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Abstract

This paper presents a novel and robust algorithm that retrieves the ro-
tation angle between two different patterns, together with their similarity
degree. The result is optimal in the sense that it minimizes the euclidean
distance between the two images. This approach is based on Zernike mo-
ments and constitutes a new way to compare two Zernike descriptors that
improves standard Euclidean approaches.

1 Introduction

Because of the semantic gap, it still remains quite difficult for a computer-vision
system to really understand the meaning of a real world image. A relevant way
for understanding an image is to recognize the 3D objects which compose it, as
well as their pose in the scene. The context of our work is the recognition of
3D objects present on a hand drawn storyboard of a computer-animated film.
The issue is here to cross the gap between the 3D model and the cartoonist
strokes. Formally, a single panel of the storyboard is a drawing that represents
various objects, which in addition are separately known as 3D polygonal meshes
in the database. As the storyboard is digitally sketched, the cartoonist creates
a distinct layer for each object. In this paper, we focus on identifying precisely
for each object its 3D viewing angle along with its rotation angle in the drawing
plane (we restrict to the unoccluded case). To reach that goal, we index an
important number of views for each 3D object using a global feature descriptor,
like in [1, 2]. The objective is then, for each drawing, to determine the most
similar view together with the corresponding planar rotation angle.

The choice of Zernike moments as global descriptor is well suited for our
problematic. Indeed, Zernike moments are widely used in image processing
because of both their robust and optimal ability to describe the information.
Rotation invariant pattern recognition using the magnitude of Zernike moments
has already been extensively studied [3,4]. Moreover, a small number of Zernike
moments characterizes effectively the global shape of a pattern, which makes
them robust to deformations. Some optimized processing method were recently
developed to compensate the high cost of Zernike moments computation [5–7].
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A recent comparative study can be found in [8]. One Zernike moment contains
two kinds of information: magnitude and phase, however, the usual way of com-
paring two Zernike descriptors in the context of 2D and 2D-3D indexing only
considers the moments magnitudes (as it brings invariance to rotation). This
loss of information can induce erroneous similarity measures when it deals with
relatively symmetric object such as cars or characters.
Moreover, the phase information of Zernike moments can be useful to find the
rotation angle between two patterns, together with their similarity. Two ap-
proaches have focused on the study of that rotation angle estimation problem.
The first one was brought by Kim and Kim [9]. It proved to be very robust
with respect to noise even for circular symmetric patterns. Nevertheless, the
probabilistic model used to recover the rotation angle makes the approach to
be disconnected from a concrete Euclidean distance between the images. The
second method was proposed by Kanaya et al. [10] to estimate the direction of
arrival (DOA) of a sound using antennas array. However, their approach is not
really applicable to our images indexing issue. Besides, those two methods do
not consider the possibility of recovering an angle between two different patterns
(i.e. in our case, a 3D model view and a sketch).

To solve these issues, we have developed a general and rigorously founded
approach for comparing two Zernike descriptors. Our algorithm enables to re-
trieve, in the same process, a similarity measure and an optimal rotation angle
between two different patterns. The following section concisely presents Zernike
moments. In section 3, we lean upon drawbacks of the conventional approach
to build our method. The computational efficiency is also a constraint because
the resulting comparator will be used within a matching process; We thus detail
a fast implementation in section 4. Finally, we present experimental results and
conclude in the last two sections.

2 Zernike moments

Complex Zernike functions constitute a set of orthogonal basis functions mapped
over the unit circle. Zernike moments of a pattern are constructed by projecting
it onto those functions. They share three main properties:

• The orthogonality: this property ensures that the contribution of each
moment is unique and independent.

• The rotation invariance: the magnitude of Zernike moments is indepen-
dent of any planar rotation of a pattern around its center of mass.

• The information compaction: low frequencies of a pattern are coded into
the low order moments. As a result, relatively small descriptors are robust
to noise or deformations.
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Mathematically, Zernike basis functions are defined with an order p and a rep-
etition q over D = {(p, q)|0 ≤ p ≤ ∞, |q| ≤ p, |p− q| = even}.

Zpq =
p + 1

π

∫ ∫
x2+y2≤1

V ∗
pq(x, y)f(x, y)∂x∂y (1)

where V ∗
pq denotes the complex conjugate of Vpq, defined as:

Vpq(ρ, θ) = Rpq(ρ).eiqθ and Rpq(ρ) =
p∑

k=|q|
|p−k| even

(−1)
p−k

2
p+k
2 !

p−k
2 !k−q

2 !k+q
2 !

ρk (2)

From eq. (1) and (2), Zernike moments of a pattern rotated by an angle α
around its origin are given as :

Zα
pq =

p + 1
π

∫ 2π

0

∫ 1

0

V ∗
pq(r, θ)f(r, θ + α)r∂r∂θ = Zpqe

iqα (3)

Eq (3) proves the invariance of the magnitude of Zernike moments to rotation
since |Zpqe

iqα| = |Zpq|. Finally, Zernike moments allow the analyzed function
to be reconstructed:

f̃(x, y) =
∑ ∑
(p,q)∈D

ZpqVpq(x, y) (4)

In the reminder of this paper, we will denote the usual comparator (i.e. in-
variant to rotation) of Zernike descriptors as the classical one. Formally, this
comparator is nothing else than an Euclidean distance between the magnitudes
of the moments:

distance =
∑ ∑
(p,q)∈D

(|Zpq| − |Z ′
pq|)2 (5)

3 Similarity measure and rotation angle retrieval

In this section, we first describe the two main problems that arise from the
classical approach in order to set our method off against these drawbacks. We
then define in the next subsection our new algorithm for Zernike descriptors
comparison, allowing to retrieve both an improved similarity and a generalized
rotation angle between two different images.

3.1 The classical approach

One smart solution to our problem of retrieving the most similar 3D pose of a
synthetic 3D object, along with its corresponding planar rotation angle, from a
given hand-made sketch would be (see the upper panel of fig. 1):

1. to describe each views of the 3D model using Zernike moments (off line),

2. to compute Zernike moments of the sketched object,
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3. to compare the descriptors two by two in a rotation invariant way, using
eq. (5)

4. to consider the best match to be the correct 3D pose, and finally

5. to estimate the planar rotation angle using existing angle estimation ap-
proaches [9, 10].

Figure 1: General plot of the conventional and the proposed approach. Whereas
the classical approach has to first elect the best rotation invariant match to then
estimate its rotation angle, our comparator unifies both similarity and rotation
angle retrieval.

However, steps (3) and (5) can both induce erroneous results. To begin with,
the classical comparator loses the phase information of Zernike moments. As a
result, two different patterns can be mistaken to be the same ones if only their
magnitudes are the same, like it is illustrated on fig. 2. In particular, since
a pattern has the same Zernike moments magnitudes than its symmetric, two
viewing angles of a 3D symmetric object present the same magnitudes and thus
can not be differentiated by the classical Euclidean comparator; Fig. 3 presents
such an example. As a consequence, this classical comparator may not enable
a correct 3D pose retrieval – in particular when it deals with symmetric 3D
objects.

Besides, in step (5) the existing methods for rotation angle estimation are
based on the hypothesis that the two patterns are the same (that is, except some
noise and the rotation). In our case, we have to compare different patterns since
in one hand we have 3D model views and in the other hand we have drawings. In
such situation, the existing angle estimators are quite ineffective (see an example
in fig. 4).

To solve the first issue, the classical descriptor has to take moments phases
information into account. One solution to the second issue is to define the
optimal angle as that which minimizes the Euclidean distance between the first
image and the rotated second one. We show in the following section that those
two solutions can be expressed in a single framework (fig. 1, bottom) to prevent
the before-mentioned errors to occur.
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Figure 2: The classical comparator can not distinguish two descriptors that only
differs by theirs phases, while the proposed comparator does.

Figure 3: Edge images of a car seen from both side. The magnitude of the
Zernike moments is the same for both views (a) and (b). Consequently, it is
impossible for the classical approach to decide whether a given sketch represents
either of these two views.

3.2 The proposed Zernike comparator

In this section, we describe a generalized method that retrieves both a similar-
ity measure and a rotation angle between two different images. The angle is
considered to be optimal since the Euclidean distance between the first image
and the rotated second one is minimal.
Let I and I ′ be two different images, and (I ′ ∗<φ) be the I ′ image rotated by φ.
The Euclidean distance between I and (I ′ ∗ <φ) can be expressed as a function
of the rotation angle φ as follows:

distance(I, I ′, φ) =
∑ ∑
x2+y2≤1

[I(x, y)− (I ′ ∗ <φ)(x, y)]2 (6)

Thus our objective is to minimize this expression so as to determine the corre-
sponding angle φ. Eq. (3) has shown that if the set of moments

{
ZI′

pq|(p, q) ∈ D
}

represents the I ′ image, then
{

ZI′

pqe
iqφ|(p, q) ∈ D

}
represents I ′ ∗ <φ. By re-

placing I and (I ′ ∗<φ) in equation (6) by their exact Zernike reconstruction, we
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Figure 4: Rotation angle retrieval between (a) a digital pattern and (b) its
rotated sketch. The estimation is erroneous for the robust estimator from [9]
(c) as it deals with different pictures, while the proposed approach (d) retrieves
a correct angle.

obtain:

distance(I, I ′, φ) =
∑ ∑
x2+y2≤1

∑ ∑
(p,q)∈D

Vpq(x, y)(ZI
pq − ZI′

pqe
iqφ)

2

=
∑ ∑
x2+y2≤1

 ∑ ∑
(p,q),(u,v)∈D2

Vpq(x, y)(ZI
pq − ZI′

pqe
iqφ)Vuv(x, y)(ZI

uv − ZI′

uveivφ)


=

∑ ∑
(p,q),(u,v)∈D2

(ZI
pq − ZI′

pqe
iqφ)(ZI

uv − ZI′

uveivφ)

∑ ∑
x2+y2≤1

Vpq(x, y)Vuv(x, y)


=

∑ ∑
(p,q)∈D

〈Vpq, Vp−q〉
∣∣∣ZI

pq − ZI′

pqe
iqφ

∣∣∣2 (7)

where ZI
pq and ZI′

pq represent Zernike moments of images I and I ′, respectively,
and 〈Vpq, Vuv〉 denotes the scalar product of two Zernike basis functions over the
unit disc. Thanks to the orthogonality of the basis, this product is null except
for the case where (p, q) = (u,−v). In that case, it can be simplified into:

〈Vpq, Vp−q〉 =
〈
Vpq, V

∗
pq

〉
=

π

p + 1
(8)

At first glance, eq. (7) is not trivial to minimize but it can be rewrote as follows:

distance(I, I ′, φ) =
∑ ∑
(p,q)∈D

π

p + 1

∣∣∣ZI
pq − ZI′

pqe
iqφ

∣∣∣2

=
∑ ∑
(p,q)∈D

π

p + 1

∣∣ZI
pq

∣∣2 ∣∣∣∣∣
∣∣∣∣∣ZI′

pq

ZI
pq

∣∣∣∣∣ ei(qφ+[ZI′
pq]−[ZI

pq]) − 1

∣∣∣∣∣
2

=
∑ ∑
(p,q)∈D

π

p + 1

(∣∣ZI
pq

∣∣2 +
∣∣∣ZI′

pq

∣∣∣2 − 2
∣∣∣ZI

pqZ
I′

pq

∣∣∣ cos(qφ + [ZI′

pq]− [ZI
pq])

)
(9)
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where |Zpq| and [Zpq] denote respectively the modulus and the argument of Zpq.
Formula (9) points out that the only parameter whose the distance depends is
φ, which in addition is only present into the cosine functions. As a consequence,
the search for optimal distance and angle will result in minimizing a sum of
cosines.
To conclude with, equation (9) describes a generalized manner to compare two
Zernike descriptors which enables the solving of both issues mentioned in section
3.1 : the similarity measure is improved and it depends on a single parameter φ
which is the optimal rotation angle. The next section focuses on resolving this
minimization so as to insure a low complexity and a fast computing time.

4 Efficient minimum search

In this section, we describe how to efficiently extract the global minimum of eq.
(9) by restricting the search using Nyquist-Shannon sampling theorem. Assum-
ing that the Zernike moments of each image are known until the N th order, the
sum initially comprises O(N2) cosine terms. Nonetheless, the equation can be
simplified by removing the constant terms and by aggregating the cosine terms
that have the same frequency, as follows:

A1 cos(qφ + B1) + A2 cos(qφ + B2) = |C| cos(qφ + [C]) (10)

where C is a complex that worths A1e
iB1 + A2e

iB2 . Then, eq. (9) can be
equivalently expressed as a sum of N cosines :

fN (φ) =
N∑

q=1

Aqcos(qφ + Bq) with (Aq, Bq) ∈ R2 (11)

4.1 Restricting the search of a global minimum

One can notice that fN (φ) is a 2π-periodic function. Usually, the general tech-
nique for finding the minimum of a periodic function is a gradient descent.
Indeed, fN (φ)’s first and second derivative are easy to compute. However, such
functions generally have many local minima whereas our approach requires to
find the global one. One expensive solution is then to find every local minima
and maxima with the gradient descent method by following the function from
φ = 0 to 2π.

However, fN (φ) owns a discrete Fourier spectrum bounded by a maximal
frequency fMAX

N = N/2π. Hence, fN (φ) have at most N local maxima and
N local minima in [0, 2π[. Moreover, the Nyquist–Shannon sampling theorem
teaches us that the function can not change substantially between two consec-
utive sampling points taken at the Nyquist frequency F = 1/T = N/π. The
minimal distance between two consecutive minima is thus bounded by π/N .
The initial starting points for finding every possible minima with a gradient de-
scent can thus be equally scattered in 2N points. Moreover, by cutting fN into
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4N intervals, we ensures that only one minimum or one maximum is present in
each interval (see fig. 5).

4.2 Optimized minima retrieval

Our approach for optimizing the gradient descent takes advantage of the previ-
ously formulated properties. fN is sampled by 4N points equally spread between
[0, 2π[: {xn = nπ/2N | 0 ≤ n < 4N}. We compute fN ’s differential, denoted as
f ′N , for each of those points. Section 4.1 ensures that if and only if a minimum is
present between two consecutive points [xn, xn+1], then f ′N (xn) is negative and
f ′N (xn+1) is positive (see fig. 5). Moreover, those differential values enable to
approximate the abscissa of the local minimum. Indeed, by approximating fN

between [xn, xn+1] as a second degree polynomial, then the minimum abscissa
can be evaluated at:

xminimum =
xn+1f

′
N (xn)− xnf ′N (xn+1)

f ′N (xn)− f ′N (xn+1)
= xn−

π

2N

f ′N (xn)
f ′N (xn)− f ′N (xn+1))

(12)

Figure 5: A random function f3 cut into 4N = 12 intervals. Each interval
contains at most one local minimum. When a minimum exists in the interval,
the left derivative is negative and the right derivative is positive. Positions of
the second order approximation are represented by crosses.

For our application, the gradient descent algorithm does not need to be
iterated to reach a high precision since this simple approximation (represented
as crosses in fig. 5) is precise enough for our purposes (cf. experimental results
in 5.1). Finally, the computational complexity of our approach for the distance
minimization using the approximation is O(N2) . Our approach has then the
same computational complexity than the classical Zernike comparator (eq. (5)).
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5 Experimental results

This section includes experimental results that demonstrate the efficiency of our
minimum search, a comparison with existing angle estimation approaches and
some visual examples within our sketched object recognition application.

5.1 Efficient minimum search

In order to demonstrate the efficiency of our minimization approach (see section
4), a set of 30,000 random functions fN (φ) was created. For each of 3 different
bandwidths N = {6, 12, 24}, there were 10,000 functions with random Ap and
Bp. Firstly, we have computed for each function the exact solution φ and the
approximation φ̃ using respectively an exhaustive gradient descent and the pro-
posed optimization. Secondly, we have compared both results and distinguished
two types of situation:

1. The global minimum is found : φ ≈ φ̃,

2. Another minimum is found.

The second case derives from situations where the function admits more than
one solution. In term of Zernike description, when there are n − 1 secondary
minima as small as the global one, that concretely means that the pattern is
n-fold symmetric. For instance, a circular symmetric pattern can be rotated in
an equivalent way by two different angles {α, α + 180◦}. Consequently, what
truly determines the rightness of the retrieved angle is the vertical error on the
depth of the approximated minimum.

φ ≈ φ̃ φ 6= φ̃

N = 6
Occurrences 9,986 14
RMS error on φ̃ 0.81◦ 107.6◦

RMS error on f̃N 0.197% 0.537%

N = 12
Occurrences 9,991 9
RMS error on φ̃ 0.36◦ 119.4◦

RMS error on f̃N 0.122% 0.472%

N = 24
Occurrences 9,986 14
RMS error on φ̃ 0.16◦ 98.8◦

RMS error on f̃N 0.083% 0.215%

Table 1: The average RMS errors corresponding to the approximation of the
minimum position for various N .

Table 1 details the RMS errors of angle φ̃ and depth of the minimum fN (φ̃) =
f̃N for both situations. The proportion of occurrences of the second case (the
retrieved minimum is not the global one) is comprised below 0.15%. In the
first case, the RMS errors of the angle and the minimum depth do not run
over 0.81◦ and 0.2%, respectively, even for N = 6 (when the approximation is
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the coarser). In the second case, the RMS error of the angle is high because a
different mininum is retrieved. However, the depth of this minimum is similar
to that of the global one since the maximum RMS error of f̃N is comprised
below 1% in the worst case. That means that the minimum found may not be
the global one but is really close in terms of depth. As a conclusion, we can
consider that our approximation is accurate enough for our application, when
at least 16 Zernike moments of the patterns (i.e. up to the 6th order) are used.

5.2 Rotation angle retrieval between similar patterns

We have conducted experiments to demonstrate the accuracy of our approach
in the specific case of rotation angle estimation between similar but noised
patterns. We have performed the experiment on one hundred and two logo
images (gray levels, 100 × 100 pixels). Some of them are shown in fig. 6. The
images were rotated by random angles. Then, 20db and 10db noise in terms of
SNR were added to each rotated pattern. 25 Zernike moments were computed
up to the 8th order for both the original and the test patterns around their
center of mass. Note that the position of the center of mass may be slightly
shifted between the original and the modified patterns because of the noise. The
total number of test images is 1,836 : 102 (the number of original patterns) × 6
(the number of rotations) × 3 (noise-free, 20dB and 10dB noise added). Results

Figure 6: Some of the patterns used in the experiments.

using the robust estimator from Kim and Kim [9] and the proposed method are
presented in table 2. The RMS error using our method is systematically lower
than the robust estimator error, with or without added noise. In particular, the
average RMS error of our method ranges from 0.37◦ in the noise–free condition
to 0.58◦ in the worst case of noise. The average error of the worst 5 percent
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with the most severe noise yields less than 1.9◦, while it lightly overtakes 2.3◦

using the robust estimator. On average, our estimator is about 20% better than
the Kim and Kim approach [9].

Noise-Free SNR=20dB SNR=10dB

Robust
Estimator
Method

Overall average 0.21◦ 0.33◦ 0.76◦

Average of the worst 15% 0.49◦ 0.71◦ 1.69◦

Average of the worst 10% 0.56◦ 0.80◦ 1.93◦

Average of the worst 5% 0.67◦ 0.95◦ 2.34◦

Proposed
Method

Overall average 0.17◦ 0.30◦ 0.58◦

Average of the worst 15% 0.37◦ 0.64◦ 1.32◦

Average of the worst 10% 0.42◦ 0.73◦ 1.51◦

Average of the worst 5% 0.52◦ 0.89◦ 1.85◦

Table 2: The average RMS error of rotation angle using the robust estimator
method and the proposed method.

5.3 Rotation angle retrieval between different patterns,
application to 3D sketched object recognition

Since the rightness of the rotation angle retrieval between different pictures is
quite hard to define, we have substituted a visual comparison instead, within
the framework of our application: recognition of the pose of a 3D object present
on a sketched storyboard. For that aim, several views of the 3D object (a
3D polygonal mesh) were taken every 20◦ intervals on latitude and longitude,
then corresponding edge images were constructed and described using Zernike
moments. On the other hand, the sketched patterns were also preprocessed
(skeletonization, noise removal) in order to facilitate the recognition. Then,
the most similar views (corresponding to specific 3D poses) along with their
planar rotation angles were computed for each of three drawing sketches using
the classical approach (Zernike descriptor matching and then rotation angle
retrieval using [9]) and the proposed approach.

For each trailer sketch, the three best retrievals are presented in table 7. The
quality of the first two sketches is quite good whereas the last one (last row)
was degraded on purpose to test robustness to noise. Our method provides very
stable results even with the most severe degradation. One can also notice that
the first sketch looks like a union of the first two views retrieved by our method.
On the contrary, the classical approach is unstable for the second and third
sketches as it retrieves symmetric views for the third best results. In the case
of the low quality sketch, the robust angle estimator [9] fails at retrieving the
rotation angle even when the viewing angle is the correct one.
Even if the subjectivity takes a big place in this evaluation, it is clear that in
the second and third sketch cases the proposed approach well evaluate the views
whereas the classical method fails at retrieving the correct 3D pose or the planar
rotation angle.
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Figure 7: Comparative statement of the classical and the proposed approach
with for each method the first, second and third best retrieved 3D pose. Each
image was rotated by the angle computed with the corresponding method.

6 Conclusion

We have presented a new efficient comparator for Zernike descriptors, which
improves the similarity evaluation while additionally providing the rotation an-
gle between the corresponding patterns. Moreover our approach owns the same
O(order2) complexity than the classical Euclidean distance between Zernike de-
scriptors. In terms of rotation angle estimation, experiments have shown a 20%
improvement compared to the robust estimator from Kim and Kim [9]. This
works is particularly suited for 3D indexing and pose retrieval.
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