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Abstract— Recent studies on wireless sensor networks (WSN)
have shown that the duration of contacts and inter-contacts are
power law distributed. While this is a strong property of these
networks, we will show that this is not sufficient to describe
properly the dynamics of sensor networks. We will present some
coupled arguments from data mining, random processes and
graph theory to describe more accurately the dynamics with
the use of a random model to show the limits of an approach
limited to power law contact durations.

I. I NTRODUCTION

Mobile devices equipped with wireless capabilities, which
enable new communication services, have encountered a fan-
tastic growth in the last few years. Advances and miniaturiza-
tion of micro-electronic devices have pushed the development
of new fields of applications for wireless networks. The
increasing popularity of a wide range of wireless devices
allows new paradigms and application classes.

Scientific research has massed worldwide around these new
challenges presented by multi hop wireless networks. A broad
spectrum of topics is under investigation. It covers research
in pure ad hoc networks, in hybrid wireless ad hoc networks,
in wireless sensor networks (WSN), in SISes (spontaneous
information systems) and in DTNs (delay-tolerant networks).
A common characteristic of this large range of wireless
networks is that intermittent connectivity is the norm due to
environmental dynamics and the intentional duty cycling of
wireless nodes. However, despite several years of intensive
research, a gap remains in terms of experimental aspects of in
situ dynamic networks.

In such ambient context where nodes will be spread around
in the environment and/or on each user, it becomes possible
to route data on such network based on pairwise contacts
between devices/users. Communication services based on such
network, called also Delay Tolerant Networks (DTN), will
deeply rely on the mobility and on the characteristics of the
underlying networks. It appears crucial to better understand
the intrinsic characteristics of such dynamic radio networks;
to be able to analyze and model interactions between individ-
uals/devices, in order to propose secure methods and protocols
suitable for this context.

Recently, Chaintrauet al. provide data traces of pairwise
contacts collected during the Infocom 2005 conference. From
this experimental approach their analysis shows long tailed
distribution for the inter contact time (time between two
transfer opportunities for the same pair of devices) and they
claim that “inter contact time distribution can be compared
to the one of power law”. As stated in [1], one can mark the
popularity of power law in 1999. Several papers [2]–[5] appear
in leading journals (Nature, Science) and report independently
that the distribution of degrees in “real” graph (WWW, Internet
Topology) seems to follow a power law: the frequency of
nodes/web pages with connectivityk falls off ask−α.

If we agree on the fact that studying the dynamics and
evolution of large-scale dynamic networks is a fundamental
and difficult, but promising problem, one may have some
doubts about the generality of scale free networks and that
“ [...] nature has some universal organizational principlesthat
might finally allow us to formulate a general theory of complex
systems” [6]. More precisely, finding a power law for some
network characteristic distribution is not so surprising and
what do power law distribution really signify? One should
keep in mind that high variability does not necessarily imply
power law. Moreover, characterizing a power law behavior is
done by inferring a fitting curve on a log-log plot. It appears
that various kind of data can be approximated by drawing
straight lines on such log-log scale plots.

The main purpose of this paper is to demonstrate that the
so called power-law argument is not the ultimate one and that
it is worthy to study and analyze dynamic networks under
several points of view in order to extract their characteristics
and behaviors. As stated above, power-law are “quite” easy
to generate, that’s why we can find them “everywhere” and
finding such scale free networks does not imply any deep
or fundamental knowledge on the intrinsic structure of the
network. A main contribution of this paper is that in order
to extract knowledge on dynamic networks, we introduce and
present some coupled arguments from data mining, random
processes and graph theory to describe more accurately the
dynamics with the use of a random model. We show the
limits of an approach limited to a power-law contact duration.



We also emphasis the need of addressing interdisciplinary
issues since dynamic networks are becoming a central point
of interest, not only for engineers, computer scientists but
also for other domains, such as sociology, epidemiology, and
statistical physics. While far from complete, our results stay
consistent with two complementary goals: a crucial need of
real data gathered from in situ test beds and fostering the
development of precise tools in order to analyze data to enable
theoretical models to validate the ongoing research conducted
in the various domains that touch on dynamic networks.

The remainder of this article is organized as follows. Sec-
tion II presents the three main approaches that we used in
this article: data mining, random processes and graph theory
and provides the basic background, including mathematical
definitions. Sections III and IV are dedicated to network
dynamics. In section III we study the evolution of the net-
work by presenting the inter contact approach but we also
apply basic metrics from graph theory and random process.
Then, in section IV we introduce more complex metrics
based onMaximal Connected Subgraph (MCS) and on their
evolutions. This analysis is based on graph theory tools and
on a data mining approach that reveals to be very efficient
for this kind of computation and analysis. In the section V
we introduce a very simple random dynamical model for
dynamic networks having a power law in their inter contact
sequence. This models highlights the diversity of properties
that are needed to characterize dynamic networks. Our model
provides insight into existing notion of dynamic networks and
demonstrates that the structure and the dynamics are not a
direct consequence of the intra and inter contact durations. We
conclude in section VI that many open problems and works
remain, including the three fields considered in this article
(data mining, random processes and graph theory). We present
also future works related to gathering in situ data on a larger
scale in terms of the number of sensors deployed, the diversity
of the populations and the duration of the experiments.

A. Data

During the Infocom 2005 conference, Bluetooth sensors
have been distributed to a small set of participants which
were asked to keep the sensors with them continuously. These
sensors were able to detect and record the presence of others
Bluetooth devices in their radio range neighborhood and, even
if they succeed to detect various kind of Bluetooth devices
like laptop and others, the main objective was to detect the
proximity between sensors. These data and the way they have
been obtained is precisely described in [7]. Note also that
the sensors had no localization capability, therefore we cannot
have any information on the actual movements of individuals
carrying the sensors or on the proximity of two given sensors:
either they are near enough to “see” each other (from a pure
radio/communication layer point of view) or not.

The available data concern 41 sensors over a period of
nearly 3 days1. The data are precise at the second and, for

1254 151 seconds to be precise.

each second, a set of existing links is given. Note first that
it may happen that no link exist at a given time step, which
means that all 41 sensors are far from each others. In the
available data it may happen that a given sensoru had seen
another sensorv and thatv missedu. The data we are going
to use hereafter are similar to the original one except that as
soon as one link exists, the symmetric link also exists.

II. A PPROACHES

A. Data mining

A branch of data mining research area concerns the compu-
tation of set patterns by means of complete solvers. Following
the Agrawal et al. [8] seminal paper, it consists in defining the
shape of a priori interesting patterns by means of constraints,
some of them being sufficiently tight to drastically reduce the
search space and turn the computation to be feasible. Mannila
et al. [9] formally defined this task as computing the subset
of a languageL that satisfies a predicateq. L is a class of
sentences that expresses properties or defines subgroups of
the datar, and q is used for evaluating whether a sentence
φ ∈ L defines a potentially interesting subclass of the datar.
The task thus consists in computing the theory

T h(L, r, q) = {φ ∈ L such thatq(r, φ) is true}

Most frequently used patterns to built theory are frequent
itemsets (which are the first step to compute association
rules) and closed sets, also called formal concepts. Other
pattern types have been more recently defined like frequent
trees, frequent graphs or fault-tolerant frequent sets, but their
definitions are less established and give still rise to discussions.

In this paper, we will try to capture some properties of
the dynamic of the studied sensor network thanks to formal
concept computation. The datar are defined by a binary
relation between a set of objectsO (e.g. all possible point
to point links between sensors) and a set of propertiesP
(e.g.experiment time steps). This binary relation defines in the
present case at which time steps the links between sensors are
detected. Extracting formal concepts from this relation consists
in finding all ”natural” groups of properties and objects. Such
”natural” groups contain all objects that share a common
subset of properties, or all properties shared by a subset of
objects. A nice property on these groups is that there existsa
bijective function between the “natural” groups of objectsand
those of properties. This function and its inverse are forming a
Galois connection. We first briefly recall the Galois connection
definition, before explaining why such a property is useful as
well for pattern interpretation as for computation facilities.

Definition 1 (Galois connection):Let (A,⊆) and (B,⊆)
be two partially ordered sets. A Galois connection between
these partially ordered sets consists of two antitone (i.e. order-
reversing) functions,F : A → B and G : B →
A such that for alla ⊆ A and b ⊆ B, we have:b ⊆
F (a) if and only if a ⊆ G(b)

For the Galois connection associated to formal concepts,
A is the power set of objects (2O) ordered by set inclusion,
and B is the power set of properties (2P ) also ordered by



set inclusion.F is defined byF (X) = {y ∈ P : (x, y) ∈
r for all x ∈ X}. Similarly, for any subsetY of P, define
G(Y ) = {x ∈ O : (x, y) ∈ r for all y ∈ Y }. The codomain
of F contains only all the “natural” groups of properties,
whereas the codomain ofG contains only all the “natural”
groups of objects.

Property 1: A Galois connection satisfies the following
properties:

1) G ◦ F is extensive(i.e. ∀X ⊆ A, X ⊆ G(F (X)))
2) F andG are antitone (i.e.∀X ⊆ A, X ′ ⊆ A, if X ⊆ X ′

thenF (X ′) ⊆ F (X))
3) G ◦ F is monotone.
4) F ◦G◦F = F . This property implies thatG◦F is idem-

potent (i.e. ∀X ⊆ B, G(F (G(F (X)))) = G(F (X)))

Thus, the compositeG ◦ F is monotone, extensive and idem-
potent. This states thatG ◦ F is in fact a closure operator on
A. Dually, F ◦ G is also a closure operator onB.
Thus, a formal concept is a couple(X,Y ) containing both a
closed set of properties (Y = F ◦G(Y )) and its corresponding
natural object group (X = G(Y )). If the binary relation is
represented by a boolean matrix, a formal concept is thus
a maximal rectangle of true values, up to row and column
permutations.

Thanks to the Galois connection, formal concepts are em-
bedded by generalization/specialization relation: when the set
of objects (resp. the set of properties) increases, then its
associated set of properties (resp. set of objects) decreases. As
such it provides powerful characterization mechanisms, useful
during the interpretation phase of the patterns.

On the other hand, formal concepts can be computed by
enumerating sets of objects or sets of properties (we choose
the smallest dimension) with respect to the inclusion order,
starting from the empty set to the whole set. The functions
of the Galois connection are thus used to compute the closure
of the enumerated set and the associated component on the
other dimension. Several techniques have been proposed to
guarantee that each formal concept is uniquely generated [10].

Depending on the input relationr, the size of the formal
concept collection can be really huge, and thus it can be
useful to use minimal size constraints on both formal concepts
components to select the largest ones. These constraints are
actively pushed inside D-MINER [11], the formal concept
solver we will use in the following. To summarize, large
formal concept theoryT h(L, r, q) is defined by

r ⊆ O × P

L = {(X,Y ) such thatX ⊆ O andY ⊆ P}

q ≡ Y = F ◦ G(Y ) andX = G(Y ) and |X| ≥ σ1

and |Y | ≥ σ2

σ1 andσ2 being two integer thresholds used to select largest
formal concepts2.

2|X| denotes the size of the setX.

B. Random processes

Another approach for the analysis of evolving sensor net-
works is to use stochastic (or random) processes theory. The
basic idea is to consider that some quantities of a dynamic
graph (degree evolutions of a given node, contact and inter-
contact durations, number of connected components, etc.) are
produced by a non-deterministic process. This is obviouslynot
the case for the data we are analyzing, however we consider,
as is common usage, that the system is so complex that
deterministic chaos arise so that it is very hard to relate the raw
data to the physics of the system. Furthermore in the data that
we have used in the experiments, the physics of the system is
not fully known because the location of the nodes at each time
is not recorded. Stochastic analysis and modeling can help to
characterize the variability of some quantities extractedfrom
the evolving sensor network. This characterization can be used
for building dynamic graphs models and generating dynamic
graphs with similar stochastic properties for the evaluation
of the performance of various communication protocols for
instance.

Random (or stochastic) processes theory is well-
established [12]. LetS[k] be a sequence of data describing
the evolution of a quantity as a function of the timek (note
that k is not always corresponding to a physical time, it
can be simply an index), the objective is, from the detailed
analysis of the sequence, to find a random process model
accurately describing its statistics. To this end, one must
choose (manually or using model selection techniques) a
parametric stochastic process model and state-of the art
parameter estimation techniques can then be used in order to
find the best parameter values given the data sequenceS[k].

1) Power-law and scaling:Recent studies have shown
that the contact and inter-contact duration in dynamic sensor
networks are well modeled by a power-law [7], [13]. Such a
behavior is an important property since it results in a high
variability of durations which can have a strong impact on the
performances of communication protocols. Power-laws have
also been used by Barabasiet al. [3] for the definition
scale-freegraphs. A (static) graph is said to be scale-free if
the number of nodes having degreek falls off as k−α, thus
exhibiting a power-law behavior.

One should however pay attention to the definition of
a power-law behavior. There exists two definitions in the
literature, a stochastic and a non-stochastic one [14].

The non-stochastic definition of a power-law is as follows.
Let y = (y1, y2, . . . , yn) be a finite sequence ordered such that
y1 ≥ y2 . . . ≥ yn, y is said to follow apower lawor scaling
relationship withscaling indexα if: k = cy−α

k

This definition implies that the rankk versusy appears as
a line of slope−α when plotted in a log-log scale.

The stochastic definition of a power law behavior for a
random variableX is related to thetail of its distribution
function, it is actually also referred to as anheavy taileddistri-
bution. It is usually defined by the shape of thecomplementary



cumulative distribution function(CCDF) as follows:

P [X > x] ∼
x→∞

cx−α

Note that this implies that theprobability density function
(PDF) of the random variableX follows:

f(x) ∼
x→∞

cx−(α+1)

For α > 2, X has finite mean and variance and is not
considered asheavy tailed; for 1 < α < 2, X has finite mean
but infinite variance and for0 < α < 1, X has both infinite
mean and variance. This distribution thus characterizes random
variable with high variability, as opposed to low variability
which appears for instance with exponentially decaying tails.

Power-law distribution is also calledscaling distribution
because the conditional distributionP [X > x|X > w] is the
same as the original oneP [X > x], except for a change in
scale:

P [X > x|X > w] ∼
x→∞

c

w−α
x−α

This is opposed to exponential distribution, for which con-
ditioning implies a change of location rather than scale [14].

It appears that either the CCDF or the PDF can be used
in order to check for power-law in actual data. However, as
pointed out in [1], the CCDF provides a more discriminant
way of deciding whether some data follow or not a power law
and estimate the scaling indexα. Moreover, using the PDF
can lead to a misinterpretation of the results [14].

2) Dynamic graph analysis:In this work we are focusing
on characterizing thedynamicsof an evolving graph. Recent
works have considered the distribution of contact and inter-
contact durations [7] as a sufficient statistic to describe these
dynamics, claiming for a power-law behavior of both contact
and inter-contact durations. This is an interesting initial step,
however we argue this is not sufficient to fully describe the
evolution of a dynamic graph. One can for instance have a
look at the evolution of other quantities in time, such as the
degree evolution of each node, the count and size of connected
components and the degree distribution among nodes for
instance.

For the analysis of such evolutions, not only should be
considered the distribution of values (first order statistics),
but also thecovariance(second order statistics), describing
how values of the process are correlated at each possible time
lag. It is interesting to note that a power-law behavior can
be identified in the covariance as well, and is referred to as
long-range dependence[15]. We want here to emphasize the
fact that however different statistics can be modeled usingthe
same family of function (the power-law function family for
instance), the meaning and the interpretation of the results
may be much different.

C. Graph theory

A lot of recent studies in the field of complex networks have
been focused on the topological structure of real networks,
and have defined a lot of properties to describe properly these
networks, most of these properties being far beyond the scope

of this paper. Despite these advances, very few is known on
their dynamical properties, which would include both the study
of changes of state for nodes and links but also changes of the
underlying structure. The main reason to explain this lack of
studies comes from the absence of easily observable dynamical
networks. The data provided by [7], [13] which we are going to
study here, and other similar datasets, are therefore interesting
in themselves but could also lead to the definition of new
dynamical properties.

Among the very few studies centered on the study of the
dynamics of networks, let us cite [16], [17] which give some
insight on the evolution of regulatory networks by consider-
ing different organisms. In such networks, typical subgraphs
related to biological processes, for instance cycle of length 2
or feedforward loops, appear more often and can be tracked in
various species. The same kind of problems have been studied
in [18] to show the increase of typical subgraphs in networks
like the internet or semantic networks over time.

However, these studies are based on nearly static networks
where the number of time steps is extremely small, no more
than a few dozens. On the contrary, the evolution of imote
data is much more complex with thousands of modifications
per day.

Let us first recall basic properties of graphs that are going to
be used hereafter. Given a graphG = (V,E), let us denote by
n = |V | the number of nodes in the graph and bym = |E| the
number of links. The density ofG is defined as the number
of existing links over the number of possible links, that is
d = 2.m

n(n−1) . The degree of a nodeu ∈ V is the number of
neighbors it has in the graph.

A maximal connected subgraph ofG is a maximal subgraph
(in terms of nodes and links) ofG such that there exists
a path between any two nodes. Using this definition, two
connected sets of nodes but with different sets of links are
assumed to be different maximal connected subgraphs. In
a connected subgraph, the length of a path between two
nodesu and v is the number of links used to go fromu
to v following this path and the distance betweenu and v
is the length of a shortest path between these nodes. The
diameter (resp. average distance) of a connected subgraph is
the maximal (resp. average) distance between any two nodes
of the subgraph. These notions related to distance are defined
only for connected graphs.

From a wireless networking point of view, these properties
have a direct influence on the ability of the network to
transmit information from one node to another or to implement
algorithms such as flooding. The degree or number of 1-
neighbors is the number of nodes which can be reached with
only one radio message. The density can give some clues
on the number of conflicts one might face when sending
a message. Finally the diameter or the average distance is
the number of intermediaries that have to be used to send a
message in the worst case or on average.

In the following we will use these kind of properties, first
in the Section III where we will study the evolution of basic
properties such as the number of nodes, links or the average



over time. Second, in Section IV, we will study the connected
subgraphs mainly to evaluate the stability of the network over
time.

III. E VOLUTION OF THE NETWORK

In this section, we show experimental results obtained with
the data described in Section I-A with tools from theories of
graph and random processes.

A. Network evolution

The first basic dynamical properties concern the evolution
of classical static properties. Fig. 1(a) and 1(b) display the
evolution of the number of connected nodes and links over
time. First of all one can notice a typical night and day effect
which is clearly visible on the evolution of links. During the
night, the number of nodes and links are more stable, but
there is a high number of connected nodes: the network is
basically a set of disjoint links which certainly correspond to
roommates. Even if daytime exhibits more variations, one can
note that there is no timestep during which the network is
a single connected component and there is also no timestep
where all nodes are at least connected, even if they are not
part of a single component. The maximal value obtained is
34 nodes connected simultaneously, and it happens that all
these nodes belong to a same component, the remaining nodes
being isolated. The fact that there is always some isolated
nodes, around1/2 on average for daytime and around3/4 for
nighttime, implies that information can only be transmitted
to these nodes by taking the evolution of the network into
account.

Fig. 2(a) displays the same link values for the first day
of the conference only. Note that even during the day the
evolution of the number of links is not as flat as one could
have guessed for that kind of event. While specific periods, like
coffee breaks or lunches, can be identified by strong peaks in
the number of links - around time55000, 70000 and 90000
for the lunch breaks, and two smaller ones in the middle of
the morning and afternoon sessions - the network is far from
being static elsewhere. The main point to observe is that the
human behavior has a strong impact on the observed data and
that such results can hardly be generalised. For this kind of
data, random processes approaches give more precise insight
on the phenomenon and are discussed later on.

Fig. 2(b) is a scatter plot of the number of connected nodes
versus the number of links over the whole period: for each
time step where the network hask nodes andl links, a point
of coordinates(k, l) is placed. As one could have guessed,
this plot exhibit a positive correlation between nodes and
links, that is to say that the more nodes are connected, the
more links are present, since the minimum number of links
is one half the number of connected nodes and the maximal
number isk(k−1)/2. However the main point is to notice that
the variation of the number of links is nonconstant over the
number of nodes3 with a variation which is approximatively

3This nonconstant variation is named heteroscedasticity.

quadratic in the number of nodes. This means that, for a given
number of nodes, the network can have a large number of
possible configurations, some of which are very sparse and
some are more dense, up to around1/8 for the densier existing
configuration.

B. Random process modeling

Numerous of the graph properties evolutions shown in the
previous section (degree, connected nodes and links, etc.)
are good candidates for a random process based modeling.
This modeling can be used to extract information about the
data, and to enable the generation of artificial sequences with
statistical properties close to the ones of the original data. For
instance, as it will be explained in Section V, one can build
a dynamic graph generator from the modeling of a quantity
(the contact and inter-contact duration in our case).

A common feature of the evolutions shown in previous
section is that they exhibit a strong non stationarity, the
main cause for that being the different behavior between day
and night periods (see Fig. 1(b) for instance). This is bad
for (stationary) stochastic process fitting, and we should pay
attention to split the data into reasonably stationary parts
before fitting a stochastic process model to it. A simpleon/off
process can be used to model day and night periods alternation.

Another common and important characteristic of these evo-
lutions is that they exhibit high variability (see Fig. 2(b)for
instance). One way of describing this high variability is to
plot the CCDF in a log-log plot and check for a power law
behavior as explained in Section II-B. One can for instance
use this method to model the contact and inter-contact duration
distribution as reported in Fig. 3, which shows the contact and
inter-contact duration CCDF in a log-log scale. The straight
line behavior over a wide range of duration ([300 20000]
seconds for inter-contact duration and[100 30000] seconds
for inter-contact duration) indicates a power law behaviorof
which we can estimate the scaling indexα. The value ofα is
reported on Fig. 3. These observations are in agreement with
the ones reported in [7].

For the analysis of the evolution of a quantity (degree,
number of connected nodes and links, etc.), it might be
interesting to see the data as an accumulation process, and try
to analyze the differential sequence rather than the original
one. Classically, ifS[k] is the original data sequence, then
the (first order) differential sequence is defined as:DS [k] =
S[k + 1] − S[k].

As an example, Fig. 4(a), 4(b) and 4(c) show respectively
a part of the degree evolution (during a day period) of a
particular node, the CCDF and the covariance. The distribution
of the differential process is in this case a better information
for modeling, the major reason being that the degree gets
increased and decreased as links are created and destroyed.
It is therefore natural to model the differential sequence rather
than the original sequence itself.

The covariance is estimated using a wavelet-based tool [19]
and the plot is a spectral log-log representation of the covari-
ance, in the wavelet domain (j is the scale andSj is roughly
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the average of wavelet coefficients at scalej). The interested
reader is referred [19] for details. A power law behavior in
such a plot results in a straight line with slope directly linked
to the Hurst parameterH. Note that a power law behavior in
the covariance is much different than the one of a distribution,
it implies long range dependencerather than high variability.

From the plots in Fig. 4, we can build a simple model for the

degree evolution of each node. The estimated exponent for the
covariance (Fig. 4(c)) implies that the Hurst exponent is close
to the special value0.5, meaning that there is no long range
dependence. In this case a good approximation is to consider
that the differential sequence of the degree evolution is anIID
(Independent Identically Distributed) stochastic process, with
distribution function plotted in Fig. 4(b).
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These results are very much preliminary, and this method
should be extended to other quantities of the graph (connected
nodes and links, etc.).

IV. COMPONENTS

In this section we are going to deal with components which
are defined as sets of links. In the first part we will only
consider connected sets of links to see how connected groups
of individuals evolve over time, while the second part will be
dedicated to sets of links which appear frequently.

A. Maximal connected subgraphs

Recall that a maximal connected subgraph (MCS in the
following) is a maximal subgraph (in terms of nodes and links)
such that a path exists between every pair of nodes. Since
it is going to be widely used in the following, note that a
set of connected nodes does not define properly a connected
subgraph. The set of links is important too, therefore two
similar sets of nodes with different set of links are assumed
to be different subgraphs.

One cannot expect the network to be fully connected all the
time and results from Section III have exhibited differentsbe-
haviors for daytime, nighttime, breaks, lunches, etc. Fig.5(a)
and 5(b) display respectively the number of MCS at each time
step and the number of nodes of the biggest one. These figures
show that most of the time there are many MCS which in this
case might correspond to different sessions of the conference,
and that there is nearly no time step during which there is
only one MCS.

To go deeper in the study of these subgraphs, we have
computed all the MCS to obtain a set of14 696 MCS which
exist during at least one time step. Note first that if a MCSc
exists at timet and that a link is added to it at timet+1, then
the MCSc ceases to exist at timet+1. Therefore we are going
to consider in the following that MCS appear or disappear
even if there is only small modifications of the underlying
topology. A MCS is stable if and only if no node and no link
appears or disappears.

Fig. 6(a) displays the distribution of the size of the MCS for,
respectively, the number of nodes and links. On these figures,
one can note that there is a lot of MCS of all size in terms of
number of nodes while MCS with many links are fewer. This

can be understood together with the Fig. 6(b) which displays
a scatter plot of the size of the MCS. As for the Fig. 2(b)
one can observe a positive correlation between the number of
nodes and links in a MCS with a nonconstant variation of the
number of links. In this case, the variation factor is around
4.5 which means that for a given number of nodes, one can
expect a variation of density of the same factor.

The stability of these MCS is another crucial point: it is
important to know whether these MCS stay alive for a long
time and if some of them can disappear and reappear in the
future. In the following, the total lifetime of a MCSc is
defined as the number of timesteps for whichc exists, and
the number of apparitions ofc is the number of times this
MCS is nonpresent at a given time and present at the next
timestep. To give more precise results, one could have looked
at the distribution of presence durations rather than thesetwo
aggregated parameters. However, this would give a distribution
for each MCS which is harder to study.

Fig. 7(a) and 7(b) display the distribution of the total
lifetime and the number of apparitions of all MCS. The main
result from these curves is that there is a strong heterogeneity
for both parameters: while more than one half of the MCS
exist only during one time step, some of them exist during
nearly half of the whole time. Notice that the most frequent
MCS is just a couple of nodes which are certainly roommates
since they are connected and isolated from the rest of the
network every night. Again the MCS which appear and
disappear frequently are very small: couples or triples of
nodes.

To give a better insight on this last remark, Fig. 8(a) and 8(b)
are scatter plots for the total lifetime and number of apparitions
as a function of the number of nodes. While not displayed,
the same figures for the number of links give very similar
results. On both figures, the main results concern the absence
of stability of large MCS: there is no MCS with more than12
nodes which have a lifetime greater than100 seconds and there
is only17 MCS of size greater than8 with such a lifetime. The
more links a MCS contains the more potential modifications
may happen, which explains in part the curves. The reason is
that the probability of link creation in a MCS is as greater as
the number of nodes in that same MCS.
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Fig. 8(b) might let us think that some big MCS appear
regularly more than once. However, if we define that a MCS
reappears only if it has disappeared for more than five minutes
(resp. more than one hour), then only MCS of size strictly
lower than8 (resp.5) appear more than once. This means that
most MCS reappear very soon after they have disappeared.
The main reason is the following: suppose that a MCSc exists

at timet, then at timet+δ a link is added between two nodes
of c which creates MCSc′ and this link disappears at time
t + γ. Therefore the MCSc will be seen as absent for some
time. The flickering of this link might be due to the movement
of a node or to a failure in the measurement. Either ways, even
if both nodes are near, the protocol ignore this link which
cannot be used to transmit information.
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One may object that two MCSc andc′ which are the same
but for some links,i.e. which share the same nodes, might be
assumed as equal. This would lower the number of apparitions
of large MCS and increase their lifetime. However we believe
that every change in the topology might induce a change in a
given transmission protocol and therefore the notion of MCS
is more precise. Notice also that given a set of nodes there is
generally few, rarely more than10, MCS constructed on this
set of nodes.

The main conclusion of this subsection if that the dynamical
effects observed at a global scale are also present in large
MCS. These MCS have a very short lifespan and one cannot
expect that they might reappear in the future. On the contrary,
small MCS are generally more stable and have a probability
of reappearance much higher.

B. Data mining

In this section we apply Data Mining techniques that have
filtering capabilities on the collected data in order to identify
social groups and describe the dynamic of individuals among
these groups. The process we use is composed of two main
steps. We first gather information on groups of links over
time using connected and frequent subgraphs on the data. We
then filter the obtained subgraphs using a density criteria to
smooth the data and leverage most important and established
subgraphs. By doing this we are able to take into account the
time variability of the information gathered by the sensors.
The second step goes back to individuals that are present in the
resulting subgraphs. We merge the groups that concern similar
individuals and time steps to obtain social groups. Finally, we
built the dynamic trajectories of individuals by considering for
each individual the social groups he/she belongs to and order
them with respect to time to obtain the trajectories.

Frequent connected subgraphs as representation of groups:
The imote data are the result of experimental measurements
that leads to erroneous or incomplete data. The main problem
is that some edges flicker. To cope with this problem we
reduce the time dimension by considering that an edge exists
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if it appears at least ones during a 240 seconds period4. Such
period corresponds to a time step in the following.

We want to compute on these data all maximal connected
subgraphs that are sufficiently frequent (i.e. exist during at
least 10 time steps) and sufficiently significant (i.e. contain
at least 5 edges). We use the D-MINER solver [11] on the
resulting matrix that associates to each edge the time stepsfor
which it exists. D-MINER computes the whole collection of
formal concepts (maximal rectangles of 1 values up to row and
column permutation) in this boolean matrix. Frequency and
significance are represented using minimal size constraints of
5 on the edge set and 10 on the time step set. The resulting
66 328 subgraphs are then processed to extract their connected
component that are included in the formal concepts. We obtain
this way a set of 23 316 frequent connected subgraphs having
in average 7.66 vertices, 8.59 edges and appearing in 12.41
time steps.

Fig. 9 shows the distribution of the frequent connected
graphs with respect to their density and the number of vertices
(individuals) they cover. Most of the graphs only cover a

4This period corresponds to the sleep period between two successive hello
packets in the neighborhood discovery protocol.



small set of individuals with a low edge density. These two
criteria, when combined, show that the relationship between
individuals in those groups might be understood as a relation
chain instead of a strongly connected group.

For the next step of our study we only keep graphs that
are dense enough to be considered as social groups. The
filtering we apply using this simple criterion allows us to
only keep 281 graphs using a 0.8 density threshold. This size
reduction is mandatory if we want to consider relationships
among individuals.

Individual trajectories among the social groups:The first
step gives us 281 dense connected subgraphs, but they ac-
tually cover the same sets of vertices many times. Some of
these groups are similar to each other in that they differ by
only a few individuals, time steps, or are subsets of bigger
groups. Going back to the formal concepts theory described
in section II-A we can use the Galois connection principles to
detect inclusions of groups within the set we obtained. Indeed,
the Galois connection states that if two concepts(A,B) and
(C,D) are such thatA ⊆ C thenD ⊆ B.

As the connected graphs are dense, it is meaningful to
associate to each graph the set of vertices (individuals) it
covers. In the following we consider groups of individuals
associated to a time step set. We merge two such formal
concepts(A,B) and (C,D) if the set of vertices ofA is
included in the one ofC and the time steps ofB \ D are
close to a time step ofD. In our experiment the allowed time
distance used to merge two formal concepts is set to one time
unit (240s).
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Fig. 10 represents the 15 groups of vertices with respect to
time that have been obtained by applying the formal concept
merging procedure. The group number identifies a formal
concept while points on the time direction represents its time
step set. Fig. 11 represents the individual set component (i.e.
vertices in the graphs) of the formal concepts. These groups
can be considered as social groups.

The last step of our procedure is to go from formal concepts
back to individuals. The combination of Fig. 10 and 11 allows
us to derive trajectories of individuals among groups during
the experiment. We can follow the trajectory of individualsin
groups as presented on Fig. 12. Dashed boxes are individuals
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entering a group and edges are labeled by the individual
number when he/she goes from one group to another. For
example, individual 19 which enters group 13 at time step
1215 (given by Fig. 10) goes to group 9 before entering group
10.
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We have proposed in this section a way to use data mining
techniques to analyze dynamic graphs. These techniques use
exhaustive methods and algorithms but still require a supervi-
sor to fix several thresholds and parameters to drive the graph
structural exploration. Despite these manual interventions, the
proposed methods are used within a formal framework that
structures the data and offers some guarantees on the output.

V. RANDOM MODEL

In this section, we introduce a simple random dynamical
model which is aimed at showing the limits of considering
only inter and intra duration time. Our aim here is not to
use a complex or realistic model but mainly to give insights
on the structure and the dynamics of a contact network and
to show that the structure and the dynamics are not a direct
consequence of the intra and inter contact durations. Note also
that real contacts are constrained by the bidimensional aspect
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Fig. 13. Evolution of the number of links for the global model (left, a) and the link model (right, a).

which prevents some graph structures to appear, the model
used in the following is not: any subgraph can potentially
appear.

Following classical random models for static graph, such
as the configuration model [20], we propose the simplest
dynamical model possible with respect to the inter and intra
duration time distributions. These distributions are extracted
from the real data to obtain two distributions of durations.
Then, we will consider each link in turn, and for each of these
links we will generate a on/off sequence using the real intra
and inter contact duration with a total duration time similar
to the real one. Every duration is drawn independently from
previous durations and from other links.

Note that we mentioned the distributions used by this model.
There is at least two simple ways to generate a random
dynamic graph, each relying on a distribution for both intra
and inter contact durations. Letd+

(u,v) be the distribution of
contact duration for the link(u, v), that is to say thatd+

(u,v)(k)
is the probability that a duration time last fork time units. Let
also d+ be the distribution for all links in the graph, which
is in some way an union ofd+

(u,v) for all links (u, v). In a
similar way,d−(u,v) andd− are the distributions of inter contact
durations for links or the whole graph.

Using these definitions, the on/off sequence for a given link
(u, v) generated by the model can follow either a combination
of d+

(u,v) and d−(u,v), or a combination ofd+ and d−. In the
first case, the intrinsic nature of each link is kept by the model.
For instance if one link is always off in reality, it will always
be off with the model. Therefore a random graph generated
by the model is just, for each link, a permutation of on and
off periods of the original periods for this link. In the last
case the intrinsic nature of each link is lost since one uses
only one global distribution for the whole network: every link
has a on/off sequence drawn from the same sequence. In the
following we will refer to the first model as the link one, while
the second will be referred as the global one.

A trade-off, but more complex, approach would be to
consider distribution for a given node. One idea would be
to defined+

u to be the distribution of contact duration for all

links which are ending atu. However the on/off sequence for
a link (u, v) would be constructed from a combination ofd+

u ,
d+

v , d−u andd−v in way to be defined.
For both link and global models, a random dynamic graph

generated using these model gives, for each time step, a
vision of the contact graph. Note also that even if we will
use this model with the experimental parameters (number
of nodes, distributions of durations and total duration) there
is no restriction on these parameters which means that this
model can be used as a basic comparison tool for any kind of
experimentation.

In the following, we will compare the results from the
previous sections with similar experiments made on random
dynamical graphs with the same size, first for basic properties
and then using connected components obtained with both link
and global models.

A. Basic properties

Fig. 13(a) and 13(b) detail the evolution of the number of
links for both models. These models present a strong peak of
links at the beginning only for the global model and at both
ends for the link model. This comes from the random nature
of these models. While both models and the real data have
nearly the same inter contacts average duration, the repartition
is clearly not the same over the whole interval, see Fig. 16. In
real data, the average inter contact duration at the beginning or
at the end of the experiment is three to five times greater than
the average over the whole period. On the contrary, for the link
model for instance, the first and last values are much lower
than on the real data and not so far from the average value,
therefore there is a lot of links present at the beginning or at
the end in the random networks until some of them disappear
for a long time.

This could be seen as a drawback, however it reveals
the nature of simple random models which are not able to
capture such specific behaviors such a daytime/nighttime. In
the following this specific structure will have some effects
which can clearly be identified. However, note that our goal is
to show that much work have to be done on the analysis of the
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real global link
first 27818 10886 16634
last 50479 46338 17219

average 10712 9035 10712

Fig. 16. Inter contact durations of the real data compared to global and
link models. The first line display the average value of the first inter-contact
duration for all links, the second line the average value forthe last inter
contact, the last line the average inter contact value on thewhole period.

dynamics of the such networks to have a better understanding
of these dynamics and maybe propose better models.

B. Degrees

Fig. 14(a) and 14(b) show respectively the degree evolution
of a particular node in a simulation of each type of dynamic
graph introduced in Section V (global model and link model).

When compared to Fig. 4(a), we can see that the variability
of the degree evolution seems to be much lower in the
simulation than in the original data. In order to show evidence
for that, Fig. 14(a) shows the probability distribution function
of the differential sequences for different simulations and the
original data. The distribution for all random dynamic graph
simulations is similar, but rather different than that of the
original data.

This shows that a random graph model based on contact and
inter-contact durations do not manage to reproduce accurately

the variability of the degree evolution.

C. Connected components

In this section, we are going to concentrate on the global
model only since both models present very similar behaviors.
In order to avoid displaying more figures, a number of ex-
periments have been made to show that the models behave in
many ways like the original data:

• the number of distinct MCS for the real data and both
models are very near;

• the distribution of the lifetime and number of apparitions
of MCS also have a very similar shape as what can be
observed on Fig. 7(a) and 7(b);

• the distribution of the lifetime and number of apparitions
of MCS as a function of their number of nodes (see
Fig. 8(a) and 8(b)) are also quite similar in the sense that
no large MCS have a long lifetime or a large number of
apparitions.

Concerning the last point, notice that the distributions of
the sizes of MCS are not similar for real data and models.
As it can be seen on Fig. 15(a) and 15(b), first of all there
is some MCS containing all the links while real data do not
contain any MCS of size greater than34, and there is quite
a large number of such complete MCS. However the most
important point concern the Fig. 15(b) which is a scatter plot
of the number of nodes versus the number of links. Compared



to Fig. 6(b) for the real data, it seems that, except for the few
largest MCS, all the other MCS have a number of links which
is nearly linear in the number of nodes. The few largest MCS
are generated at the beginning when there is many links in the
network.

The fundamental structure of the MCS obtained by the
models is therefore completely different in the sense that the
density is nearly always low in such MCS. Therefore at a
given time the real interaction network might be seen as a set
of very heterogeneous subnetworks in the sense of the size
but also of the density, while data obtained by the model only
capture the heterogeneity of size: at a given time, a random
network is almost a set of disjoint trees. This has in particular a
strong impact on the diameter (the maximal distance between
two nodes of a MCS) since random MCS have in average
a higher diameter and there exists some MCS with a much
higher diameter as what is encountered in real data.

VI. CONCLUSIONS

We do believe that in order to be able to derive efficient
algorithms and protocols for dynamic wireless networks, itis
mandatory to know the underlying networks, their character-
istics and how they evolve in time. Such basic knowledge
is fragile nowadays but we did learn thought preliminary
empirical studies and analytic approaches that real networks
are far from being purely random. First empirical studies
on real data where a first step but we show in this paper
that the intrinsic characteristics of dynamic wireless networks
cannot be totally captured by modelling only the inter and
intra contacts through a simple power law.

One main conclusion of our preliminary results shows
the intrinsically heterogeneous nature of maximal connected
subgraphs in real networks. It appears also that components
of individuals are playing a key role in the dynamics of the
underlying topology of the networks observed.

The second major result is that the combination of ap-
proaches used reveals to be promising and we will pursue
in this direction since both data mining and random processes
are a great help. We can push even further this argument in
the way that we need to address interdisciplinary issues, both
in the computer science domain but also in others branches:
sociology, epidemiology, and statistical physics.

Nevertheless, some points remains for future extension of
this works. Based on the dynamic structure discovered like
MCS, we are currently considering dissemination services for
dynamic WSN environments. The dynamic of the network is
clearly an issue that could affect the choice of the dissemina-
tion heuristic. The study of the latency and the way of limiting
message duplications should be studied in forthcoming works.

Finally, to complete our work and in order to take advantage
of the three powerful methods used, we are launching larger
scale experiments in terms of the numbers of individuals
(200 mobile data loggers wore continuously by students on
a campus), the number of communities engaged (students
are dispatched in two engineer departments and over 3 class

levels), and the duration of the experimentations (1 month
long). We hope that gathering further and larger in situ results
will allow to deeply extend our understanding of dynamical
networks. By combining several approaches we have proposed
and experimented some tools in order to characterize generic
topological and dynamical principles, but we hope that new
tools will emerge in the near future in order to undertake
studies that cross disciplinary boundaries.
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