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Abstract

The medial axis is a classical representation of digital objects widely used in many
applications. However, such a set of balls may not be optimal: subsets of the medial
axis may exist without changing the reversivility of the input shape representation.
In this article, we first prove that finding a minimum medial axis is a NP-hard prob-
lem for the Euclidean distance. Then, we compare two algorithms which compute
an approximation of the minimum medial axis.
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1 Introduction1

In binary images, the Medial Axis (MA) of a shape S is a classic tool for shape2

analysis. It was first proposed by Blum [2] in the continuous plane; then it3

was defined by Pfaltz and Rosenfeld in [14] to be the set of centers of all4

maximal disks in S, a disk being maximal in S if it is not included in any5

other disk in S. This definition allows the medial axis to be computed in a6

discrete framework, i.e., if the working space is the rectilinear grid Z
n. The7

medial axis has the property of being a reversible coding: the union of the8

disks of MA(S) is exactly S.9

In order to compute the medial axis of a given discrete shape S, we first pro-10

ceed by computing the Distance Transform (DT) of S. The distance trans-11
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form is a bitmap image in which each point is labelled with the distance to12

the closest background point. For either d4, d8, any given chamfer distance or13

the Euclidean distance dE, the distance transform can be computed in linear14

time with respect to the number of grid points [18,4,7,11]. For the simple dis-15

tances d4 and d8, MA is extracted from DT by picking the local maxima in16

DT [18,4,16].17

Polynomial time algorithms exist to extract MA from DT in the case of the18

chamfer norms or the Euclidean distance [16,17]. A Reduced Medial Axis19

(RMA) is presented in [8]: it is a reversible subset of the medial axis, that20

can be computed in linear time. Despite the fact that the medial axis exactly21

describes the shape S, it may not be a set with minimum cardinality of balls22

covering S: indeed, a maximal disk of the medial axis covered by a union of23

maximals disks is not necessary for the reconstruction of S.24

In this article, we investigate the minimum medial axis problem that aims at25

defining a set of maximal balls with minimum cardinality which cover S. This26

problem has already been addressed with algorithms that experimentally filter27

the medial axis [5,6,15,6,13].28

In section 2 we first detail some preliminaries and the fundamental definitions29

used if the rest of the paper. Section 3 presents the proof that the minimum30

medial axis problem is NP-hard. Finally, we compare the results given a greedy31

algorithm with the approximation algorithm proposed in [15] (Section 4).32

2 Preliminaries and Related Results33

First of all, we remind definitions related to the discrete medial axis. Given a34

metric d, a (open) ball B of radius r and center p is the set of grid points q35

such that d(p, q) < r. In the following, we consider the Euclidean metric and36

extension of the results to other metric (such as Chamfer masks for example)37

will be discussed in section 5.38

Definition 1 (Maximal ball) A ball B is maximal in a discrete shape S ⊆39

Z
n if B ⊆ S and if B is not entirely covered by another ball contained in S.40

Based on this definition, the medial axis is given by:41

Definition 2 (Medial axis) The medial axis of a shape S ⊆ Z
n is the set42

of all maximal balls in S.43

For the rest of the paper, we focus on the dimension 2. By definition, the medial44

axis of a shape S is a reversible encoding of S. Indeed given the centers and45

the radii associated to the medial axis balls, one can reconstruct entirely the46
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input shape S (this process is called the Reverse Distance Transformation47

[18,3,4,19,8]).48

However, this representation is not minimum in the number of balls as illus-49

trated in Figure 1: the set of balls with highlighted centers in the left shape50

corresponds to the medial axis given by Definition 2. However, if we consider51

the subset of the medial axis depicted in the right figure, we still have a re-52

versible description of the shape with less balls.53
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Fig. 1. (Left) highlighted points correspond to the centers of the medial axis balls
for the Euclidean metric (squared values), (right) a subset of the medial axis whose
balls still cover the entire shape.

In this paper, we address the problem of finding a subset of the medial axis54

that still covers all points of S.55

In computational geometry, covering a polygon with a minimum number of a56

specific shape (e.g. convex polygons, squares, rectangles,. . . ) usually leads to57

NP-complete or NP-hard problems [10]. From the literature, a related result58

proposed in [1] concerns the minimum decomposition of an orthogonal poly-59

gon into squares. At first sight, this result seems to be closely related to the60

minimum medial axis computation based on the d8 metric. However, in the61

discrete case, d8 balls are centered on grid points and thus have odd widths.62

Due to this specificity, results of [1] cannot be used neither for the d8 nor63

the Euclidean metrics. However, the proof given in the following sections is64

inspired by this related work.65

3 NP-hardness of the Minimum Medial Axis Problem66

Definition 3 (k-Medial Axis Problem (k-MA)) Given a discrete shape67

S ⊆ Z
2 of finite cardinality and a positive integer k, is it possible to cover68

exactly S with at most k (possibly overlapping) discrete maximal balls ?69

In order to prove the NP-hardness of k-MA, we use a polynomial reduction70

of the Planar-4 3-SAT problem. Let φ(V,C) be the boolean formula in Con-71

junctive Normal Form (CNF) consisting of a list C of clauses over a set V of72

variables. The formula-graph G(φ(V,C)) of a CNF formula φ(V,C) is the bi-73

partite graph in which each vertex is either a variable v ∈ V or a clause c ∈ C,74

and there is an edge between a variable v ∈ V and a clause c ∈ C if v occurs in75
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c. A Planar 3-SAT formula φ is a CNF formula for which the formula-graph76

G(φ) is planar and each clause is a 3-clause (i.e., a clause having exactly 377

literals).78

In the following, we prefer a reduction based on the Planar-4 3-SAT problem:79

an instance of this problem is an instance of Planar 3-SAT such that the degree80

of each vertex, in the formula-graph, associated to a variable is bounded by81

4. In other words, a variable may appear at most four times in the boolean82

formula.83

Definition 4 (Planar-4 3-SAT Problem) Given a Planar-4 3-SAT formula84

φ(V,C), does there exist a truth assignement of the variables in V which sat-85

isfies all the clauses in C ?86

Planar-4 3-SAT was shown to be NP-complete in [12].87

The reduction from any given Planar-4 3-SAT formula φ to an instance of88

k-MA consists in constructing a discrete shape S(φ) and finding an integer89

k(φ) in polynomial time such that φ is satisfiable if and only if S(φ) can be90

covered by k(φ) balls.91

3.1 Variables92

Let us first consider the geometrical interpretation of variables. Figure 293

presents a 4-connected discrete object, so called variable gadget in the fol-94

lowing, defined by the set of grid points below the horizontal dashed line. We95

call the extremities of the variable gadget, the eight vertical parts of the gad-96

get of width 3, numbered on Figure 2. These extremities are used to plug the97

“wires” that represent the edges of a formula-graph.98

Any minimum covering of this object has 72 balls. None of these minimum99

coverings allow protrusions from both one odd extremity and one even extrem-100

ity. However, one minimum covering allows balls to protrude out at all odd101

extremities by one row of grid points (Figure 2 top); while another minimum102

covering allows balls to protrude out at all even extremities also by one row103

of grid points (Figure 2 bottom). These two coverings mimic the two possible104

truth assignements of a variable. Without loss of generality, the first covering105

will correspond to a True assignment, and the other one to a False assignment106

of the variable.107

If the gadget represents the variable x, then each odd extremity carries the108

literal x, while each even extremity carries the literal x̄. A protrusion from a109

variable extremity can be viewed as a signal ’True’ sent from the variable to110

the clauses. Thus, wires which are used to connect variables and clauses are111
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plugged on odd extremities for positive literals and on even extremities for112

negative literals.113

1

1 2

2

8

8

Fig. 2. Two minimum coverings of a variable gadget (from left to right) x, x̄, x̄; a
True assignement of the variable x (top), and False assignement (bottom).

Note that this object and its decomposition ares invariant under rotation of114

angle π

2
. Furthermore, the extremities are centered on abscissas with constant115

values modulo 6 (represented by vertical lines of Figure 2). This modulo op-116

eration on the coordinates will be used to align the objects and to connect117

them to each other.118

3.2 Wires119

In order to connect variables to clauses, we need wires that correspond to edges120

in the embedding of the formula-graph. A wire must be designed such that121

it carries the ’True’ signals (protrusions) and ’False’ signals (no protrusion)122

from variable extremities to clauses without altering the signal (see Fig. 3).123

In this case, we can define straight wires made of 3×N sets of grid points. If124

N ≡ 0 mod 3, then the signal sent at the left extremity of the wire will be125

propagated to the right extremity. Furthermore a wire can be bent at angle126

π

2
(see Fig. 3). In this case, two minimum decompositions still exist such that127
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if a ball protrudes from one extremity of the wire, then another ball also128

protrudes out at the other extremity. Furthermore, straight wires and bends129

can be designed such that the alignment of the abscissa and ordinates of the130

shape is preserved (i.e. is constant modulo 3).131

Now, if we consider a complex wire with straight parts and bends, the signals132

are propagated during the construction of the minimum covering from on133

extremity to the other one (proof by induction on the number of bends and134

straight parts).135

Fig. 3. Wires carrying ’True’ or ’False’ signals - from left to right: a straight wire,
a simple bend, a shift.

3.3 Clauses136

Finally, we introduce the clause gadget, a component that geometrically sim-137

ulates a clause. This gadget is the set of grid points at the right of the vertical138

dashed line in Fig.4. Note that this gadget is not symmetrical because we shall139

not allow an open ball of radius
√

8 to be placed in its center.140

Independently covering this gadget requires at least 10 balls (see Fig.4, left).141

However, if one open ball of radius 2 is protruding from some wire by one142

column, carrying a ’True’ signal (e.g. the upper one in Fig.4, middle), then143

minimaly covering the remainder of the gadget can be done with only 9 balls.144

Similarly, if two or three wires are carrying a protrusion, a minimum covering145

of the remainder of the clause gadget has also cardinality 9. The case of three146

protrusions appears on the right in Fig.4, showing that even here 9 balls are147

still necessary to finish covering the gadget. Note that in general there may be148

several possible minimum coverings of the gadget, although only one is drawn149

here in each case.150

According to these observations, it follows that the clause gadget can be min-151

imaly covered by 10 balls if and only if no input protrusion is observed, in152

other words if and only if the corresponding clause is not satisfied. Otherwise,153

if at least one literal of the clause is set to ’True’ (protrusion), meaning that154

the clause is satisfied, then only 9 balls are necessary to cover the remainder155

of the gadget.156
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Fig. 4. Three minimum coverings of a clause gadget, depending on the following in-
put signals (from left to right): False-False-False, True-False-False, True-True-True.

3.4 Overall Construction and Proof157

Given a Planar-4 3-SAT formula φ(V,C), we are now ready to construct S(φ)158

by drawing a variable gadget for each variable vertex in G(φ), a clause gadget159

for each clause vertex in G(φ), and drawing wires corresponding to the edges160

in G(φ), thus linking each literal (the extremity of a variable gadget) to every161

clause in which it occurs.162

N

S

EW N EWS

Fig. 5. Illustration of the transformation of a vertex of the planar orthogonal embe-
ding into a variable gadget. In this case, the associated variable appears four times
in φ, three times as a positive literal, and once as a negative literal.

Lemma 1 The shape S(φ) can be computed in polynomial time in the size of163

φ.164

PROOF. We know from [20] that every planar graph with n vertices (with165

degree ≤ 4) can be embedded in a rectilinear grid in polynomial time and166
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space. This algorithm produces an orthogonal drawing such that edges are167

intersection free 4-connected discrete curves. Since our variable gadgets and168

clause gadgets have a constant size and our wires have constant width, and169

since φ is an instance of Planar-4 3-SAT , it is clear that the construction of170

S(φ) can also be done in polynomial time and space. For example, Figure 5171

illustrates how to bend the orthogonal drawing edges in order to connect them172

to our variable gadget extremities. �173

In the following, let w(φ) denote the minimum number of balls necessary to174

cover the wires of S(φ), and let k(φ(V,C)) = 72.|V | + w(φ) + 9.|C|.175

Lemma 2 If the formula φ is satisfiable, then there exists a covering of S(φ)176

with k(φ) maximal balls.177

PROOF. Given a truth assignment T of the variables V of φ such that178

φ is satisfiable, the following algorithm builds a covering of S(φ) with k(φ)179

maximal balls:180

• cover the variable gadgets according to the truth assignment T (’True’ or181

’False’ value for each variable): each one requires 72 balls allowing protru-182

sions in each extremity carrying a ’True’ assignement (Section 3.1);183

• cover the wires: since the grid embedding of G(φ) is computed in polynomial184

time, so is w(φ); the protrusions from the extremities of the variables are185

transmitted to the clause gadgets;186

• cover the clause gadgets: since φ is satisfiable, at least one input wire of187

each clause gadget carries a protrusion which implies that 9 maximal balls188

are enough to cover each clause gadgets (Section 3.3).189

Altogether, 72.|V | + w(φ) + 9.|C| = k(φ) maximal balls are used in this cov-190

ering. �191

Lemma 3 If there exist a covering of S(φ) with k(φ) maximal balls, then the192

formula φ is satisfiable.193

PROOF. Suppose that there exists covering of S(φ) with k(φ) maximal balls.194

By construction, 72.|V | plus w(φ) maximal balls are required to cover the |V |195

variable gadgets and the wires of S(φ). This leaves us with k(φ) − 72.|V | −196

w(φ) = 9.|C| maximal balls to cover the clause gadgets. Since there are |C|197

clause gadgets, each one is totally covered with 9 maximal balls in the covering,198

which is possible only if at least one input wire of each clause gadget carries a199

protrusion (Section 3.3). By construction, this means that the clauses are all200

satisfied, and in turn that φ is satisfiable. �201
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According to lemmas 2 and 3, there exists a truth assignement of the variables202

in V which satisfies all the clauses in φ if and only if there exists a covering of203

S(φ) of cardinality k(φ) = 72.|V |+w(φ)+9.|C|. Thus, if any instance of the k-204

Medial Axis Problem could be solved in polynomial time, then we would have205

a polynomial time algorithm to solve the Planar-4 3-SAT Problem. Therefore,206

the k-MA Problem is NP-hard. It is also clear that k-MA problem is in NP,207

since we can easily verify in polynomial time that a set of k balls covers a208

discrete shape S. Consequently, we have the following theorem:209

Theorem 4 k-MA is an NP-complete problem.210

As a consequence, finding a minimum subset of the medial axis of a shape S,211

which still covers S is NP-hard.212

4 Approximation Algorithms and Heuristics213

Even if the theoretical problem is NP-hard, approximation and heuristics can214

be designed to reduce the cardinality of the discrete medial axis while keeping215

the reversibility. In the literature, several authors have discussed about sim-216

plification techniques to reduce the cardinality of the medial axis [5,15,6,13].217

Dealing with NP-hard problems, we usually want to have bounded heuristics218

in the sense that the results given by the approximation algorithm will always219

be at a given distance from the optimal solution.220

In the following, we first detail the simplification algorithm proposed by Rag-221

nemalm and Borgefors [15]. Then, we compare their result with a simple but222

bounded heuristic derived from the MinSetCover problem.223

4.1 Ragnemalm and Borgefors Simplification Algorithm224

The algorithm is quite simple but provide interesting results: we first construct225

a covering map in which we count for each discrete point p, the number of226

discrete balls containing p. Basically, if a ball B contains a grid point p with a227

value of 1, then B is necessary to maintain the reconstruction and B belongs228

to any minimum medial axis. Based on this idea, the approximation algorithm229

can be sketched as follows: let F = MA(S), for each ball B in F ordered by230

increasing radii, if all grid points of B have a value greater than or equal to 2,231

we remove B from F and decrease by one each grid point of B in the covering232

map.233

The resulting set F̂ may be such that |F̂ | < |F|. In [15], the author illus-234

trates the reduction rates with several shapes in dimension 2 but no formal235
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simplification rate is given in the general case. In our experiments, instead of236

considering the medial axis of S, we set F = RMA(S) [8].237

If F = {Bi, i = 1 . . . k}, the overall computational cost of this algorithm is238

O(
∑

k

i=1
|Bi| + k log k).239

4.2 Greedy Algorithm: a Bounded Heuristic240

To have a bounded heuristic, let us consider another problem called the Min-241

SetCover problem [9]: an instance (S,F) of the MinSetCover consists242

of a finite set S and a family F of subsets of S, such that every element of243

S belongs to at least one subset of F . The problem is to find the family of244

subsets F∗ with minimum cardinality such that F∗ still covers S. From the245

optimization MinSetCover problem, we can define the following decision246

problem: can we cover S with a family F∗ such that |F∗| ≤ k for a given k247

? This decision problem is known to be NP-complete [9]. Replacing S by a248

discrete object and F by the medial axis, we have a specific instance of the249

MinSetCover problem.250

The greedy approximation algorithm is presented in 1. Even if this algorithm
is simple, it provides a bounded approximation: if we denote H(d) =

∑
d

i=1

1

i
,

HF = H(max |S|, S ∈ F) and F∗ the minimum medial axis, the greedy algo-
rithm produces a set F̂ such that:

|F̂ | ≤ HF · |F∗|

Algorithm 1: Greedy algorithm for MinSetCover.

Data: S and F
Result: the approximated solution F̂
U = S;
F̂ = ∅;
while U 6= ∅ do

Select S ∈ F that maximizes |S ∩ U |;
U = U − S;
F̂ = F̂ ∪ {S};

return F̂251
252

If we consider S as a discrete object and F given by the medial axis extraction,253

the medial axis simplification problem is a sub-problem of MinSetCover.254

Hence, Algorithm 1 provides a bounded heuristic for the medial axis reduction.255

Even if the bound is large according to experiments (see Section 4.3), this is at256

the time of writing the only known approximation algorithm for the minimum257

10



medial axis, for which we have an approximation factor. Despite the fact that258

Algorithm 1 has a computational cost in O(|S||F|min(|S|, |F|)), a linear in259

time algorithm can be designed, i.e. in O(
∑

k

i=1
|Bi|). Yet, the implementation260

requires a bit more complicated data structure because instead of a covering261

map with numbers, we need to store a list of MA balls for each grid point.262

4.3 Experiments263

In Figure 6, we present some experiments of both approximation algorithms.264

Two observations can be addressed: first, the reduction rate is very interest-265

ing since almost half of the medial axis balls can be removed. Secondly, the266

computational time of both algorithms are almost similar.267

Despite the fact that Ragnemalm and Borgefors’s algorithm gives slightly268

better results, the theoretical bound provided by the greedy algorithm makes269

this approach a bit more satisfactory.270

5 Discussion and Conclusion271

In this paper, we prove that finding the medial axis of minimum cardinality272

of a discrete shape is a NP-hard problem. To do so, we provide a polyno-273

mial reduction from the Planar-4 3-SAT problem to the minimum medial axis274

problem. We also experimentally compare the output given by the greedy275

approximation algorithm with existing simplification algorithms.276

In the proof, we have considered the Euclidean distance based medial axis.277

To derive a proof for the other metrics, new gadgets must be defined. Some278

cases are trivial, such as the d8 case for which only the variable gadget must279

be redefined (see Figure 7), others may be difficult but in our point, the result280

may be the same.281

Future works concern both the complexity of specific restrictions of the mini-282

mum medial axis problem, and the approximation algorithms. Concerning the283

theoretical part, the result we give induces the construction of very specific284

discrete shapes, whose genus depends on the number of cycles in the Planar-4285

3-SAT instance. Thus, an important question is whether k-MA is still NP-286

complete in the case of connected discrete shapes without holes. As regards287

approximation algorithms, experiments show that the results of the greedy ap-288

proximation algorithm are slightly worse than other existing algorithms. An289

important future work is to merge the two approaches to improve the results290

while keeping the bounded approximation.291
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Objet F = MA(S) F̂ Ragnemalm et al. F̂ Greedy

104 56 (-46%) [<0.01s] 66 (-36%) [< 0.01s]

1292 795 (-38%) [0.1s] 820 (-36%) [0.19s]

17238 6177 (-64%) [48.53s] 6553 (-62%) [57.79s]

Fig. 6. Experimental analysis of simplification algorithms:(from left to right) Dis-
crete 3-D objects, the discrete medial axis, simplification obtained by [15], simplifi-
cation obtained by the proposed greedy algorithm. The cardinality of the sets are
given below the figure with the reduction ratio (in percent) and the computational
time.

1 2

Fig. 7. Outline of a variable gadget for d8
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[6] G. Borgefors and I. Nyström. Efficient shape representation by minimizing the306

set of centers of maximal discs/spheres. Pattern Recognition Letters, 18:465–307

472, 1997.308

[7] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time euclidean distance309

transform algorithms. IEEE Transactions on Pattern Analysis and Machine310

Intelligence, 17(5):529–533, 1995.311

[8] D. Coeurjolly and A. Montanvert. Optimal separable algorithms to compute the312

reverse euclidean distance transformation and discrete medial axis in arbitrary313

dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence,314

29(3):437–448, mar 2007.315

[9] T. Cormen, C. Leiserson, and R. Rivest. Introduction à l’algorithmique. Dunod,316
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