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Abstract— A digital picture generally contains tens of thou-
sands of colors. Therefore, most image processing applications
first need to apply a color reduction scheme before performing
further sophisticated analysis operations such as segmentation.
While a lot of color reduction techniques exist in the literature,
they are mainly designed for image compression and are unfor-
tunately not suited for many image processing operations (e.g.
segmentation) as they tend to alter image color structure and dis-
tribution. In this paper, we propose a new color reduction scheme
(SICR), using probabilities and information theory elements to
balance between the information provided by the selected colors
and the necessity to accurately represent the selected colors. We
also advocate for the use of perceptually accurate metrics for
evaluation. Experimental results on a diversified dataset of images
selected from the internet show that our technique performs well
compared to other color reduction schemes.

I. INTRODUCTION

Nowadays, colour processing is a very important tool in
image processing and is widely used as a low level feature or
as decomposition tool through image segmentation. However
the huge number of colors involved in high resolution images
induce prohibitive computation costs which make color depth
reduction algorithms a necessity not only for compression but
also for image processing ([1]).

Various color reduction algorithms have been proposed in
the literature. While achieving good results, many of these
algorithms have been designed for compression purpose and
rather aim to optimize a global perceptual similarity between
an original color image and the compressed one. As such,
these techniques unfortunately either alter local color structure
of an image (as illustrated by the technique of halftoning)
or modify the original color palette too much, resulting in
inaccurate image approximation often harmful for further
image processing operations such as segmentation or image
content characterization.

In the field of content-based image indexing, we are rather
interested by the extraction of various descriptors for image
content characterization. Therefore, low level features ex-
tracted by image processing techniques from a quantized color
image are expected to be as accurate as possible compared to
the original image. For this purpose, a color reduction scheme
has to respect as faithfully as possible color distribution of the
original image while preserving local color structure.

In this paper, we propose a new color reduction scheme,
named SICR (Self Information color reduction), a two step
color quantization algorithm, which tries to provide the most
informative color quantization by balancing color information
and color representativity. We wanted an algorithm that quan-
tized colors while preserving color dynamics (extreme color
variations within an image) because this seemed an interesting
feature of an image. Existing algorithms tend to damp this
information as they seek to minimize mean square error. Our
algorithm aims at keeping this information and also avoid cre-
ating colors within the quantized image. Experimental results
on a diversified dataset of images selected from the Internet
show that our technique still performs well when compared to
other color reduction schemes when evaluated according using
standard similarity measurements (Mean Square Error).

The rest of this paper is organized as follows: section 2
overviews related work in the literature. Section 3 studies color
spaces, discusses about color similarity metrics and about how
to evaluate color similarity quality of a color quantization
scheme. Section 4 details our two step color quantization
scheme. Section 5 discusses and compares experimental re-
sults. Section 6 contains conclusion and gives some hints on
future work.

II. RELATED WORK

Many color quantization techniques have been proposed in
the litterature ([1], [2]), mainly for compression purpose. The
process of halftoning (or dithering) typically illustrates this: [3]
proposes an efficient technique for color quantization based on
the priciple of dithering. While the resulting image preserves
a good global perceptual similarity as compared to original
color image, the technique deeply alters local color structures
and hinders further image processing operations, for instance
segmentation.

In [2], two classes of color quantization algorithms are
studied. The first class contains methods based on splitting
algorithms which are generally quite fast but tend to introduce
substantial alteration on original color palette. The well known
median cut algorithm (Heckbert, 1982) and the variance based
algorithm (Wan, 1990) are cited examples of this approach.
The Principal Analysis Algorithm (Wu, 1992 [4]) is a more



advanced algorithm of this category, which obtains interesting
results and will be used for comparison in this paper. A
recent work proposed in [5] aiming at a better processing
time by sacrificing some accuracy can also be classified in
this category.

The second class consists of clustering based methods with,
for instance, the commonly used K-Means as well as Fuzzy
C Means. It is, however, well known that these techniques
are very sensitive to initialization. Another problem of most
clustering approaches is that algorithms repeatedly compute
distances between colors as well as between colors and clus-
ters, resulting in polynomial complexity which proves taxing
with large data sets. Unfortunately, color reduction scheme is
precisely needed and applied to images usually having with
40 000 to 80 000 colors. Thus, a preliminary color reduction
step may be necessary prior to these clustering based color
quantization methods.

More recently, unsupervised clustering methods (mostly
Self Organizing Maps) have become incrasingly popular as
they produce good results using common evaluation tech-
niques and allow the use of spatial constraints which also
tend to produce visually good results. For instance, [6] and
[7] propose to integrate local color features and rely on unsu-
pervised learning to extract optimal color prototypes. Classes
are then handled by a split and merge process. The inclusion
of spatial features brings visually very good results. While the
implementations proposed in [6] and [7] significantly improve
computational efficiency as compared to other clustering based
approaches, the resulting algorithm remains quite complex.

In our work, we propose a new simple and efficient color
reduction scheme which falls in none of these two categories.
Our color reduction scheme proceeds in two steps. Firstly,
image color space is divided into cubes of perceptually identi-
cal colors. Secondly we iteratively select the most appropriate
colors according to a criterion mixing color population and
color information.

III. COLOR SPACES AND METRICS, QUALITY
ASSESSMENT

Many color spaces and metrics are used in the literature
for color quantization purpose. The basic idea is that we
should choose a color space and an appropriate metric which
would avoid merging dissimilar colors or separating percep-
tually close colors. In this section, we discuss and compare
various color spaces in order to set the most appropriate
color space for our color reduction scheme. We will study the
most widespread color metrics and more specific perceptually
accurate metrics within their respective color spaces, we also
emphasize distortion between perceptual color similarity and
distances produced by classical metrics and then propose the
use of a perceptually accurate color similarity metrics for Lab
color space usually used in textile industry.

A. Color spaces

It is well known that RGB color space is far from perceptual
homogeneity and, as such, its quantization produces perceptu-

ally redundant bins and leaves perceptual holes. Therefore,
any ordinary distance function defined in this space will
be unsatisfactory. The HSL, color space shows much better
results for ordinary distances. Its was designed to be much
more intuitive and a very interesting point is that, as stated
in [8], it is easier to perform channel specific processing
(either application specific or for correcting color distortions).
For example, lighting and shading artifacts will typically be
addressed in the lighting channel. It, however, introduces
various flaws. First, the Lightness (or Brightness) is usually
calculated as L = (R + G + B) / 3, versus a more realistic
implementation that involves hue-dependent computations. It
also shows a new problem common to many color spaces:
a perceptually redundant representation of very dark or very
bright colors: indeed when a color becomes too dark or too
bright hue information gradually loses of its importance. This
is especially true in HSL color space where hue becomes
meaningless for low saturation values. HSL color space also
has a discontinuity for its cyclic Hue component (which has
to be handled by a specific distance measure as in [9]).

CIE color spaces provide better approximations of per-
ceptual homogeneity when using simple metrics: in many
applications those color spaces are used in combination with
Euclidean distance with satisfactory results. As we will see
later these color spaces are still subject to some distortions.

B. Color metrics and quantization assessment

There are a lot of various color similarity metrics used in
color processing, ranging from euclidean distance to custom
color metrics such as complex but perceptually more accurate
measures used in the textile industry such as CIE94, CMC,
etc. In color quantization, it is important to search appropri-
ate color space and metrics which translate as faithfully as
possible perceptual color similarity, i.e. that produce distances
avoiding inaccurate values which may lead to merging dissim-
ilar colors or to separating perceptually really close colors. It is
noteworthy that, whichever the color space, those errors tend to
happen either in quite specific conditions or in some occasional
cases. As such the choice of an appropriate color space
along with a measure respecting color perceptual simalarity
will sacrifice processing time to reduce the probability of
incoherent color reduction. Unfortunately, given the quantity
of color distance measures to be computed within a color
image, we need to make a tradeoff between processing speed
and the respect of perceptual similarity.

To assess computaional cost, we benchmarked several color
distances, including CIE94, CMC, CIE2000 and euclidean dis-
tance (as a reference), on a set of pixelwise distance measures
between two different images of the same size (both converted
to CIELab as previousely stated). This experiment reveals that
these distances have significant different computational time,
with CIE2000 being significantly slower than the two other
advanced metrics, which are themselves quite slower (about
twice as slow) than the euclidean distance. Therefore any
choice of an advanced color metrics has to be motivated either



by performance and/or by a guarantee that a limited number
of measurements will be taken.

On the other hand, as shown by a study on perceptual color
distances [10], the CMC distance formula, shows convincing
results on its property to better characterize perceptual color
similarity : it is only beaten by the much more complex
CIE2000 distance and as such represents an interesting com-
promise between accuracy and complexity. We will not go into
detail for the computation of this distance, we just mention the
base formula.

For two colors of respective CIELab components
(L1, a1, b1) and (L2, a2, b2), CMC metrics define three
components for the distance measure as follows:

Chroma difference:
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l and c are application dependent coefficients. Typical re-
spective values are 1:1 for perceptual thresholding and 2:1
for acceptability thresholding. The 4E equation basically
corresponds to an ellipsoid shape of equal perceptual distances
What this equation translates is the ellipsoidal shape of per-
ceptually homogeneous colors in CIELab color space. It is
noteworthy that 4H as well as the various weights take into
account the aforementioned problem of the pertinence of hue
information when chroma is close to 0 and/or in extreme light-
ing conditions which tend to occur in consumer photographs
where colors are frequently ”burnt” in overexposed pictures
and where underexposed pictures are also common).

We benchmarked several classical distance formulae, in-
cluding CieLab euclidean distance, RGB euclidean distance,
HSL eudlidean/angular distance by computing a lot of dis-
tances and seeking mismatches between visual observations
and obtained distances. While no distance achieves perfect
accuracy, mismatches were far more common and more sig-
nificant on RGB and HSL samples. Table 1 highlights the
better accuracy of the CMC distance over three classical color
distances on four significant cases among our tested samples.
The first and the second ones compare two completely dif-
ferent colors (blue and green) with respectively strong and
very low brightness. The third one illustrates the case with
two very similar colors normally perceived as teal. The last
case compares two poorly saturated but quite different colors
(a tone of brown and a tone of purple). Therefore, perception

TABLE I
SAMPLE TROUBLESOME COLOR COMPARISONS USING VARIOUS METRICS

color space/metrics 1 2 3 4

CIELab Euclidean distance : 11.6 13.5 9.1 14.0
RGB Euclidean distance : 10 13 29.5 11.4

HSL Euclidean/angular distance : 33.4 68.9 67.8 39.0
CMC distance : 14.1 17.6 5 22.7

1) Distance between light blue and light green (RGB 240/255/255 and
234/255/234)

2) Distance between dark blue and dark green (RGB 0/0/12 and 1/15/0)
3) Distance between two very close teal tones (RGB 0/128/128 and

64/128/128)
4) Distance between two different poorly saturated colors (RGB

131/114/131 and 140/113/108)

suggests that the first, second and fourth distances should be
significantly higher than the third. As we can see on this
table, CIELab euclidean distance respects expected results
but produces close values. RGB euclidean distance typically
fails on the third case (redundancy). The same drawback
is witnessed by HSL euclidean/angular distance. The CMC
distance performs adequately in these cases and, globally,
shows few (although sometimes noticeable) distortion between
human perception and measured distances.

It is to be noted that Lab color metrics are accurate in most
cases and as such our experiments concludes that cmc metrics
could be used for evaluation and offline tasks where we need
as much accuracy as possible while Lab remains an acceptable
choice when computation time is an issue.

Quantization evaluation will be performed using standard
MSE, we will provide MSE values for both euclidean Lab
and CMC metrics. We think that CMC distances make more
sense as a distance below 1 which represents a non-noticeable
difference will not really impact MSE as a Lab euclidean
distance would. While we encourage the use of CMC distance
for MSE we must not forget visual assessment as no matter
how perceptually accurate our metrics are, more than often we
found that the images that best looked like the original were
not always showing very good MSE scores. Sample images
comparisons (using images extracted from the Berkeley Image
Segmentation Dataset) are available at the author’s website at
http://liris.cnrs.fr/%7Eapujol/colorQuant.shtml

IV. OUR COLOR REDUCTION ALGORITHM

In this section we introduce our color quantization scheme,
SICR, which tries to agglomerate colors according to a cri-
terion balancing color population representativity and color
self information to cover color space as much as possible.
According to our scheme, we proceed in three steps. Firstly,
the color space is partitioned according to perceptual color
similarity. Then, we perform an intial selection of quantized
colors according to pixel population and distance between
color clusters. Finally, this selection of quantized colors is
further refined using remaining colors (this third step being
optional).



A. Color space partitioning

According to our previous discussion on color spaces and
similarity measures, an input color image to quantized is
first coverted into CieLab space. The first step of cour color
quantization scheme then consists of partitioning CieLab color
into cuboids which group all colors of an image into clusters.
The size of these cuboids was chosen so that all colors within
it are percetually similar. As previously stated, two colors in
CieLab are considered perceptually similar when their CMC
2:1 distance is lower than 1. We also note that lighting ranging
from 1 to 100 while a and b range approximately from -100
to 100, cuboid should be twice as accurate on the L scale.
Experiments revealed that the size of these cuboids should be
chosen smaller than 1.5 x 3 x 3 to ensure that any color within
the cuboid would have a distance below 1 when compared to
the centre of the cuboid. This size may be adapted for speed
vs accuracy balance.

Once this partitioning has been completed, we perform
a first color reduction by replacing each color in a given
cuboid by the centroid of all the colors in it, each color
being ponderated by its population within the original image.
We bechmarked this simple color reduction scheme on a 600
image dataset including images as diversified as possible (see
evaluation section for details). The average number of colors
within our data set was 55 759 and this pre-quantization step
produces an image with an average of 5 973 colors and an
average CMC distance of 0.816. Therefore while keeping color
similarities below a perceptual threshold of 1, an average color
reduction rate of 89% is achieved by this simple color space
partitioning.

B. Representative color slection

This reduced set of colors is still too important for many im-
age processing applications. In our color quantization scheme,
we therefore further reduce it by a selection of representative
colors according to a balanced criterion of population and
color information.

The basic idea is to iteratively select the most representative
colors until we reach a chosen number of quantized colors.
The inputs of this selection process are all the color centroids
along with the population associated with each color cuboid
from the previous step. The first quantized color is then simply
chosen to be the color barycenter having the most population.
Now let C1, C2, ..., Ci-1 be the next (i-1)th selected colors. We
select the i-th color among the remaining color barycenters as
folows. We first compute a probability which is the population
associated to the barycenter divided by the total number of col-
ors within the image. We then compute color self-information
I(c) as per Shannon’s information theory: I(c) = −log(P2(c))
where P2 represents the probability of observing a similar
color within the selected color set. This both translates our aim
at preserving image dynamics as much as possible, as well as a
general strategy to avoid selecting highly probable but similar
colors. To define this similarity, we set a neigborhood in Lab
color space within which colors are considered similar. As we
first aim at validating our approach, we simply defined it as a

hard threshold. Colors are then evaluated through a combina-
tion of these two criterion. Various ways of combining them
were evaluated (simple linear combination, ...) and the best
results were obtained by emphasizing self information during
the first iterations and gradually giving more importance to
color probability, we thus obtain the following formula for
color evaluation:

α.e−
i
τ .

1

1−
i∑

j=0

P (cj)

.I(ci) + P (ci) (1)

Where i is the current iteration, P(c) represents the probability
of observing color c within the pre-quantized image and I(c)
is the self information of color as defined above. α and τ are
parameters.

C. Reduced color set refinement

When the appropriate colors are selected we may opt
to minimize the approximation error by using a clustering
alogrithm such as K Means or Fuzzy C-Means to refine the
position of barycenters. While offering a significative gain
regarding MSE, this approach shows two drawbacks: firstly
it is quite computationally intensive (though few iterations are
necessary to reach a good result), secondly it creates colors.
While the initial quantization phase also creates colors, the
approximation is bounded by the size of the cuboids.

D. Time complexity analysis

For quantizing an image containing p pixels into t target
colors, we proceed as described above. The first color parti-
tining step consists mainly of distrubuting pixels of the input
color images into predefined color cuboids, thus has a linear
complexity compared to p. This step produces c colors. The
second quantized color selection step selects the barycenter
representing the highest color probability which can actually
be done during the barycenter computation process. After that,
the selction of i-th quantized color mainly needs browsing un-
selected colors and computing the associated self information
which mean c - i oprations. Therefore the computation of all
the remaining colors takes (t+1).(c+c−t)

2 operations. The final
complexity of our color quantization scheme is therfore given
by (t+1).(c+c−t)

2 .

V. EXPERIMENTAL RESULTS AND EVALUATION

For comparison purpose, we benchmarked our color quan-
tization scheme and two other representative schemes on a
dataset of 600 images selected from the Berkeley image
segmentation dataset as well as a lot of various sources with
diversified exposure conditions. Furthermore, all these images
belong to different categories (cityscapes, forests, night pic-
tures, etc.), this results in very different color palettes and thus
tests the quantization process in many different configurations.



TABLE II
RESULTS OF FINAL COLOR QUANTIZATION ON TEST SET

Average MSE
109 colors 135 colors 162 colors

CMC euclidean CMC euclidean CMC euclidean
ACR 20.2 46.1 17.3 39.1 16.1 36.5

Wu’s quantization 27.6 67.7 24.6 60.5 22.7 55.7
K-Means Clustering 35.3 83.9 31.2 74.82 28.4 67.29

SICR 27.1 67.6 24.1 57.4 22.5 55.4

A. Color quantization results and accuracy evaluation

As initial evaluation revealed, state of the art methods
used for compression that include halftoning and other spatial
processes did not perform very well (as expected) and thus
are not included in the evaluation. The evaluation consists in
computing MSE between quantized image and each of the
600 original images using both CMC and euclidean distances
as a base for MSE. Table 3 presents the results on our
dataset along with those of two other well known methods:
Wu’s quantization[4] and adaptive color reduction ([6]). These
methods are all-around reference methods that perform very
well using MSE evaluation criterion in almost any situation.
We also show the results of a K-Means clustering approach
starting from a random selection among our pre-quantized
color set. Our method was evaluated with a refinement step
of 10 K-Means iterations. We note that our method per-
forms a little bit better than wu’s quantization although the
more complex ACR color reduction scheme achieves the
best MSE measures. It is also important to repeat that even
CMC measure, while quite accurate, is just an approach of
visual similarity. Visual samples can be found at the author’s
website (http://liris.cnrs.fr/%7Eapujol/colorQuant.shtml). We
may also note that improving MSE scores globally hurt image
dynamics (see website for illustrations).

B. Performance

The algorithm was implemented in C# without specifically
optimised code. It takes less than 1s to process a 51 000 color
480*320 image (with a single K-Means iteration for MSE opti-
mization). After collecting image colors, computation depends
only on color palette depth. Therefore, image size has only
indirect impact on processing time: the resulting increase in the
number of colors making agglomeration take a little bit more
time. It is also worth noticing that this is the first part of the
algorithm that consumes the most time. When used, iterative
quantized color improvement using clustering also consumes
significant processing time. Average measurements show that
the first part consumes about 25% of the total processing time
(66% if iterative improvement is not used) while the iterative
improvement takes about 66% of the total processing time for
10 iterations. All performance experiments were conducted on
a laptop using a Pentium core 2 duo 2ghz processor with 2gb
of RAM. There was no dual core optimizations although this is
a definite possibility for speeding up color space partitioning,
color evaluation and other parallelizable tasks. As for visual

similarity assessment, we used calibrated CRT displays to be
as objective as possible.

VI. CONCLUSION

Given our task of image segmentation and characterization,
we adressed the image quantization problem with the intent
of minimizing the loss of color information during this step as
well as preserving image dynamics. We proposed an simple
two step algorithm using self-information to respect color
diversity and which can avoid creating new colors. Regard-
ing conventional MSE, this algorithm performs well, getting
results as good as Wu’s algorithm although not matching the
results of the more costly algorithms based on unsupervized
clustering.

As this initial work shown interesting results, future work
involves determining more advanced criterion to combine
color probability with color self information as well as refining
self information computation by adapting the neighborhood
size to the image color palette and improving computational
efficiency using optimized c++ code as well as implementing
parallelization.
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