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Abstract— Recent studies on wireless sensor networks (WSN) Recently, Chaintrawet al. provide data traces of pairwise
have shown that the duration of contacts and inter-contacts & contacts collected during the Infocom 2005 conferencemFro
power law distributed. While this is a strong property of these this experimental approach their analysis shows long daile

networks, we will show that this is not sufficient to describe distributi for the int tact ti ti bet i
properly the dynamics of sensor networks. We will present some istribution for the inter contact time (time between two

coupled arguments from data mining, random processes and transfer opportunities for the same pair of devices) ang the
graph theory to describe more accurately the dynamics with claim that ‘inter contact time distribution can be compared

the use of a random model to show the limits of an approach to the one of power lalv As stated in [1], one can mark the
limited to power law contact durations. popularity of power law in 1999. Several papers [2]-[5] aape
in leading journals (Nature, Science) and report indepethge
that the distribution of degrees in “real” graph (WWW, Interne
Mobile devices equipped with wireless capabilities, whicfopology) seems to follow a power law: the frequency of
enable new communication services, have encountered a faneles/web pages with connectivityfalls off as k=<.
tastic growth in the last few years. Advances and miniauriz If we agree on the fact that studying the dynamics and
tion of micro-electronic devices have pushed the developmesvolution of large-scale dynamic networks is a fundamental
of new fields of applications for wireless networks. Theand difficult, but promising problem, one may have some
increasing popularity of a wide range of wireless devicetoubts about the generality of scale free networks and that
allows new paradigms and application classes. “[...] nature has some universal organizational principtbst
Scientific research has massed worldwide around these naight finally allow us to formulate a general theory of comple
challenges presented by multi hop wireless networks. Adroaystems[6]. More precisely, finding a power law for some
spectrum of topics is under investigation. It covers ragdearnetwork characteristic distribution is not so surprisingda
in pure ad hoc networks, in hybrid wireless ad hoc networkahat do power law distribution really signify? One should
in wireless sensor networks (WSN), in SISes (spontanedwsep in mind that high variability does not necessarily ynpl
information systems) and in DTNs (delay-tolerant netwirkspower law. Moreover, characterizing a power law behavior is
A common characteristic of this large range of wirelessone by inferring a fitting curve on a log-log plot. It appears
networks is that intermittent connectivity is the norm doe tthat various kind of data can be approximated by drawing
environmental dynamics and the intentional duty cycling aftraight lines on such log-log scale plots.
wireless nodes. However, despite several years of intensiv The main purpose of this paper is to demonstrate that the
research, a gap remains in terms of experimental aspeats oo called power-law argument is not the ultimate one and that
situ dynamic networks. it is worthy to study and analyze dynamic networks under
In such ambient context where nodes will be spread arouseveral points of view in order to extract their charactiess
in the environment and/or on each user, it becomes possiblel behaviors. As stated above, power-law are “quite” easy
to route data on such network based on pairwise contatisgenerate, that's why we can find them “everywhere” and
between devices/users. Communication services basecthn dinding such scale free networks does not imply any deep
network, called also Delay Tolerant Networks (DTN), willor fundamental knowledge on the intrinsic structure of the
deeply rely on the mobility and on the characteristics of theetwork. A main contribution of this paper is that in order
underlying networks. It appears crucial to better understato extract knowledge on dynamic networks, we introduce and
the intrinsic characteristics of such dynamic radio nekspr present some coupled arguments from data mining, random
to be able to analyze and model interactions between indivistkocesses and graph theory to describe more accurately the
uals/devices, in order to propose secure methods and pistoclynamics with the use of a random model. We show the
suitable for this context. limits of an approach limited to a power-law contact dunatio

I. INTRODUCTION



We also emphasis the need of addressing interdisciplinagch second, a set of existing links is given. Note first that
issues since dynamic networks are becoming a central paininay happen that no link exist at a given time step, which
of interest, not only for engineers, computer scientists bmeans that all 41 sensors are far from each others. In the
also for other domains, such as sociology, epidemiologgt, aavailable data it may happen that a given sensdrad seen
statistical physics. While far from complete, our resul@yst another sensos and thatv missedu. The data we are going
consistent with two complementary goals: a crucial need tf use hereafter are similar to the original one except that a
real data gathered from in situ test beds and fostering theon as one link exists, the symmetric link also exists.
development of precise tools in order to analyze data tolenab
theoretical models to validate the ongoing research cdeduc o
in the various domains that touch on dynamic networks. ~A. Data mining
The remainder of this article is organized as follows. Sec- A branch of data mining research area concerns the compu-
tion Il presents the three main approaches that we usedtation of set patterns by means of complete solvers. Fatigwi
this article: data mining, random processes and graph yhetine Agrawal et al. [8] seminal paper, it consists in defining t
and provides the basic background, including mathematicdlape of a priori interesting patterns by means of constrain
definitions. Sections 1ll and IV are dedicated to networkome of them being sufficiently tight to drastically redulce t
dynamics. In section Il we study the evolution of the netsearch space and turn the computation to be feasible. Mannil
work by presenting the inter contact approach but we alst al. [9] formally defined this task as computing the subset
apply basic metrics from graph theory and random process.a languagel that satisfies a predicate £ is a class of
Then, in section IV we introduce more complex metricsentences that expresses properties or defines subgroups of
based orMaximal Connected SubgrapMCS) and on their the datar, and q is used for evaluating whether a sentence
evolutions. This analysis is based on graph theory tools and= £ defines a potentially interesting subclass of the data
on a data mining approach that reveals to be very efficiefhe task thus consists in computing the theory
for this kind of computation and analysis. In the section V .
we introduce a ver;rl) simple random ydynamical model for Th(L,r,q) ={¢ € L such thaig(r, ¢) is true}
dynamic networks having a power law in their inter contact Most frequently used patterns to built theory are frequent
sequence. This models highlights the diversity of propsrtiitemsets (which are the first step to compute association
that are needed to characterize dynamic networks. Our modgdes) and closed sets, also called formal concepts. Other
provides insight into existing notion of dynamic networksla pattern types have been more recently defined like frequent
demonstrates that the structure and the dynamics are ndtees, frequent graphs or fault-tolerant frequent setstHair
direct consequence of the intra and inter contact duratMes definitions are less established and give still rise to disians.
conclude in section VI that many open problems and worksIn this paper, we will try to capture some properties of
remain, including the three fields considered in this aticthe dynamic of the studied sensor network thanks to formal
(data mining, random processes and graph theory). We gressancept computation. The data are defined by a binary
also future works related to gathering in situ data on a largeslation between a set of object3 (e.g. all possible point
scale in terms of the number of sensors deployed, the diyerdb point links between sensors) and a set of properfles
of the populations and the duration of the experiments.  (e.g.experiment time steps). This binary relation defines in the
present case at which time steps the links between sensors ar
A. Data detected. Extracting formal concepts from this relationsists
During the Infocom 2005 conference, Bluetooth senso¥ finding all "natural” groups of properties and objectscBu
have been distributed to a small set of participants whi¢Ratural” groups contain all objects that share a common
were asked to keep the sensors with them continuously. Théséset of properties, or all properties shared by a subset of
sensors were able to detect and record the presence of otl§gcts. A nice property on these groups is that there eaists
Bluetooth devices in their radio range neighborhood anepevbijective function between the “natural” groups of objeatsl
if they succeed to detect various kind of Bluetooth devicdgose of properties. This function and its inverse are fogva
like laptop and others, the main objective was to detect tkealois connection. We first briefly recall the Galois coniwerct
proximity between sensors. These data and the way they h&@éinition, before explaining why such a property is useful a
been obtained is precisely described in [7]. Note also th&gll for pattern interpretation as for computation fagstt
the sensors had no localization capability, therefore wmoa ~ Definition 1 (Galois connection)Let (A4,C) and (B, C)
have any information on the actual movements of individualke two partially ordered sets. A Galois connection between
carrying the sensors or on the proximity of two given sensor§ese partially ordered sets consists of two antitoigedrder-
either they are near enough tee® each other (from a pure reversing) functionst’ : A — B and G : B —
radio/communication layer point of view) or not. A such that for alla € A andb C B, we have:b C
The available data concern 41 sensors over a period fofa) if and only if a C G(b)

nearly 3 days The data are precise at the second and, forFor the Galois connection associated to formal concepts,
A is the power set of object2{) ordered by set inclusion,
1254 151 seconds to be precise. and B is the power set of propertie2®{) also ordered by

Il. APPROACHES



set inclusion.F’ is defined byF(X) = {y € P : (z,y) € B. Random processes

r for all z € X}. Similarly, for any subset” of P, define

G(Y)={x €O : (z,y) €rforall y € Y}. The codomain  Another approach for the analysis of evolving sensor net-
of F contains only all the “natural” groups of propertiesWorks is to use stochastic (or random) processes theory. The
whereas the codomain a contains only all the “natural” basic idea is to consider that some quantities of a dynamic

groups of objects. graph (degree evolutions of a given node, contact and inter-
Property 1: A Galois connection satisfies the followingcontact durations, number of connected components, ete.) a
properties: produced by a non-deterministic process. This is obvionsty

the case for the data we are analyzing, however we consider,
as is common usage, that the system is so complex that
deterministic chaos arise so that it is very hard to relade i
data to the physics of the system. Furthermore in the data tha
: . . we have used in the experiments, the physics of the system is
4) FoGol' = I. This property implies thayo I is idem- ¢ ¢ v inown because the location of the nodes at each time
potent (.. X C B, G(F(G(F(X)))) = G(F(X))) is not recorded. Stochastic analysis and modeling can belp t
Thus, the compositér o F' is monotone, extensive and idem-<characterize the variability of some quantities extradtedh
potent. This states that o F is in fact a closure operator onthe evolving sensor network. This characterization candes u
A. Dually, F o G is also a closure operator dB. for building dynamic graphs models and generating dynamic
Thus, a formal concept is a coupl&’,Y") containing both a graphs with similar stochastic properties for the evabrati
closed set of propertie¥’(= FoG(Y)) and its corresponding of the performance of various communication protocols for
natural object groupX = G(Y)). If the binary relation is instance.
represented by a boolean matrix, a formal concept is thusRandom (or stochastic) processes theory is well-
a maximal rectangle of true values, up to row and columgstablished [12]. LetS[k] be a sequence of data describing
permutations. the evolution of a quantity as a function of the tirhgnote
Thanks to the Galois connection, formal concepts are emivat £ is not always corresponding to a physical time, it
bedded by generalization/specialization relation: whendet can be simply an index), the objective is, from the detailed
of objects (resp. the set of properties) increases, then aisalysis of the sequence, to find a random process model
associated set of properties (resp. set of objects) dexseAs accurately describing its statistics. To this end, one must
such it provides powerful characterization mechanismefuls choose (manually or using model selection techniques) a
during the interpretation phase of the patterns. parametric stochastic process model and state-of the art
On the other hand, formal concepts can be computed pgrameter estimation techniques can then be used in order to
enumerating sets of objects or sets of properties (we chodisel the best parameter values given the data sequé&fide
the smallest dimension) with respect to the inclusion order 1) power-law and scaling:Recent studies have shown
starting from the empty set to the whole set. The functioRfiat the contact and inter-contact duration in dynamic ens
of the Galois connection are thus used to compute the closyggworks are well modeled by a power-law [7], [13]. Such a
of the enumerated set and the associated component ongBRavior is an important property since it results in a high
other dimension. Several techniques have been proposed,dfanility of durations which can have a strong impact om th
guarantee that each formal concept is uniquely generad [lherformances of communication protocols. Power-laws have
Depending on the input relatior, the size of the formal also been used by Barabast al. [3] for the definition

concept collection can be really huge, and thus it can Begale-freegraphs. A (static) graph is said to be scale-free if
useful to use minimal size constraints on both formal cotecephe number of nodes having degreealls off as k—2, thus

components to select the largest ones. These constramts exhibiting a power-law behavior.
actively pushed inside DHNER [11], the formal concept  ope should however pay attention to the definition of
solver we will use in the following. To summarize, 1arge; power-law behavior. There exists two definitions in the

1) Go Fis extensive(i.e. VX C A, X C G(F(X)))

2) F andG are antitonei(e. VX C A, X' C A,if X C X'
then F(X') C F(X))

3) G o F' is monotone.

formal concept theorf i(L, r, g) is defined by literature, a stochastic and a non-stochastic one [14].
The non-stochastic definition of a power-law is as follows.
r € Ox?P .
Lety = (y1,v2,---,Yyn) be afinite sequence ordered such that
= {(X,Y) such thatX € O andY C P} Y1 > ya... > yn, y is said to follow apower lawor scaling
g = Y=FoGY)andX =G(Y) and|X| > o, relationship withscaling indexx if: k = cy,
and|Y| > oy This definition implies that the rank versusy appears as

a line of slope—a when plotted in a log-log scale.
o1 andoz being two integer thresholds used to select largestThe stochastic definition of a power law behavior for a
formal concepts random variableX is related to thetail of its distribution
function, it is actually also referred to as heavy taileddistri-
2| X| denotes the size of the sat. bution. It is usually defined by the shape of templementary



cumulative distribution functiollCCDF) as follows: of this paper. Despite these advances, very few is known on
—a their dynamical properties, which would include both thelst
PX>z] ~ cx

z—00 of changes of state for nodes and links but also changes of the
Note that this implies that thprobability density function Underlying structure. The main reason to explain this lack o
(PDF) of the random variabl& follows: studies comes from the absence of easily observable dyahmic
(atD) networks. The data provided by [7], [13] which we are going to
f(x) A “ study here, and other similar datasets, are thereforeesting

. . . in themselves but could also lead to the definition of new
For o« > 2, X has finite mean and variance and is nocg1

. . - ynamical properties.
considered akeavy tailecl for 1 < a < 2, X has finite mean .
but infinite variange and fob < o < 1, X has both infinite Among the very few studies centered on the study of the

mean and variance. This distribution thus characterizedarz _dyr_1am|cs of network_s, let us cite [16], [17] which give some
. . . - ... insight on the evolution of regulatory networks by consider
variable with high variability, as opposed to low variatyili

, . . . . .ing different organisms. In such networks, typical subbsap
which appears for instance with exponentially decayints tai . X .
T . A related to biological processes, for instance cycle of tlery
Power-law distribution is also calledcaling distribution .
I, s . or feedforward loops, appear more often and can be tracked in
because the conditional distributid X > x|X > w] is the . : : .
- . various species. The same kind of problems have been studied
same as the original onB[X > z], except for a change in . . : )
i in [18] to show the increase of typical subgraphs in networks
scale: . : : ;
¢ like the internet or semantic networks over time.

-
PIX > z|X > u] oo wa However, these studies are based on nearly static networks

This is opposed to exponential distribution, for which conhere the number of time steps is extremely small, no more
ditioning implies a change of location rather than scald.[14than a few dozens. On the contrary, the evolution of imote

It appears that either the CCDF or the PDF can be usdata is much more complex with thousands of modifications
in order to check for power-law in actual data. However, &' day.
pointed out in [1], the CCDF provides a more discriminant Let us first recall basic properties of graphs that are gaing t
way of deciding whether some data follow or not a power laRe used hereafter. Given a gragh= (V, £), let us denote by
and estimate the scaling index Moreover, using the PDF 7 = |V| the number of nodes in the graph and/hy= |E| the
can lead to a misinterpretation of the results [14] number of links. The denSity of! is defined as the number

2) Dynamic graph analysisin this work we are focusing of existing links over the number of possible links, that is
on characterizing theynamicsof an evolving graph. Recentd = ;%57 The degree of a node € V is the number of
works have considered the distribution of contact and intgteighbors it has in the graph.
contact durations [7] as a sufficient statistic to descrites¢é A maximal connected subgraph 6fis a maximal subgraph
dynamics, claiming for a power-law behavior of both contadth terms of nodes and links) of/ such that there exists
and inter-contact durations. This is an interesting ihisiap, @ Path between any two nodes. Using this definition, two
however we argue this is not sufficient to fully describe théonnected sets of nodes but with different sets of links are
evolution of a dynamic graph. One can for instance havedgsumed to be different maximal connected subgraphs. In
look at the evolution of other quantities in time, such as tie connected subgraph, the length of a path between two
degree evolution of each node, the count and size of cortheci@desu and v is the number of links used to go from
components and the degree distribution among nodes f@rv following this path and the distance betweenand v
instance. is the length of a shortest path between these nodes. The

For the analysis of such evolutions, not only should bdiameter (resp. average distance) of a connected subgsaph i
considered the distribution of values (first order statiti the maximal (resp. average) distance between any two nodes
but also thecovariance(second order statistics), describingf the subgraph. These notions related to distance are define
how values of the process are correlated at each possitde t@ly for connected graphs.
lag. It is interesting to note that a power-law behavior can From a wireless networking point of view, these properties
be identified in the covariance as well, and is referred to Bgve a direct influence on the ability of the network to
long-range dependendd5]. We want here to emphasize thdransmit information from one node to another or to impletnen
fact that however different statistics can be modeled ugieg algorithms such as flooding. The degree or number of 1-
same family of function (the power-law function family forneighbors is the number of nodes which can be reached with

instance), the meaning and the interpretation of the esuflly one radio message. The density can give some clues

may be much different. on the number of conflicts one might face when sending
a message. Finally the diameter or the average distance is
C. Graph theory the number of intermediaries that have to be used to send a

A lot of recent studies in the field of complex networks havmessage in the worst case or on average.
been focused on the topological structure of real networks,In the following we will use these kind of properties, first
and have defined a lot of properties to describe properlyethés the Section Il where we will study the evolution of basic
networks, most of these properties being far beyond theescqpoperties such as the number of nodes, links or the average



over time. Second, in Section IV, we will study the connecteguadratic in the number of nodes. This means that, for a given
subgraphs mainly to evaluate the stability of the networtrovnumber of nodes, the network can have a large number of
time. possible configurations, some of which are very sparse and
some are more dense, up to arourid for the densier existing
I11. EVOLUTION OF THE NETWORK configuration.
In this section, we show experimental results obtained wi

the data described in Section I-A with tools from theories of Random process modeling

graph and random processes. Numerous of the graph properties evolutions shown in the
. previous section (degree, connected nodes and links, etc.)
A. Network evolution are good candidates for a random process based modeling.

The first basic dynamical properties concern the evolutioflis modeling can be used to extract information about the
of classical static properties. Fig. 1(a) and 1(b) displag t data, and to enable the generation of artificial sequencis wi
evolution of the number of connected nodes and links ovét@tistical properties close to the ones of the originah.daor
time. First of all one can notice a typical night and day effeénstance, as it will be explained in Section V, one can build
which is clearly visible on the evolution of links. Duringeth @ dynamic graph generator from the modeling of a quantity
night, the number of nodes and links are more stable, Hiff€ contact and inter-contact duration in our case).
there is a high number of connected nodes: the network is® common feature of the evolutions shown in previous
basically a set of disjoint links which certainly corresgaio ~ Section is that they exhibit a strong non stationarity, the
roommates. Even if daytime exhibits more variations, orre c&hain cause for that being the different behavior between day
note that there is no timestep during which the network f&nd night periods (see Fig. 1(b) for instance). This is bad
a single connected component and there is also no timest@p(stationary) stochastic process fitting, and we shoulg p
where all nodes are at least connected, even if they are agention to split the data into reasonably stationary spart
part of a single component. The maximal value obtained Rgfore fitting a stochastic process model to it. A simmiéoff
34 nodes connected simultaneously, and it happens that R{Pcess can be used to model day and night periods altemnatio
these nodes belong to a same component, the remaining nodeé§1other common and important characteristic of these evo-
being isolated. The fact that there is always some isolatktions is that they exhibit high variability (see Fig. 2(toy
nodes, around /2 on average for daytime and arousgi for instance). One way of describing this high variability is to
nighttime, implies that information can only be transnuttePlot the CCDF in a log-log plot and check for a power law
to these nodes by taking the evolution of the network infeehavior as explained in Section II-B. One can for instance
account. use this method to model the contact and inter-contact idarat

Fig. 2(a) displays the same link values for the first dag,istribution as reported in Fig. 3, which shows the contact a
of the conference only. Note that even during the day thater-contact duration CCDF in a log-log scale. The straigh
evolution of the number of links is not as flat as one coulin€ behavior over a wide range of duratiof8q0 20000]
have guessed for that kind of event. While specific periokis, liseconds for inter-contact duration afth0 30000] seconds
coffee breaks or lunches, can be identified by strong peaksf@h inter-contact duration) indicates a power law behawbr
the number of links - around tim&5000, 70000 and 90000 Which we can estimate the scaling indexThe value ofa is
for the lunch breaks, and two smaller ones in the middle &¢Ported on Fig. 3. These observations are in agreement with
the morning and afternoon sessions - the network is far frofie ones reported in [7].
being static elsewhere. The main point to observe is that the=or the analysis of the evolution of a quantity (degree,
human behavior has a strong impact on the observed data BHEber of connected nodes and links, etc.), it might be
that such results can hardly be generalised. For this kind iBferesting to see the data as an accumulation processryand t
data, random processes approaches give more precisetind@gtanalyze the differential sequence rather than the aigin
on the phenomenon and are discussed later on. one. Classically, ifS[k] is the original data sequence, then

Fig. 2(b) is a scatter plot of the number of connected nodB (first order) differential sequence is defined Bsik] =
versus the number of links over the whole period: for eachlk + 1] — S[k].
time step where the network hasnodes and links, a point ~ AS an example, Fig. 4(a), 4(b) and 4(c) show respectively
of coordinates(k,!) is placed. As one could have guessed Ppart of the degree evolution (during a day period) of a
this plot exhibit a positive correlation between nodes arRfirticular node, the CCDF and the covariance. The distabut
links, that is to say that the more nodes are connected, ffethe differential process is in this case a better inforamat
more links are present, since the minimum number of lingr modeling, the major reason being that the degree gets
is one half the number of connected nodes and the maxinfifreased and decreased as links are created and destroyed.
number isk(k—1)/2. However the main point is to notice thatlt is therefore natural to model the differential sequerataer
the variation of the number of links is nonconstant over tHBan the original sequence itself.

number of nodéswith a variation which is approximatively ~The covariance is estimated using a wavelet-based tool [19]
and the plot is a spectral log-log representation of the rtova

3This nonconstant variation is named heteroscedasticity. ance, in the wavelet domair (s the scale and; is roughly
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the average of wavelet coefficients at sc@leThe interested degree evolution of each node. The estimated exponentdor th
reader is referred [19] for details. A power law behavior igovariance (Fig. 4(c)) implies that the Hurst exponent @sel
such a plot results in a straight line with slope directhkéd to the special valu®.5, meaning that there is no long range
to the Hurst parametell. Note that a power law behavior independence. In this case a good approximation is to consider
the covariance is much different than the one of a distriloyti that the differential sequence of the degree evolution iB2n

it implies long range dependenaather than high variability. (Independent Identically Distributed) stochastic pracesith

From the plots in Fig. 4, we can build a simple model for the

distribution function plotted in Fig. 4(b).
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These results are very much preliminary, and this methadn be understood together with the Fig. 6(b) which displays
should be extended to other quantities of the graph (coedect scatter plot of the size of the MCS. As for the Fig. 2(b)
nodes and links, etc.). one can observe a positive correlation between the number of
nodes and links in a MCS with a nonconstant variation of the
number of links. In this case, the variation factor is around
In this section we are going to deal with components whichs which means that for a given number of nodes, one can

are defined as sets of links. In the first part we will onlgxpect a variation of density of the same factor.
consider connected sets of links to see how connected group$e stability of these MCS is another crucial point:

of individuals evolve over time, while the second part widl b
dedicated to sets of links which appear frequently.

IV. COMPONENTS

it is
important to know whether these MCS stay alive for a long
time and if some of them can disappear and reappear in the
A. Maximal connected subgraphs future. In the following, the total lifetime of a MCS is
rgeefined as the number of timesteps for whictexists, and
e number of apparitions af is the number of times this

S is nonpresent at a given time and present at the next
élmestep. To give more precise results, one could have tboke
C%Hwe distribution of presence durations rather than theee

Recall that a maximal connected subgraph (MCS in t
following) is a maximal subgraph (in terms of nodes and I}nkjg
such that a path exists between every pair of nodes. Si
it is going to be widely used in the following, note that
set of connected nodes does not define properly a conne : . o
subgraph. The set of links is important too, therefore t gregated parameters. However, this would give a diskoibu

similar sets of nodes with different set of links are assumegd’ each MCS which is harder to study.
to be different subgraphs. Fig. 7(a) and 7(b) display the distribution of the total
One cannot expect the network to be fully connected all thetime and the number of apparitions of all MCS. The main
time and results from Section 11l have exhibited differebés  result from these curves is that there is a strong heterdgene
haviors for daytime, nighttime, breaks, lunches, etc. B{@) for both parameters: while more than one half of the MCS
and 5(b) display respectively the number of MCS at each tin§&ist only during one time step, some of them exist during
step and the number of nodes of the biggest one. These figutearly half of the whole time. Notice that the most frequent
show that most of the time there are many MCS which in thCS is just a couple of nodes which are certainly roommates
case might correspond to different sessions of the conferersince they are connected and isolated from the rest of the
and that there is nearly no time step during which there Rgtwork every night. Again the MCS which appear and
only one MCS. disappear frequently are very small: couples or triples of
To go deeper in the study of these subgraphs, we havedes.
computed all the MCS to obtain a set bf 696 MCS which To give a better insight on this last remark, Fig. 8(a) angd 8(b
exist during at least one time step. Note first that if a MES are scatter plots for the total lifetime and number of apjes
exists at time and that a link is added to it at timtet- 1, then as a function of the number of nodes. While not displayed,
the MCSc ceases to exist at timter-1. Therefore we are going the same figures for the number of links give very similar
to consider in the following that MCS appear or disappeaesults. On both figures, the main results concern the absenc
even if there is only small modifications of the underlyin@f stability of large MCS: there is no MCS with more tha®
topology. A MCS is stable if and only if no node and no linknodes which have a lifetime greater thiit) seconds and there
appears or disappears. isonly 17 MCS of size greater thatiwith such a lifetime. The
Fig. 6(a) displays the distribution of the size of the MCS fomore links a MCS contains the more potential modifications
respectively, the number of nodes and links. On these figurezay happen, which explains in part the curves. The reason is
one can note that there is a lot of MCS of all size in terms tiiat the probability of link creation in a MCS is as greater as
number of nodes while MCS with many links are fewer. Thithe number of nodes in that same MCS.
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Fig. 8(b) might let us think that some big MCS appeaat timet, then at time. + 6 a link is added between two nodes
regularly more than once. However, if we define that a MC& ¢ which creates MCS’ and this link disappears at time
reappears only if it has disappeared for more than five minute+ ~. Therefore the MCS: will be seen as absent for some
(resp. more than one hour), then only MCS of size strictlyme. The flickering of this link might be due to the movement
lower than8 (resp.5) appear more than once. This means thaff a node or to a failure in the measurement. Either ways, even
most MCS reappear very soon after they have disappearédooth nodes are near, the protocol ignore this link which
The main reason is the following: suppose that a MGists cannot be used to transmit information.
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One may object that two MC8andc¢’ which are the same
but for some linksj.e. which share the same nodes, might be
assumed as equal. This would lower the number of apparitions
of large MCS and increase their lifetime. However we believe
that every change in the topology might induce a change in a
given transmission protocol and therefore the notion of MCS

3500

is more precise. Notice also that given a set of nodes there is

generally few, rarely more that0, MCS constructed on this
set of nodes. o

The main conclusion of this subsection if that the dynamical
effects observed at a global scale are also present in large
MCS. These MCS have a very short lifespan and one cannot
expect that they might reappear in the future. On the contrar

small MCS are generally more stable and have a probability o _
of reappearance much higher. Fig. 9. Number of frequent connected subgraphs w.r.t. treisily and their

number of verticesife., number of individuals).

Nb of groups

5000

B. Data mining if it appears at least ones during a 240 seconds peri®ach

In this section we apply Data Mining techniques that haweriod corresponds to a time step in the following.
filtering capabilities on the collected data in order to iifgn ~ We want to compute on these data all maximal connected
social groups and describe the dynamic of individuals amofgPgraphs that are sufficiently frequeme(exist during at
these groups. The process we use is composed of two mmst 10 time steps) and sufficiently significane.(contain
steps. We first gather information on groups of links ovedt least 5 edges). We use the DR solver [11] on the
time using connected and frequent subgraphs on the data. '@&ulting matrix that associates to each edge the time &eps
then filter the obtained subgraphs using a density criteria Which it exists. D-MNER computes the whole collection of
smooth the data and leverage most important and establisfigal concepts (maximal rectangles of 1 values up to row and
subgraphs. By doing this we are able to take into account tf@umn permutation) in this boolean matrix. Frequency and
time variability of the information gathered by the sensor§ignificance are represented using minimal size conssraint
The second step goes back to individuals that are presemein® on the edge set and 10 on the time step set. The resulting
resulting subgraphs. We merge the groups that concernesimft6 328 subgraphs are then processed to extract their ceshect
individuals and time steps to obtain social groups. Finally component that are included in the formal concepts. We obtai
built the dynamic trajectories of individuals by considerifor this way a set of 23 316 frequent connected subgraphs having
each individual the social groups he/she belongs to and ordie average 7.66 vertices, 8.59 edges and appearing in 12.41

them with respect to time to obtain the trajectories. time steps.

Frequent connected subgraphs as representation of groups.Fig' 9 shows the distribution of the frequent connected

The imote data are the result of experimental measuremept phz W'fh rer?pect to the:\r/lden5|;y and the r;]umbelr of westic
that leads to erroneous or incomplete data. The main probi&fffividuals) they cover. Most of the graphs only cover a

is that Som_e edg_es ﬂi(_:ker' To COPe \_Nith this problem V\_/e“This period corresponds to the sleep period between twaessiv@ hello
reduce the time dimension by considering that an edge exis4skets in the neighborhood discovery protocol.



small set of individuals with a low edge density. These two
criteria, when combined, show that the relationship betwee s
individuals in those groups might be understood as a relatio 13
chain instead of a strongly connected group. 1
For the next step of our study we only keep graphs that*
are dense enough to be considered as social groups. The
filtering we apply using this simple criterion allows us to .
only keep 281 graphs using a 0.8 density threshold. This size®
reduction is mandatory if we want to consider relationships :

among individuals. 1

Individual trajectories among the social groupﬂ':he first 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
step gives us 281 dense connected subgraphs, but they ac- fdviduals
tually cover the same sets of vertices many times. Some of Fig. 11. Formal Concepts with respect to Individuals.

these groups are similar to each other in that they differ by
only a few individuals, time steps, or are subsets of bigger
groups. Going back to the formal concepts theory describedtering a group and edges are labeled by the individual
in section 1l-A we can use the Galois connection principtes number when he/she goes from one group to another. For
detect inclusions of groups within the set we obtained. édde example, individual 19 which enters group 13 at time step
the Galois connection states that if two concepts B) and 1215 (given by Fig. 10) goes to group 9 before entering group
(C, D) are such thatd C C thenD C B. 10.

As the connected graphs are dense, it is meaningful to
associate to each graph the set of vertices (individuals)
covers. In the following we consider groups of individuals
associated to a time step set. We merge two such form
concepts(A4, B) and (C, D) if the set of vertices ofA is
included in the one of” and the time steps oB \ D are
close to a time step ab. In our experiment the allowed time
distance used to merge two formal concepts is set to one tin]
unit (240s).

Groups

8

7

g Fig. 12. Individual trajectories in groups ordered by timer are individuals
4 while gz denotes social groups.
3

2

1

We have proposed in this section a way to use data mining
0 150 300 450 600 750 j?m‘jes‘le"io(zjgf 1350 1500 1650 1800 1950 2100 tachniques to analyze dynamic graphs. These techniques use
" exhaustive methods and algorithms but still require a super
Fig. 10. Formal Concepts with respect to Time. sor to fix several thresholds and parameters to drive thehgrap
structural exploration. Despite these manual intervastiohe
Fig. 10 represents the 15 groups of vertices with respectdgyposed methods are used within a formal framework that

time that have been obtained by applying the formal concegifyctures the data and offers some guarantees on the output
merging procedure. The group number identifies a formal

concept while points on the time direction represents iitgti V. RANDOM MODEL
step set. Fig. 11 represents the individual set component ( In this section, we introduce a simple random dynamical
vertices in the graphs) of the formal concepts. These groupsdel which is aimed at showing the limits of considering
can be considered as social groups. only inter and intra duration time. Our aim here is not to
The last step of our procedure is to go from formal conceptise a complex or realistic model but mainly to give insights
back to individuals. The combination of Fig. 10 and 11 allowsn the structure and the dynamics of a contact network and
us to derive trajectories of individuals among groups dyrirto show that the structure and the dynamics are not a direct
the experiment. We can follow the trajectory of individuals consequence of the intra and inter contact durations. Nete a
groups as presented on Fig. 12. Dashed boxes are individuhbt real contacts are constrained by the bidimensionacasp
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which prevents some graph structures to appear, the moligks which are ending at. However the on/off sequence for
used in the following is not: any subgraph can potentiallg link (u,v) would be constructed from a combinationdf,
appear. df, d; andd; in way to be defined.

Following classical random models for static graph, such For both link and global models, a random dynamic graph
as the configuration model [20], we propose the simplegénerated using these model gives, for each time step, a
dynamical model possible with respect to the inter and intxdsion of the contact graph. Note also that even if we will
duration time distributions. These distributions are astied use this model with the experimental parameters (number
from the real data to obtain two distributions of durationf nodes, distributions of durations and total duratiorgréh
Then, we will consider each link in turn, and for each of thede no restriction on these parameters which means that this
links we will generate a on/off sequence using the real intraodel can be used as a basic comparison tool for any kind of
and inter contact duration with a total duration time similaexperimentation.
to the real one. Every duration is drawn independently from In the following, we will compare the results from the
previous durations and from other links. previous sections with similar experiments made on random

Note that we mentioned the distributions used by this modelynamical graphs with the same size, first for basic progerti
There is at least two simple ways to generate a randand then using connected components obtained with both link
dynamic graph, each relying on a distribution for both intrand global models.
and inter contact durations. Ldﬁw) be the distribution of
contact duration for the linku, v), that is to say that, (k) A. Basic properties

is the probability that a duration time last fbrtime units. Let Fig. 13(a) and 13(b) detail the evolution of the number of
alsod* be the distribution for all links in the graph, whichjinks for both models. These models present a strong peak of
is in some way an union of, , for all links (u,v). In & jinks at the beginning only for the global model and at both
similar way,d,,, ,, andd" are the distributions of inter contactends for the link model. This comes from the random nature
durations for links or the whole graph. of these models. While both models and the real data have
Using these definitions, the on/off sequence for a given limlearly the same inter contacts average duration, the remart
(u,v) generated by the model can follow either a combinatidas clearly not the same over the whole interval, see Fig. d6. |
of d(thv) and d(*w), or a combination ofit andd~. In the real data, the average inter contact duration at the bewjrov
first case, the intrinsic nature of each link is kept by the elod at the end of the experiment is three to five times greater than
For instance if one link is always off in reality, it will alwa the average over the whole period. On the contrary, for tiie li
be off with the model. Therefore a random graph generatetbdel for instance, the first and last values are much lower
by the model is just, for each link, a permutation of on anthan on the real data and not so far from the average value,
off periods of the original periods for this link. In the lasttherefore there is a lot of links present at the beginningtor a
case the intrinsic nature of each link is lost since one usi® end in the random networks until some of them disappear
only one global distribution for the whole network: evengki for a long time.
has a on/off sequence drawn from the same sequence. In th&his could be seen as a drawback, however it reveals
following we will refer to the first model as the link one, wéil the nature of simple random models which are not able to
the second will be referred as the global one. capture such specific behaviors such a daytime/nighttime. |
A trade-off, but more complex, approach would be tthe following this specific structure will have some effects
consider distribution for a given node. One idea would behich can clearly be identified. However, note that our geal i
to defined; to be the distribution of contact duration for allto show that much work have to be done on the analysis of the
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In this section, we are going to concentrate on the global
Flg 16. Inter contact durations of the real data Comparedldbag and model only Slnce both models present Very Slmllar behavu)rs
link models. The first line display the average value of the firter-contact . . . .

In order to avoid displaying more figures, a number of ex-

duration for all links, the second line the average value tfar last inter - )
contact, the last line the average inter contact value omthale period. periments have been made to show that the models behave in
many ways like the original data:

the number of distinct MCS for the real data and both

models are very near,;

the distribution of the lifetime and number of apparitions

of MCS also have a very similar shape as what can be
observed on Fig. 7(a) and 7(b);

the distribution of the lifetime and number of apparitions

of MCS as a function of their number of nodes (see

Fig. 8(a) and 8(b)) are also quite similar in the sense that

no large MCS have a long lifetime or a large number of
apparitions.

L]
dynamics of the such networks to have a better understanding
of these dynamics and maybe propose better models.

B. Degrees

Fig. 14(a) and 14(b) show respectively the degree evolutione
of a particular node in a simulation of each type of dynamic
graph introduced in Section V (global model and link model).

When compared to Fig. 4(a), we can see that the variability
of the degree evolution seems to be much lower in the
simulation than in the original data. In order to show eviteen  Concerning the last point, notice that the distributions of
for that, Fig. 14(a) shows the probability distribution &tion the sizes of MCS are not similar for real data and models.
of the differential sequences for different simulationsl élne As it can be seen on Fig. 15(a) and 15(b), first of all there
original data. The distribution for all random dynamic drapis some MCS containing all the links while real data do not
simulations is similar, but rather different than that ot thcontain any MCS of size greater thad, and there is quite
original data. a large number of such complete MCS. However the most

This shows that a random graph model based on contact amgortant point concern the Fig. 15(b) which is a scattet plo
inter-contact durations do not manage to reproduce a@yratof the number of nodes versus the number of links. Compared



to Fig. 6(b) for the real data, it seems that, except for the fdevels), and the duration of the experimentations (1 month

largest MCS, all the other MCS have a number of links whidiong). We hope that gathering further and larger in situ ltssu

is nearly linear in the number of nodes. The few largest MO®ill allow to deeply extend our understanding of dynamical

are generated at the beginning when there is many links in thetworks. By combining several approaches we have proposed

network. and experimented some tools in order to characterize generi
The fundamental structure of the MCS obtained by thepological and dynamical principles, but we hope that new

models is therefore completely different in the sense that ttools will emerge in the near future in order to undertake

density is nearly always low in such MCS. Therefore at studies that cross disciplinary boundaries.

given time the real interaction network might be seen as a set

of very heterogeneous subnetworks in the sense of the size

but also of the density, while data obtained by the model onl{t] K- E-lggg' ‘ilf)%\gsnziggs"scale-free” networksBioEssaysvol. 27, no. 10,
. .. . . pp. — , .
capture the heteroqene|ty of size: at a given time, a rando[y] R. Albert, H. Jeong, and A. Barabasi, “The diameter of therM/@Vide

network is almost a set of disjoint trees. This has in paldica Web,” Nature no. 401, pp. 130-131, 1999.

strong impact on the diameter (the maximal distance betweé#l A- Barabasiand R. Albert, "Emergence of scaling in randuetworks,”

t des of a MCS) since random MCS have in avera Scienceno. 286, pp. 509512, 1999.

WO. no . . . 9@ M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power tela-
a higher diameter and there exists some MCS with a much tionships of the internet topologyComputer Communication Review
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Finally, to complete our work and in order to take advantage
of the three powerful methods used, we are launching larger
scale experiments in terms of the numbers of individuals
(200 mobile data loggers wore continuously by students on
a campus), the number of communities engaged (students

are dispatched in two engineer departments and over 3 class



