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Abstract

We present a fully-automated method for real-time and
marker-free 3D human motion capture. The system com-
putes the 3D shape of the person filmed from a synchro-
nized camera set. We obtain a robust and real-time system
by using both a fast 3D shape analysis and a skin segmen-
tation algorithm for human tracking. A skeleton-based ap-
proach facilitates the shape analysis. We are able to track
fast and complex human motion in very difficult cases, like
self-occlusion. Results on long video sequences with rapid
and complex movements, demonstrate our approach robust-
ness.

1. Introduction
Marker-free human body motion capture is a promising

technique developed in computer vision. Its goal is to find
the main joints positions of the human body across time. It
has a large range of applications, from movie special effects
to human machine interaction systems like next-generation
video game consoles. Human motion tracking is a difficult
problem because of the complexity of human body kine-
matics.

Our goal is to provide motion capture for home appli-
cations. As our system targets the general public, it has
to be user-friendly, fully automated, markerless and inex-
pensive. Because of the interaction constraint, the system
needs to work in real-time (at least 30 frames processed per
second). To provide a user friendly system, it should work
without markers (active or passive) and without any particu-
lar sensors. Indeed, they are generally invasive and difficult
to place correctly by non-professional people. In this pa-
per, we propose a fully automated system, which provides
motion capture data from a set of calibrated cameras under
real-time constraints.

Several methods have been proposed for acquiring three-
dimensional human motion. Broadly speaking, the methods
proposed can be divided into different categories depending
on the number of cameras or the data processed. The first

set of methods work with a single camera [1, 6]. The results
are generally ambiguous, particularly when the method is
based on the object’s silhouette. These methods are subject
to be stuck in local minima as different positions can yield
the same silhouette. To circumvent this, other methods use
multiple cameras. Some of them work only on a 3D human
shape estimation analysis [5, 12, 17]. These techniques pro-
vide good results when the 3D shape topology correspond
to the filmed human topology. In other words each body
parts have to be clearly identifiable in the 3D shape estima-
tion. In self-occlusion cases or when there are large con-
tacts between limbs and body, it’s very difficult to make a
distinction between rigid body parts and reconstruction im-
precision. For this reason some teams, like Caillette et al.
[2], have proposed methods based on shape and color anal-
ysis. They link blobs to a kinematic model in order to reli-
ably track individual body parts with both volume and color
information. This technique requires a contrasted clothing
between each body parts for tracking. Thus it adds a usabil-
ity constraint.

We propose a motion-tracking algorithm that uses skin
color segmentation to guide body parts labeling. The skin
colored visible parts correspond to the undressed body
parts, such as the face, the hands and possibly the legs. The
skin segmentation allows us to compute the subsets of the
3D shape that contain skin parts. It allows robust tracking
of challenging human motions in real-time. Few methods
provide real-time motion capture. Some of them run only
with interactive frame rate (10 fps [2]). Our method runs at
30 fps, based on simple heuristics driven by shape topology
analysis, skin segmentation and temporal coherence. This
provides acceptable latency time for human machine inter-
actions.

After an overview of the system, we will introduce the
two main stages of the method: the automatic initialization
pose and the body parts motion-tracking. Then, we will
discuss on the results obtained from real and complex data,
which are failure cases for most methods. Finally, we will
conclude about our contributions, and we will present some
perspectives for this work.
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Figure 1. System overview: our main contribution is fast and ro-
bust motion capture system.

2. System Overview
The Figure 1 outlines the system structure. As a prepro-

cess, the cameras are fully calibrated using Zhang method
[18]. We aim at achieving real-time, hence fast background
subtraction [4] and skin segmentation [15] methods are
used.

At each frame, these images are computed and used as
inputs for a Shape-From-Silhouette based method [3, 9, 11]
to compute the 3D shape estimation of the whole model and
the skinned parts. This results in two sets of voxels: Vskin

and Vskin. We refer to their union as Vall.

General algorithm idea : The goal is to classify each
voxel as belonging to one of the body parts. As we try
to resolve the location of body parts other than limbs, we
start from an active set of voxels Vact. Using heuristics, we
determine at least one voxel that belongs to the body part
Vpart and try to fit a shape (e.g. a cylinder or a sphere) to
the related voxels. While a criteria has not been met, we
iteratively add voxels to Vpart and remove them from Vact.
This decreases the computation time for the resolution of
the next parts.

Joints labeling is presented in Figure 2. Our system is
based on simple and fast heuristics. Less accurate than the
registration-based methods, this approach provides a real-
time system. Robustness is increased by using a multi-
modal scheme composed of shape analysis, skin-colored
segmentation, temporal coherence and human anthropomet-
ric constraints. For each body part to track, we estimate a
subset of solutions by both the registration of simple geo-
metric objects on the 3D shape and the registration driven
by skin-colored parts. If there are some ambiguities, then
we use temporal coherence and human anthropometric con-
straints to find the right solution. To speed up the process
and increase its robustness, we remove the voxels used for
each body part recognition. Vact denotes the set of voxels
considered for the resolution of the remaining body parts.

Our system has two steps: initialization and tracking.

Figure 2. Left: body parts labeling, right: joint naming.

Both use the same algorithm with different initial condi-
tions. The initialization step estimates anthropometric val-
ues and initial pose, then, using this information, the second
step tracks joint positions over time. The current frame pose
is estimated and its computation is facilitated by the current
skin voxels, the current 3D shape estimation, and the joints
position estimated at the previous frame. To ensure the ro-
bustness of the method, we suppose that both hands and
person’s face are partially uncovered. In the same way, we
suppose that the torso is dressed, and that the clothing has a
non-skin color.

Figure 3. Our method structure: head is estimated first, then the
torso, finishing with limbs (legs and arms).

The algorithm works in 4 stages (Figure 3) and will be
described in the next two sections.

For reading convenience, we use the following notations:
Lx denotes the length of body part x (see Figure 2),
Dx its orientation
Rx its radius (of sphere or cylinder, e.g. head, forearm)
joint notation used is given in Figure 2 (right side).
Jn denotes the value of a quantity J (joint position, voxel
set...) at frame n



J0 its initial value
when dealing with sided joints (like knee or wrist), indices
l and r denote respectively left and right side
Vx denotes a set of voxel and
EVx its inertia ellipsoid
when dealing with iterative algorithms
J(i) denotes the J quantity value at step i, J(0) its initial
value and J(k) its final value.

3. Body Parts Initialization
We present in this section our techniques to estimate the

anthropometric measures and the initial body pose. Our
method is fully automated, based on anthropometric ratios
and shape and color analysis techniques. The literature in
connection with this step can be classified in three cate-
gories. In the first one [10], the dimensions and initial pose
are manually specified. Second-category methods need that
the person filmed takes an initialization pose like T-pose
[8]. These methods are generally real-time friendly. The
third class is composed of the fully automated methods [12]
which are non real-time processes. Our approach is real-
time and fully automated for any kind of movements as long
as the person filmed is standing up, hands below the level
of head, and feet not joined.

Our method computes each body part parameters se-
quentially. The order is presented in Figure 3. This process
will be repeated until convergence or a timeout. This ini-
tial pose will be kept only from the last processed frame of
initialization.

3.1. Anthropometric Measures

Several studies that include the anthropometric data
[7, 13, 14] are used to develop ratio estimations. Statistical
analysis is performed, including fitting to normal distribu-
tion. We propose simplified anthropometric ratios, whose
accuracy is sufficient for human-machine interactions. Let
Lstat be the acquired human body length, estimated as the
maximum distance from foreground voxels to floor plane.
To increase robustness, the element of maximum altitude
is taken among voxels in the major connex component of
foreground voxels

Hence, knowing Lstat, guesses for anthropometric
measures are given by these ratios:

Larm ≈ Lstat/6 Lfarm ≈ Lstat/6
Lhand ≈ Lstat/10 Rhead ≈ Lstat/16
Ltorso ≈ 3Lstat/8 Lneck ≈ Ltorso/10
Lthigh ≈ Lstat/4 Lcalf ≈ Lstat/4
Lshld ≈ Lstat/8

The initialization process works on unused voxels Vact.
At the beginning , this set of voxels corresponds to all voxels

Vall and is updated at each step by removing voxels used to
estimate body parts.

3.2. Head Initialization

This step aims at finding T0 and B0, the positions of
the top of the head and the connection point between head
and neck at frame 0. From our hypothesis, the face’s vox-
els (further-noted V0

face) of the subject acquired define the
topmost connex component among V0

skin. Head position C0

(position of the head center) is computed by fitting a sphere
S(i) in V0

act (see figure 4). S(i) is defined by its center
C0(i) and radius Rhead.

Head fitting algorithm : C0(0) is initialized as the cen-
troid of V0

face.
At step i of the algorithm, C0(i) is the centroid of the

set V0
head(i) of unused voxels that lie in a sphere S(i − 1)

defined by its center C0(i− 1) and its radius Rhead.
The algorithm iterates until step k when the position of

C0 stabilizes, i.e. the distance between C0(k−1) and C0(k)
falls below a threshold εhead.

Head joints estimation : Knowing C0 position, B0

(respectively T0) is computed as the lowest (resp. upper)
intersection between S(k) and the principal axis of EV0

head
.

The back-to-front direction D0
b2f is defined as the direction

Figure 4. Left: sphere fitting (light gray denotes V0
face, dark gray

denotes V0
head(i)), right: joints estimation.

from C0 towards the centrod of V0
face (note that voxels from

the back of the head are not in Vskin). At this point, we
remove from V0

act the set of elements that belongs to V0
head.

3.3. Torso Initialization

Let V0
torso be the set of voxels that describes the torso,

they are initialized using unused voxels V0
act. At step i,

the algorithm estimates D0
torso by fitting a generic cylin-

der CYL(i − 1) in V0
torso(i) (see left figure 5). CYL(i) is

defined by the center of one of its cap B0, radius Rtorso,
length Ltorso and orientation D0

torso(i).
Torso fitting algorithm : V0

torso(0) is initialized with
V0

act, Rtorso with Lshld and D0
torso(0) as the vector from N0

toward the centrod of EV0
act(0)

.
At step i, V0

torso(i) is computed as the set of elements
from V0

torso(i-1) that lies in CYL(i− 1). D0
torso(i) will then



be the principal axis of EV0
torso(i)

The algorithm iterates until step k when the distance be-
tween the center of CYL(k) and the centroid of V0

torso(k)
falls below a threshold εtorso.

Figure 5. left: torso fitting, right: shoulders and thigh.

Thigh joints estimation : Let V0
hips be the set of vox-

els from V0
torso(k) intersected by the lower cap of cylinder

CYL(k) and v the principal axis of its inertia ellipsoid. The
initial pelvis position P0 is defined as the centroid of EV0

hips
.

The torso’s radius Rtorso is updated with |v|/2 and left/right
thigh joints are defined as :

T0
x = P0 ± vRtorso/2 (1)

Shoulder joints estimation : Knowing the torso orien-
tation, the neck position is defined as:

N0 = B0 + LneckD
0
torso(k) (2)

Let V0
shlds be the set of voxels from V0

torso(k) that lies in
cylinder CYL defined by its center N0, axis D0

torso(k), ra-
dius Lshld and length 2Lneck (see right figure 5). v is the
principal axis of its EV0

shlds
, left and right shoulder joints are

defined as:
S0

x = N0 ± vLshld (3)

Global body orientation : The top-down orientation
D0

t2d of the subject acquired is given by P0−B0. Db2f was
computed in 3.2. The left-to-right orientation D0

l2r of the
subject acquired is given by D0

l2r = D0
t2d ×D0

b2f .
Right and left side of shoulders and hips in equations 1

and 3 are determined by the orientation of v in respect to
D0

l2r. These vectors will help to differentiate the left from
the right and the front from the back.
V0

act is updated by removing its elements that belong to
V0

torso.

3.4. Arms Initialisation

Let V0
hand = V0

skin

⋂
V0

act be the set of candidate vox-
els for hands. A maximum value for the length of an arm
is given by Lstat/2 (see 3.1). Hence left and right hands
will be described by the two major connex components
(noted V0

hand0 and V0
hand1) among the elements of V0

hand

that lie within a sphere defined by its center N0 and its ra-
dius Lstat/2. If only one connex component is found, we
assume that hands are joined and that this connex compo-
nent describes both hands: V0

hand0 = V0
hand1.

Hand joints estimation : From our hypothesis, the
voxel set V0

handj contains wrist joint and fingers extremity.
From voxel set V0

handj (j ∈ [0, 1]), Pj0 and Pj1 are the two
extremities of the principal axis of EV0

handj
. We compute

vj0 (resp. vj1) as the volume described by the intersection
between unused voxels (V0

act) and a sphere defined by its
center Pj0 and its radius Lhand/2.

The wrist being the connection point between forearm
and hand, then if vj0 � vj1, Pj0 describes the wrist. Hence
W0

j = Pj0 and H0
j = Pj1. Otherwise, W0

j = Pj1 and
H0

j = Pj0.
Let us suppose that we know the side of V0

hand0 and
V0

hand1, we can now estimate arm and hand joints for the
left or right side x.

Elbow estimation : Let initialize the radius of the arm
at the elbow position Rfarm with the value of Lshld. Hu-
man morphology imposes constant lengths for arm Larm

and forearm Lfarm. Then the potential voxels V0
elbx for el-

bow position are estimated as the elements of V0
act that lie in

a torus defined by its center Ct, rotation axis Vt, tube radius
Rfarm and the distance from center to tube Rt (see Figure
6):

Vt = S0
x −W0

x (4)

Ct = Vt
Lfarm

Lfarm + Larm
+ W0

x (5)

Rt is the altitude in E0
x of the triangle defined by S0

x,
W0

x and E0
x. The last point is unknown but side’s lengths

are known so we can compute Rt. Hence, elbow position

Figure 6. Elbow estimation, dark gray elements are already re-
moved from Vact.

E0
x is the centroid Cx of the connex component Vx of V0

elbx
that maximizes the number of elements of V0

act intersected
by segments [W0

x, Cx] and [Cx,S0
x]. Rfarm is then up-

dated with the norm of the smallest axis of the EVx .



Hand side : When the link between a set of voxel
V0

handj (j stands for 0 or 1) and the shoulders is unknown,
the elbow estimation is applied for both shoulders. This is
the key to resolve challenging poses of the arms. Hence
using V0

hand0, we have two potential positions for associ-
ated elbow: E0

0l computed with S0
l and E0

0r computed
with S0

r. V0
hand0 is then associated with the side x (x stands

for l or r) that maximizes the number of elements of V0
act

intersected by segments [W0
0,E0

0x] and [E0
0x,S0

x]. At
this point, V0

hand1 is associated to the other side and elbow
estimation is performed using the corresponding shoulder.

For each arm, V0
act is updated, removing elements that lie

inside the cylinders having Rhand/2 as radius and [H0,W0],
[W0,E0] and [E0,S0] as axis.

3.5. Legs Initialization

Note that at this point of the method, V0
act contains the

voxels that haven’t been used for any other parts of the body.
Foot initialization : First we compute the set of con-

nex components from elements of V0
act having their height

below Lstat/8. If there is less than 2 connex components,
we assume that feet are joined and can’t be distinguished.
Otherwise, as for hands initialization, we use the two major
connex components V0

footl and V0
footr. Left and right assig-

nation of voxel’s set is done using Dl2r vector.
For the left/right side x, let vx be the vector from T0

x

to the centroid of V0
footx. Knee and Foot joints are guesses

using the following equations:

kx = T0
x + vx

Lthigh

|vx|
(6)

fx = T0
x + vx

Lthigh + Lcalf

|vx|
(7)

Leg binding : At this point, all body parts but the legs
have been estimated, hence V0

act contains only the legs vox-
els. Our leg joints extraction is inspired from ”point to line
mapping” process used to bind an animation skeleton on a
3D mesh [16]. The elements of V0

act are splitted into four
sets V0

thighl
, V0

calf l, V
0
thighr

and V0
calfr depending of their eu-

clidean distance to segments [T0
l , kl], [kl, fl], [T0

r, kr] and
[kr, fr] (see figure 7 left).

Leg joints : For the left/right side x, we compute the
inertia ellipsoid EV0

calfx
and P0 and P1 its extrema points.

The knee is at the intersection of thigh and calf, hence foot
position F0

x is given by the extrema point the most distant
from the inertia ellipsoid of V0

thighx
(let say it’s P1). The

knee position will then be given by the following equation:

K0
x = Lcalf

P0 − F0
x

|P0 − F0
x|

+ F0
x (8)

Figure 7. Legs initialization; left: voxel binding, right: joints esti-
mation.

4. Body Parts Tracking
Using anthropometric measures initialization, the pre-

vious body pose and the labeled 3D shape estimation, we
track the human body parts in real-time. The computation is
made with the initialization steps ordering (Figure 3). First
it estimates head joints. Next, we track torso joints. Finally
we compute the limbs joints.

Head Tracking : Let Vn
face be the nearest connex com-

ponent of Vn
skin from Cn−1 + RheadDn−1

b2f . The head fitting
algorithm (section 3.2) is then applied using Vn

face. Head
joints estimation is then performed computing Bn, Tn and
Dn

b2f .
Torso Tracking : The torso fitting algorithm (section

3.3) is applied using Vn
act as initial value for Vn

torso(0) and
the vector from Bn to Pn−1 as initial value for Dn

torso(0).
Thigh and shoulder joints estimation is then performed
computing Pn, Tn

l , Tn
r , Nn, Sn

l , Sn
r , Dn

l2r and Dn
t2d.

Arms Tracking : Using spatial coherence property, each
current hand position is described by the nearest skin con-
nex component from last frame position Hn−1. If no connex
component is found we use previous computed motion as an
estimate for current frame motion, hence:

Hn = Hn−1 + Motionn−1 (9)

Once the new hand’s positions are known, the elbow posi-
tion is computed as described in 3.4.

Legs Tracking : For leg tracking, the binding (sec-
tion 3.5) is performed using the knee and foot positions at
previous frame using segments [Tn

l ,Kn−1
l ], [Kn−1

l ,Fn−1
l ],

[Tn
r ,Kn−1

r ] and [Kn−1
r ,Fn−1

r ]. Leg joints are then com-
puted as for leg initialization.

5. Results
The acquisition infrastructure is composed of four cali-

brated cameras, each connected to a dedicated computer. To
avoid network overload, background subtraction and skin
segmentation produce down-sampled images at 30 frames
per second at a resolution of 320 × 240 pixels. Results are



Figure 8. Results for challenging poses.

then transmitted to another computer which computes vox-
els and estimates joint positions.

Our method has been applied to different persons do-
ing fast and challenging motions. In all pictures, right side
skeleton’s bones a represented in red, the left bones are in
green and the others in orange. In the corresponding input
images, blue parts represent background, red parts corre-
spond to silhouettes, and white zones to skin parts.

Thanks to shape analysis and skin parts knowledge too,
our system is able to acquire the joints position for a chal-
lenging pose outlined on the top image of the Figure 8. This
pose is difficult because the 3D shape topology is not a hu-
man corresponding one.

The temporal coherence is the success key for the pose
presented int the bottom picture of the Figure 8.The 3D
Shape topology is a human one, but ambiguous as for the
feet.

The images presented Figure 9 prove that our system
works for the acquisition of a large range of motions. They
also demonstrate our method robustness on noised input im-
ages.

In few cases, knees articulations positions are not coher-
ent with the human kinematics chain constraints (see Fig-

ure 10), because they depend on the 3D shape estimation
quality. We are currently working on adding kinematics
constraint to our model. But we have to make it without
increasing computation time.

As our algorithm is based on 3D shape analysis, it is in-
dependent of the number of cameras used, but it depends on
the voxel grid resolution. Our current experimental imple-
mentation computes motion capture at 30 fps from a voxel
grid composed by 643 voxels in a 6m3 box. This resolution
is sufficient for human machine interfaces. For more pre-
cise acquisition we have to use better resolution. To con-
serve real-time computation, our method can be used only
from sets of surface voxels.

Our motion capture system is based on a Shape-From-
Silhouette algorithm. This algorithm computes an object
3D shape estimation from its silhouettes. The result directly
depends on the silhouette segmentation quality, which is al-
ways an opened problem of the computer vision science. If
the silhouette mask contains some noises like camera noise
or object shadows, the volume reconstruction will be very
noised. Thus the results of the motion capture will be worse.
But our method is also based on a skin segmentation which
is a more robust faced to camera noise. Then the hand and
head articulations are more noise-resistant, than others ar-
ticulations.

The segmentation we have selected is based on a skin-
colored stochastic learning from colored image set. It is
important to make the leaning process on a big data set, with
different kind of skin sample. If the skin sampling is biased
then the system will provide worse results, especially when
the skin color of the person filmed is not learned.

6. Conclusion

In this paper, we describe a new marker-free human mo-
tion capture system from a camera set. Fully automated and
working under real-time constraint, the system is based on
a 3D shape analysis, human morphology constraints, and a
3D shape skin segmentation. Combining different 3D in-
formation, the approach is robust to self-occlusion and poor
3D shape approximation provided by voxel estimation sub-
system.

We are able to achieve this by classifying voxels in skin
and non skin voxels, and carefully and orderly assigning the
voxels to body parts to determine and disambiguate joint
positions.

The current system provides real-time motion capture for
only one person. Current work aims at providing motion
capture of multiple persons filmed in the same acquisition
area, even when they are in contact.



Figure 9. Results for a wide range of movements.

Figure 10. The knees estimations are not coherent with the human
kinematics constraints.
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