tion stage, and it is applicable to cluttered scenes. The small
size of the model and the rapidity of the detection make this
algorithm particularly suitable for real-time applications on
mobile devices.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object recognition, Shape; I.4.7 [Image Process-
ing and Computer Vision]: Feature Measurement; G.1.3
[Numerical Analysis]: Numerical Linear Algebra—Lin-
ear systems (direct and iterative methods); I.5.1 [Pattern
Recognition]: Models—Structural

General Terms
Algorithms, Performance

Keywords
Object Recognition, linear combination, 2D views

1. INTRODUCTION
Although the recognition of familiar objects in any kind of
environment may be a simple task for human beings, that
is still of huge difficulty for computers. Indeed, changes in
light or movements in space make images of the same thing
look totally different. On the other hand, the number of de-
vices that are able to capture pictures from everyday life has
exploded. As a result, visual object recognition has become
a real challenge, particularly to be able to classify this huge
amount of data. Although most approaches treat object
recognition as a complex process which requires powerful
computers to run, we focus on simple linear combinations.
Indeed, we want our system to be able to run on mobile de-
vices such as cell phones or embedded systems. As a conse-
quence, our approach has to take in account the constraints
of these devices: few memory resources and limited compu-
tational power.
Existing object recognition algorithms can be classified as
follows: the global and the local ones. The global techniques
aim at recognizing the object in its whole. To achieve this re-
sult a global approach generally learns, from a set of images,
the object to recognize. Then it extracts global features and
finally uses statistical classification techniques. For instance,
Nayar et al. [11] present a fast method which can handle
one hundred objects while still being effective, using PCA
and nearest neighbour search. Some other works have been
done in face recognition [14] with boosted cascade of simple
classifiers. However, these global methods share some draw-
backs: First of all, the amount of data needed for learning is
usually huge, as well as the training time. Another issue is
that these approaches can not deal with partial occlusions.
Moreover, the exact 3D position and orientation of the ob-
ject may be difficult to retrieve, if not impossible.
On the other hand, local approaches mainly focus on the
so-called keypoints (i.e. local features). In this context, the
general scheme for object recognition usually implies three



Figure 1: The model, a tea box, is composed
with two pictures where the object slightly dif-
fers by its pose. The yellow lines represent key-
points matches and constitute the only informa-
tion needed by our method (i.e. 2D positions of
the keypoints and their descriptors).

Figure 2: Result of recognition over a cluttered image.
Red crosses indicates the final assumed positions of the
keypoints defined in the model. Despite the fact that the
box is viewed from a different angle than in the model,
the recognition achieves a nearly exact extrapolation of
the model pose. The whole process spends about 1s for
keypoints extraction and 0.01s for recognition.

steps: (1) first is the extraction and description of local fea-
tures, in both test and model images. (2) The next step con-
sists in selecting image features that match with the model
ones. (3) The final step elects the best subset of keypoints
(the inliers) that presents the highest correlation with the
model. In that manner, the object position can be precisely
extracted as well as the occlusion, provided that the model
object is covered by a sufficient number of local features [3].
The keypoints detectors are generally fast and multi-scale.
Another point that can explain why keypoints have become
so popular these last few years is that the concept of de-
composing an object into small interest patches is somehow
familiar with the human visual system.
Nowadays, many authors have presented their own keypoint
detector [5, 6, 8]. At the same time, the associated descrip-
tion problem (i.e. how to describe the neighbourhood of
these points in an invariant way) has also been widely ad-
dressed by the scientific community [8, 2]. Lately, affine re-
gion descriptors have been heavily developed [12, 3] as they
allow to recover the position of a 3D object from a single
patches match. A recent state-of-the-art about affine region
detectors can be found in [10]. Nevertheless, these methods
based on affine descriptors are too slow for our real-time
purpose. In our algorithm, we use SURF (Speed Up Robust
Feature), a recent keypoint detector and descriptor, which
has been developed by Bay et al [2]. This system is based
on a similar approach then SIFT’s [8] but seems to give
lightly better matching results. Moreover, its vector size is
half than SIFT’s -as well as the comparison time between
two keypoints-, and the whole detection-description process
is also quite fast.
About recognition, recent advances have improved both ro-
bustness and detection speed. Lowe [9] combines multiple
views of the same object in order to compute a set of charac-
teristic views. Then their algorithm relies on a probabilistic
model to determine whether the object is present in the
scene or not, with respect to 2D similarity transforms of the
model views. The drawback of such an approach is that it
does not take into account the real 3D shape and the 3D
transformations of the object and hence is unable to recover

its precise spatial pose. In a different way, Rothganger et
al. [12] consider affine keypoints to recover more efficiently
the object pose from the matched feature patches. How-
ever, the system needs some time to detect an object. More
recently, Lepetit et al. [7] present a real-time system: they
obtain fast and robust keypoint classifiers based on random-
ized trees. Their solution is notably robust against changes
in view point and illumination. Even if it gives good re-
sults, the training time is sizeable and the 3D geometric
shape of the object has to be learned (one alternative is to
consider the object to be locally planar). On the contrary,
our method does not need to know the 3D geometric in-
formation, but the result is spatially constrained as if a 3D
model was used. Moreover, no training time is required to
achieve fast and efficient recognition.

Our method relies on the linear combination theory from
Ullman and Basri [13], proposed in 1991: One may be able
to recognize any 2D view of a 3D object from a limited
number of its already known 2D views without storing its
3D geometric shape and even if its pose is different. The key
idea is that the same object under different transformations
can be expressed as the linear combination of a small num-
ber of its views. The interest of this approach is to obtain a
real 3D shape recognition, but sparing the storing and com-
putation cost of a 3D mesh and thus save time both in model
construction and recognition. Considering this theory, our
algorithm is the following: For a given object to index, we
construct our model thanks to two of its views (differing by
their viewpoints). These images are aligned using local in-
variant feature points. The model size is quite small and the
recognition loop very fast. Finally, there is no training time,
so the user can add new objects into the database in near
real-time. We considered the SURF [2] keypoint detector
to create the model but the presented framework could be
generalized with other invariant feature points.
The paper is organized as follows: Section 2 presents how
to build the model from two object images. The recogni-
tion is detailed in section 3 while results and conclusion are
presented in the last sections.



2. MODEL CONSTRUCTION
The model construction includes two steps: first of all, we
basically align two input images of the object by using the
feature point detector SURF [2]. Then, the model fea-
ture vectors are computed based on the most representative
matches. A match is a couple of keypoints (k, k′) that refers
to the same surface patch of the object, where k is belong-
ing to the first image and k′ to the second. Matches are
computed thanks to the description vectors associated with
feature points (see figure 3).

Figure 3: Schema for model construction: (1) key-
points are detected and depicted by SURF, (2) they
are matched symmetrically, (3) some matches are se-
lected over their scale and strength, (4) the matrix
containing positions X1, Y1, X2 and T is orthogonal-
ized into P . Average feature vectors are also built
from the matches vectors.

2.1 Keypoints alignment
Our method begins by computing the keypoints along with
their descriptors on slightly different views of the same ob-
ject. In our case, two images only are needed to represent an
affinely invariant view of the object. After that keypoints
are extracted, they are matched between the two images
with the nearest neighbour ratio matching strategy (see [2]).
Since we want the matching scheme to be symmetric, this
strategy is applied from both sides. The final correspon-
dence set is formed by the intersection of the two matching
sets.
Then, we elect a subset of the most representative matches
by evaluating each couple from its attributes:

score = k.strength · k.scale · k′.strength · k′.scale

This score represents the quality of the match. Indeed, the
bigger is the scale, the farer the spot can be detected. The
strength is also a determining factor to improve robustness
over illumination changes. In the following, we keep only
the N better correspondences regarding this score. Figure
1 illustrates such a match with N = 32.
Optionally, one can eliminate spurious matches at this step.

This operation can be realized manually or automatically,
considering that the field of vectors linking matched key-
points must have some homogeneous characteristics. The
presence of spurious matches has to be avoided since it can
interfere with the recognition process. That is why we have
to make sure that the model is clean before to continue to
the next step.
Finally, we assume that the two sets of keypoints descrip-
tors are nearly identical for both images 1 and 2. Therefore,
only their average is preserved in the model dataset. For
each couple (k, k′), the corresponding average M is defined
as follows: ∀i ∈ [1, 64], M.Vi = (k.V 1

i + k′.V 2
i )/2, with

64 the number of components defined in SURF. This oper-
ation is theoretically allowed by the descriptor since every
component Vi is already a geometric sum of Haar wavelet
coefficients in the neighbouring of the point. The N vec-
tors of keypoint descriptors constitute the first part of our
model.

2.2 Linear combination of views
As we said in the introduction, the construction of the model
is basically processed according to the theory presented in
[13]. The statement demonstrated by the authors is that
the set of possible images of an object undergoing linear
3D transformations (rotation, scaling, etc.) is embedded
into a linear space of a lower dimensionality and spanned
by a small number of views. To understand this model,
we need a different vision of images. Usually, images are
interpreted as 2D matrix. On the contrary, the authors’
vision of images is parametric. A picture is thus expressed
as a vector containing the coordinates of every points of the
image (or the object) sorted in an arbitrary way. In their
original paper, the authors gave a lot of possible variations
of their model. Because this is only a short recap, we will
only focus on the most interesting method in our eyes: the
minimal model.
The minimal model proposes to express every possible view
of an object from only two others of its views, provided
that the object is considered to be somehow translucent -
no occlusion at all. Formerly, the proof is quite simple. Let
O be a rigid object (i.e. an ordered collection of 3D points),
P1 an image of O, and let P2 be the image of O following a
rotation R (a 3× 3 matrix). We will denote by r1, r2, r3 the
three rows of R and by e1, e2, e3 the three rows of the identity
matrix. For a given 3D point ρ of O, its coordinates (x1, y1)
in the first image P1 are given by x1 = e1.ρ, y1 = e2.ρ, and
similarly x2 = r1.ρ, y2 = r2.ρ for P2. Consider now any
other view obtained by applying another 3× 3 matrix U to
the points of O. The coordinates (x̂, ŷ) of ρ in this new view
will be x̂ = u1.ρ, ŷ = u2.ρ (where u1, u2 are the first two
rows of U). Assuming that e1, e2 and r1 span <3 (which is
true unless R is a pure rotation around the line of sight),
then

u1 = a1.e1 + a2.e2 + a3.r1

for some scalars a1, a2, a3. Therefore

x̂ = u1.ρ = (a1.e1 + a2.e2 + a3.r1)ρ = a1.x1 + a2.y1 + a3.x2

Similarly, for the y coordinates

ŷ = u2.ρ = (b1.e1 + b2.e2 + b3.r1)ρ = b1.x1 + b2.y1 + b3.x2

This equality holds for every point ρ from O. Moreover, for
a given 3D position the scalar coefficients are the same for



every point from O. Let now X1 be the vector of all the x
coordinates of the feature points in the first view, X2 in the
second, X̂ in the third and Y1 the vector of all y coordinates
in the first view. Then

X̂ = a1.X1 + a2.Y1 + a3.X2

Ŷ = b1.X1 + b2.Y1 + b3.X2

One can view the situation as follows: within a N -dimensional
space (with N the dimension of the above vectors, i.e. the
number of selected matches in our case), X1, Y1 and X2

span a three-dimensional subspace. For all the image of the
considered 3D object, both coordinates vectors X̂ and Ŷ
theoretically reside within this three dimensional subspace.
Figure 4 illustrates this mechanism for a 2D subspace. Let

Figure 4: The Ullman-Basri theory for recognition,
adapted into a 2 vectors model for representation.
The X and Y positions axes figures the X1 and Y1

model keypoints’s coordinates. The third axe sym-
bolises every axes that are perpendicular to the first
ones. the ratio of the projection error norm to the
image norm allows to test the similarity between a
test image and the model.

us cluster these three vectors inside a matrix P = [X1,
Y1, X2]. The recognition process will then use P to match
between keypoints 2D position and model 3D coordinates.
However, this method is still unable to deal with object
translation. This is caused by the fact that the three vec-
tors are implicitly defined as centered on the object rotation
point defined between both views. To solve this issue, we
add a fourth vector T = [1, 1, · · · 1]. By this mean, the
translation becomes possible without modifying the theory.
Finally, we orthogonalize P for optimization purposes (see
section 3.3). This last operation does not modify the sub-
space spanned by the vectors.
One can object that this approach only considers the orthog-
onal projection of an object over a plan, and thus neglects
perspective effects. Despite this approximation, the theory
gives good results even in close-up conditions (see for in-
stance figure 6).
To summarize (see figure 3), we construct a very small model
in terms of memory cost. The total size of the model is 68N
floating point values, composed of 65N values for the SURF
vectors and 3N values for the positions matrix (the fourth
vector is dispensable). The model takes less than one second

to be built as the only complex process is to widely match
keypoints, which is in O(M2), M being the average number
of keypoints per image (M ≈ 700 in our case). We are now
going to study how the recognition is processed from this
dataset.

3. RECOGNITION STAGE
In their paper, Ullman and Basri [13] proposed three general
schemes for recognition. We have only focused on the second
one, the full alignment. This choice was motivated by the
extra-possibilities it offers, such as handling partial object
occlusion. First, we present how the problem was handled by
Ullman and Basri. Then, we detail our optimization scheme
to speed up the alignment process. Finally, our recognition
loop is presented; it provides a quick convergence toward the
solution while efficiently eliminating outliers.

3.1 Full alignment scheme
We saw above that the P matrix is defined from only four
vectors. To compute full alignment in a vectorial context,
we build a matrix L which maps every model vector into a
defined vector Q and every other perpendicular vectors into
itself. To build this matrix, we transform P into a square
matrix by filling the other columns such as P ’s columns are
all linearly independent. Then, we build P̄ as equal to P
in all respects, except for the four first columns. These are
substituted by the same vector Q. Then, we require that

LP = P̄

Therefore,

L = P̄P−1

Note that P is composed of linearly independent vectors, so
P ’s inverse always exists. A simple choice for Q is the null
vector. This way, L.Pi = 0 for i ∈ [1, 4] with Pi the ith col-
umn of P . In other words, L.Pi = 0 for Pi ∈ {X1, Y1, X2, T}.
As a consequence, any other view V which is a linear com-
bination of these four vectors gives the null vector: L.V =
L(

∑4
i=1 ai.Pi) =

∑4
i=1 aiL.Pi = 0. Inversely, in the pure-

noise condition, the output would be L.V = V . In fact, the
view V is composed with two vectors X and Y , however in
all the formula we consider V as X or Y . Taking a decision
whether V is a view of the object or not can be simply based
on the comparison of ‖L.V ‖ with ‖V ‖. If V is indeed a view
of the 3D object, this ratio will be small (0 in the noise-free
condition). On the contrary a score close to 1 indicates a
high difference with respect to the model (see Figure 4) :

score =

√
‖L.X‖2 + ‖L.Y ‖2

‖X‖2 + ‖Y ‖2
(1)

3.2 Occlusion problem
During the alignment process, some points may remain un-
matched because of occlusions. This issue was also ad-
dressed by Ullman and Basri [13] in the case of full align-
ment. Indeed, the authors proposed a method to recover
the coordinates of the missing points using the L matrix.

Considering that the first k coordinates of V are unknown,
the problem is then to minimize ‖L.V ‖. These first k com-
ponents are initially equal to 0. We construct a new vector
V̂ from V by supplementing the missing coordinates:

V̂ = V + U.A,



where U is the span of unit vectors along the first k coor-
dinates and A the vector of corresponding unknown values.
Then, solving minA(‖L.V + L.U.A‖) comes to the solution
A = −[L.U ]+L.V (where [L.U ]+ denotes the pseudo-inverse
matrix). Hence we are able to retrieve 2D coordinates of the
missing keypoints, which are interpolated from the known
ones using the L matrix.
However if less than 4 keypoints are initially correct, what-
ever their positions, we do not obtain relevant interpolated
positions for the missing ones. Since the subspace is spanned
by four vectors, the resulting vector V̂ is inevitably in the
model subspace (see figure 4).

To conclude with this issue, unmatched keypoints are not
a problem since their coordinates can be interpolated from
other matches without lowering the recognition score. How-
ever this technique has a computational cost which is quite
high. We will see below that this issue can also be solved.

3.3 Optimization
The original approach from Ullman and Basri requires a
pseudo-inverse computation of the L.U matrix, whose di-
mension could theoretically be up to N ×N , at each model-
image matching operation. With respect to our implementa-
tion, this would be a problem since this step is processed at
each iteration of our solving loop. Nevertheless, it is possible
to use less memory and to increase speed in the same time.
Indeed, the L matrix becomes obsolete for score computing if
P is orthogonalized. In that case, the score is simply the cor-
relation between the vector to test and the subspace defined
by P , which is now reduced to the original 4 columns matrix
{X1, Y1, X2, T} (see figure 4). Indeed, our algorithm directly
projects the vector V on P with a scalar product. Because
the orthogonal projection gives the minimal distance toward
a subspace, this method can also retrieve both coefficients
A = [a1, a2, a3, a4]

T , B = [b1, b2, b3, b4]
T and subspace coor-

dinates (X̂, Ŷ ). X̂ and Ŷ correspond to the extrapolation
(i.e predicted position) of the model keypoints:

A = P T X ⇒ X̂ = PA

B = P T Y ⇒ Ŷ = PB

However, the L matrix was still helpful to interpolate miss-
ing points coordinates, but it can also be spared. If there
exist occlusions, some rows from P and V are set to 0. Then
the main problem is that P is no longer orthogonal when de-
prived from some coefficients (the missing ones). Let’s call
this matrix P ′ which is formally

P ′ = U.P =
[
P ′

1 P ′
2 P ′

3 P ′
4

]
where U is the N ×N identity matrix deprived of the rows
corresponding to missing keypoints (that is, not suppressed
but set to 0). P and P ′ are N × 4 matrices. We formally

search for A coefficients so that U.X̂ − U.X = P ′.A − U.X
is minimal (and similarly for B and Y ). This minimum is
reached for

A = P ′+UX
= [P ′T P ′]−1P ′T UX
= [P ′T P ′]−1(UP )T UX
= [P ′T P ′]−1P T (UX)
= [(UP )T (UP )]−1P T (UX)

Thanks to the fact that P is an orthogonalized matrix, one
can prove that (UP )T (UP ) = I4− [(In−U)P ]T [(In−U)P ].
Depending on the ratio of k to N (k being the number of
missing keypoints), the user can compute the [P ′T P ] matrix
in two manners. If k < N/2, the expression I4 − [(In −
U)P ]T [(In −U)P ] should be preferred to (P T UP ), because
faster to compute (O(k) instead of O(N − k)).

Concretely, this whole optimization reduces the memory
cost from N2 + 4N (P and L, N × N matrix) to 4N (P
only), which represents a gain of 1 + N/4. The speed of the
alignment scheme is also boosted from O(k3 +N2) to O(N).

3.4 Recognition loop

Alignment. The keypoints matching is processed in the per-
spective of a full alignment scheme. As a consequence, we
basically try to find a correspondent in the test image for
each model’s keypoint. The Euclidean distance (between
descriptors) is then computed N × M times, with N the
model’s number of keypoints and M the image’s. For each
model keypoint i, we keep a list Li of every keypoint in the
image that presents a distance (between descriptors) infe-
rior to a given threshold Tmatch. In each list, the top ranked
keypoint coordinates constitutes the X and Y vectors that
initially feed the detection loop.

As we saw in section 3.3, we can compare the vectors X
and Y with the P matrix. The score defined in equation
1 gives an idea of the colinearity between the vector and
the model. However, this value is impaired by the wrongly
aligned or missing keypoints. Moreover, it can happen that
the model does not suit at all the image but still gives a high
score. To answer this issue, we have developed a loop which
converge quickly toward the solution considering the spatial
coherency of the model (see figure 6). The loop comprises
three steps.

1. First comes the extrapolation of the model from the
matches. Starting from X and Y (white circles in fig.
6), we compute the predicted model compliant posi-

tions X̂ and Ŷ (red crosses in fig. 6) using equations
from section 3.3. Even missing key points are pre-
dicted.

2. We eliminate the keypoint that is the farthest from its
predicted position. To that aim, the distance (repre-
sented as a blue segment in figure 6) is computed in
an Euclidean way :

Dist = (X − X̂)2 + (Y − Ŷ )2 − S

Dist, a N rows vector, represents the square value
of the distance between each keypoint and its pre-
dicted position. This distance is corrected by S =
[scale1, · · · , scaleN ]T , the vector of the scales of the
current image keypoints. We realize this correction
because the larger is the keypoint, the more imprecise
is its location. Our assumption is that the imprecision
is roughly linear with the square root of the keypoint
scale. Our experiments have confirmed that this ap-
proximation is accurate enough to correctly eliminate
outliers. Finally, the image keypoint K′

i associated



to the model keypoint Ki with i = argmaxi(Dist) is
disconnected from Ki. As a result, this suppresses a
match and thus adds a “missing keypoint” (i.e. its
position is interpolated from the others matches in the
following iteration).
The loop exits at this point if one of the two following
conditions is reached:

• The distance distModel = maxi(Dist) is below a
threshold Tdist.

• The number of remaining matches is less than
Tremaining.

3. The last step attempts to recover an hypothetical key-
point that would fit to the actual extrapolated model.
Over every lonely model keypoint Ki, we select the
image keypoint K′

i in the corresponding list Li which
presents the smallest spatial distance to its predicted
position. The distance has to be inferior to

√
distModel

in order to keep the loop converging. This keypoint is
reintegrated as a match into X and Y .

The vectors X, Y , X̂ and Ŷ thus lightly evolute at each
iteration (see figure 6). The third step allows the algorithm
to recover from its mistakes along the convergence. Theo-
retically, this loop offers no exit guarantee. Indeed, at each
step, one keypoint is eliminated whereas another can be rein-
tegrated. To solve that issue, we arbitrarily restricted the
maximum number of iterations to 8N . We have not reached
yet this limit in practice.

Figure 5 illustrates the whole recognition strategy. At the
end, we have to evaluate the final alignment with the model.
We define a score measure as function of the exit parameters.
It is far more reliable than the score defined in [13]. Indeed,
the score from eq. 1 of the remaining keypoints after the
last iteration is often extremely low (i.e. good), even in
case of bad alignment. That is coming from the fact that
with a small number of remaining keypoints, the method is
always able to find a subset of the initial points that match
the model. To overcome this issue, we base upon the exit
conditions to evaluate the recognition:

score =
Tdist

distModel
.
nbRemaining

Tremaining

In case of perfect matching, the score is infinite. On the
contrary, it tends toward 0 for bad alignments. In our ex-
periments, we observed that a good threshold to evaluate
the recognition decision is 2.

4. RESULTS
We have tested our algorithm on various objects. The use
of the SURF algorithm for keypoint detection makes our al-
gorithm particularly suitable for textured objects. In this
paper, we give some examples of recognition with a tea box
and a roller skate.
Each model is built from two 600x500 images where are se-
lected the N = 32 top-rated keypoints (see figures 1 and
8). This number is a compromise between having enough
points to tolerate occlusions while not having too much
small-scaled keypoints. However, the value N = 32 is not
an optimal value insofar as we did not focus on optimizing

Figure 5: The recognition process. (1) Keypoints
are extracted from the image. (2) The process re-
tains every image-model match whose distance is
less than a threshold. (3) The recognition loop ex-
trapolates the model subspace from the keypoints
coordinates matched previously. The process iter-
ates by deleting the farthest keypoint with respect
to the extrapolated model. (4) When one of the
loop’s exit conditions is reached, the process com-
pute the final score and conclude on the presence of
the object.

it. Recognition seems to give similar results for values of N
between 25 and 60. However, the choice of N has a direct
influence on the model size. In that condition, the file size
of a model is about 17 Ko only. This potentially allows to
load many models simultaneously in memory. The recog-
nition tests are performed on 1600x1200 images where the
object, when it is present, has a size of about 300x200. Every
threshold was set experimentally without focusing much on
optimization. The maximal distance for keypoint matching
is set to Tmatch = 0.25. The thresholds for loop exit worth
Tdist = 45 and Tremaining = 8. Figure 6 illustrates an ex-
ample of recognition with a score of 2.4 on an image that is
artificially blurred, resized smaller and presents a difference
of angle of 45o with the model. The figure 7 demonstrates
the consistency of our spatially constrained technique since
the recognition do not detect the object manually disrupted.

The PC used for the experiments is an Athlon 1.85GHz with
512 Mo RAM running under Windows. This can not com-
pare with small devices like cell phone, but it still gives an
idea about the computational power needed by our system.
The average recognition performance are specified in table
1 for two size of test images: 800x600 and 1600x1200. The
slowest part of our algorithm is the SURF keypoints detec-
tion and description which represent 99% of the processing
time. In a 1600x1200 image, the average number of detected
keypoints is about 2000. We used the online available imple-



Figure 6: Progression of the recognition loop over a
test image at iterations i = {1, 3, 6} with N = 16 key-
points. The white circles represent keypoints that
are considered as inliers. Red crosses refer to posi-
tions that are predicted by the model. Lonely red
crosses refers to missing matches caused by occlu-
sion or keypoints detection failure. They are inter-
polated from the previous ones in a 3D manner. The
test image was shot about 45o from the model im-
age’s line of sight, resized smaller and blurred. The
final recognition score is about 2.4 on that image.

Figure 7: Another tea box image which has been
manually disrupted. The recognition achieves a low
score of 0.09 on this image because of the lack of spa-
tial consistency. The resulting extrapolation clearly
demonstrates the failure of recognition.

mentation of SURF for Windows (1.0.7) [2]. However, our
algorithm achieves real-time performances; in particular the
solving loop is almost instantaneous (less than one millisec-
ond). Practically, our algorithm is particularly suited for
real-time applications on embedded systems, provided that
keypoints detection and description is fast enough.

Scores that are between 0.5 and 2 often indicates partial
recognition: the object was found but the system did not
manage to eliminate some outliers. This happens in images
of poor conditions. The algorithm’s convergence speed does
not seem to be a function of the length of the lists Li. Con-
cretely, the loop exit is reached after about 40 iterations
for N = 32 keypoints. The initial keypoint repartition in a
test image can reach 60% of outliers at the initial step with-
out harming the recognition. That is thanks to the keypoint
reintegration which progressively enforce the inliers assump-
tion. However, in the case of two same objects in one image,

Table 1: Average recognition time
Stage Time (ms) Time (ms)

(800 × 600) (1600 × 1200)
Keypoints detection 125 750

Keypoints description 328 1200
Keypoints matching 1 20

Solving loop � 1 � 1
Total 454 1971

our technique is not able to differentiate them. This is still
an issue that needs to be settled.

Some results are presented in the figures 2, 9, 10 and 11. The
tea box is detected in figure 2 with a score of 5.23, despite a
different orientation (about 40o from the model pose) and a
cluttered background. In this figure, only the model extrap-
olation is presented (red crosses). The roller skate model
is presented in figure 8 (yellow vectors symbolize keypoint
matches between one model image and the other). Figures
9 and 10 illustrate correct recognitions of this object, de-
spite an important occlusion (bottom right part) in the first
figure and the cluttered background in the second one with
final scores of 3.6 and 7.4 respectively. Finally, the figure
11 shows an example of recognition attempt on a cluttered
image where the roller is absent, with the same graphical
convention as above. The score for this image clearly bears
out that fact with a value of 0.03.

Figure 8: The roller skate model. White circles in-
dicate the positions of keypoints used in the model.
Yellow vectors symbolize matches between those
keypoints.

Figure 9: The recognition over two differents object
in the same image. Each object was correctly local-
ized with a score of 3.6 and 2.4 for the roller skate
and the tea box respectively.



Figure 10: The roller is correctly localized in a
highly cluttered picture with a score of 7.4.

Figure 11: An example of “empty” image: since the
roller skate is absent from the picture, the algorithm
converges toward an irrelevant solution. The score
bears out that result with a value of 0.03.

5. CONCLUSION
We have presented an efficient method for 3D object recogni-
tion. Our scheme is faster and smaller than most of existing
ones. The main interest of our approach results in minimiz-
ing the storing cost of the model and in quickly and accu-
rately detecting the object inside a cluttered background.
Our whole system is near real-time and simple to imple-
ment. To be fully real-time, we should use a faster keypoint
matching mechanism. If so, it could outfit robots with a
limited computational power.
One other point is that we can afford large object databases.
Indeed, the slow keypoint extraction needs to be realized
only once per image, whereas our recognition process can
afford many executions.
Finally, another advantage of our approach is that we can
deduce the exact positions and orientation of the object.
Pose estimation can be obtained from the final state vari-
able A and B if the model spatial conditions are known (or
if a third model picture is available).
To some extents, our system is robust to object deforma-
tion provided that it still spans the subspace defined by
the model, that is, for affine 3D deformations. We plan to
still enhance the robustness of our solving algorithm. Some
heuristics could be used to improve the convergence process.
For instance, we do not take advantage of the keypoint ori-
entation and scale. We also plan to take into account the
model rigidity: this could also provide some useful rules for

accelerating convergence.
The efficiency of our recognition framework depends on the
considered feature point detector. Whereas SURF is rather
adapted for textured objects, we could consider other fea-
tures in order to improve the capability range, like the plane
curves described in [4] or the spread edges of [1].

6. REFERENCES
[1] Y. Amit, D. Geman, and X. Fan. A coarse-to-fine

strategy for multiclass shape detection. IEEE Trans.
Pattern Anal. Mach. Intell., 26(12):1606–1621, 2004.

[2] H. Bay, T. Tuytelaars, and L. J. Van Gool. SURF:
Speeded up robust features. In European Conference
on Computer Vision, pages 404–417, 2006.

[3] V. Ferrari, T. Tuytelaars, and L. Gool. Simultaneous
object recognition and segmentation from single or
multiple model views. Int. J. Comput. Vision,
67(2):159–188, 2006.

[4] D. Forsyth, J. L. Mundy, A. Zisserman, C. Coelho,
A. Heller, and C. Rothwell. Invariant descriptors for
3d object recognition and pose. IEEE Trans. Pattern
Anal. Mach. Intell., 13(10):971–991, 1991.

[5] C. Harris and M. Stephens. A combined corner and
edge detection. In Proceedings of The Fourth Alvey
Vision Conference, pages 147–151, 1988.

[6] N. K. J. Fauqueur and R. Anderson. Multiscale
keypoint detection using the dual-tree complex
wavelet transform. In IEEE International Conference
on Image Processing (ICIP’2006), 2006.

[7] V. Lepetit, P. Lagger, and P. Fua. Randomized trees
for real-time keypoint recognition. In IEEE
Conference on Computer Vision and Pattern
Recognition, pages 775–781, 2005.

[8] D. G. Lowe. Object recognition from local
scale-invariant features. In International Conference
on Computer Vision, pages 1150–1157, 1999.

[9] D. G. Lowe. Local feature view clustering for 3d
object recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, volume I, pages
682–688, 2001.

[10] K. Mikolajczyk, T. Tuytelaars, C. Schmid,
A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir,
and L. V. Gool. A comparison of affine region
detectors. Int. J. Comput. Vision, 65(1-2):43–72, 2005.

[11] S. K. Nayar, M. Watanabe, and M. Noguchi.
Real-time focus range sensor. IEEE Trans. Pattern
Anal. Mach. Intell., 18(12):1186–1198, 1996.

[12] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce.
3d object modeling and recognition using local
affine-invariant image descriptors and multi-view
spatial constraints. Int. J. Comput. Vision,
66(3):231–259, 2006.

[13] S. Ullman and R. Basri. Recognition by linear
combinations of models. IEEE Trans. Pattern Anal.
Mach. Intell., 13(10):992–1006, October 1991.

[14] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In IEEE
Conference on Computer Vision and Pattern
Recognition, volume 1, pages 511–518, 2001.


