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Abstract

The production of high-throughput gene expression data has generated a crucial need for bioinformatics tools
to generate biologically interesting hypotheses. Whereas many tools are available for extracting global
patterns, less attention has been focused on local pattern discovery. We propose here an original way to
discover knowledge from gene expression data by means of the so-called formal concepts which hold in
derived Boolean gene expression datasets. We first encoded the over-expression properties of genes in
human cells using human SAGE data. It has given rise to a Boolean matrix from which we extracted the
complete collection of formal concepts, i.e., all the largest sets of over-expressed genes associated to a
largest set of biological situations in which their over-expression is observed. Complete collections of suc
patterns tend to be huge. Since their interpretation is a time-consuming task, we propose a new method to
rapidly visualize clusters of formal concepts. This designates a reasonable number 
Quasi-Synexpression-Groups (QSGs) for further analysis. The interest of our approach is illustrated using
human SAGE data and interpreting one of the extracted QSGs. The assessment of its biological relevancy
leads to the formulation of both previously proposed and new biological hypotheses.
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Introduction

Producing massive amounts of gene expression data is an everyday task for biologists involved in OMI
programs. The critical bottleneck is now to derive knowledge from such huge datasets.

An important area of research deals with the identification of co-expressed gene sets known as
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synexpression groups [Lee et al., 2004] or transcription modules [Stuart et al., 2003]. It is motivated by a
consensual hypothesis in molecular biology which states that co-expressed genes interact together to
perform the same biological function [Lee et al., 2002].

Clustering or co-clustering are popular techniques for the identification of candidate synexpression groups
from gene expression matrices. A partition is a typical global pattern that defines a similarity structure which is
observed in the whole data set. As a result, partitions can ignore locally strong associations between th
expression profiles of subsets of genes within subsets of samples. Also, most of the clustering algorithms do
not allow clusters to overlap. This is obviously a problem given that many genes have different functions and
thus might be involved in several synexpression groups.

To overcome these limitations, several local pattern discovery techniques have been designed. First, 
researchers have been considering the so-called biclustering methods which enable to identify subsets of
genes sharing compatible expression patterns across subsets of biological samples [see Madeira and
Oliveira, 2004; Prelic et al., 2006, for surveys]. These patterns are local (i.e., they hold in a subset of the data)
and the discovered bi-clusters can overlap. However, the mining algorithms are generally heuristic ones:
some a priori interesting patterns are computed but complete, say exhaustive, methods can not be designed
for most of the numerical data analysis tasks.

On another hand, many researchers have been considering complete algorithms for local set pattern mining
from Boolean data. These methods are complete in the sense that all the patterns which satisfy a giv
user-defined constraint can be extracted. This has been applied with some success to gene expression d
analysis. For instance, a few authors have investigated the use of association rule discovery (ARD) to
generate biologically relevant hypotheses from gene expression Boolean matrices [Becquet et al., 2002;
Creighton and Hanash 2003; Li et al., 2003; Elati et al., 2005; Georgii et al., 2005]. Boolean gene expression
properties, such as over-expressions, are encoded for genes in given biological samples. Then, frequent and
valid association rules, i.e. local patterns that can inform investigators about potential associations between
sets of genes or sets of samples, can be generated. A major problem with the ARD technique is that hu
collections of rules can be generated in even quite small datasets because they are all satisfying the
user-defined constraints (e.g., the conjunction of a minimal frequency value and a minimal confidence value).
The redundancy in classical association rule collections is now well understood and one solution is to
consider some non redundant subsets, e.g., exploiting the properties of closed sets. For instance, the
so-called formal concepts are built on closed sets. Each formal concept is a maximal set of genes satisfying
the encoded property (e.g., over-expression) associated to the maximal set of biological samples (see Fig. 1)
in which this expression property occurs.

Click on the thumbnail to enlarge the picture

Figure 1: Definition of a formal concept. More generally, a 
formal concept is a maximal set of attributes (columns or tags) 
that are verified (value = 1) by a maximal set of objects (lines or 
SAGE libraries). In this toy Boolean gene expression matrix, 
the over-expression of a gene was appropriately encoded: 
when a tag Ti is found over-expressed in the SAGE library Sj, 
its value is 1. In this context, 3 formal concepts can be 
extracted: {(S1,S2,S3);(T1,T2,T3)} (in black), 
{(S4,S6);(T4,T5,T6,T8)} (light grey), {(S5);(T7)} (dark grey). We 
can notice that a formal concept can also be considered as a 
bicluster with a constant value (the true value) which also 
satisfy two maximality constraints.

Thanks to the huge effort for Boolean data mining the last 5 years, efficient algorithms are available for mining
formal concepts from large matrices. Complete extractions are tractable even for the tens of thousands o
attributes that might denote genes in Boolean gene expression datasets. Indeed, the number of formal
concepts is exponential in the smallest dimension of the matrix, which can be rather small in the context of
gene expression data where a few tens of samples are common. While feasible, the number of extracted
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formal concepts in real datasets can be huge, up to millions.

To limit the number of such local patterns, while enforcing their relevancy for a given task, a first approach is
to exploit constraint-based mining. In this context, the analyst specifies constraints that have to be satisfied by
the patterns, e.g., the extracted formal concepts must be "large enough" and contain a given subset of genes
or
a given subset of samples, etc. Pushing such constraints into mining algorithms has been studied seriously
over the last few years and it enables to speed up the computation while reducing the size of the extra
collections. In turn, from the end-user point of view, this increases the a priori relevance and this reduces t
number of patterns to be interpreted. We [Klema et al., 2006] and others [Carmona-Saez et al., 2006] recently
described the use of external constraints (stemming from the literature or from the GO ontology) to reduce
and annotate the extracted patterns. Nevertheless the computed collections still remain huge, up to ten
thousands.

It is now well understood that the number of formal concepts increases dramatically in noisy data sets (i.e., a
0 value has been recorded instead of a 1 value or vice versa). This is particularly true with Boolean gene
expression data which are intrinsically noisy. Therefore, an idea is to extend formal concepts towar
fault-tolerance (see, e.g., Besson et al., 2006a; Besson et al., 2006b). Such fault-tolerant patterns (FTPs) can
be viewed as formal concepts in which a limited number of exceptions are tolerated (e.g., one tolerates that a
few genes are not over-expressed in a small subset of situations, in the final synexpression group). Whether
FTPs might generate interesting hypotheses in real-life situations remains unclear: the mining task 
computationally much harder than for formal concept discovery. Indeed in large and/or dense data sets
exhaustive generation of FTPs becomes intractable [Besson et al., 2006b]. When considering biclustering
techniques [Madeira and Oliveira 2004], it is also possible to look for some kind of fault-tolerant patterns like
biclusters that contain almost constant values. However, let us recall that in that case, only heuristic
techniques are available. Notice also that such a computation that seek bi-sets based on similar expression
levels, disregarding specific gene expression properties like over-expression, has to be considered as a
different type of analysis task.

In this paper, we present a pragmatic solution to support the interpretation of collections formal concepts
which hold in Boolean gene expression datasets. We present an original post-processing technique that
groups together similar formal concepts. Each cluster of sufficiently similar formal concepts can be
represented by a bi-set (i.e. a set of genes associated to a set of samples) and these bi-sets denote strong
local associations between sets of genes and sets of samples. These representative bi-sets a
Quasi-Synexpression Groups (QSGs): they tend to capture maximal associations that tolerate a few false
values as exceptions.

Most of the algorithms used here have been described in much more generic settings separately (Rioult et al.,
2003; Robardet et al., 2004
for tools usable in the application BioMiner). This is the first paper in which they are combined, and used
non-trivial application with respect to a real-life problem, namely human SAGE data analysis. We sketch
complete KDD (Knowledge Discovery from Databases) process on human SAGE data, i.e., data
pre-processing, formal concept extraction, formal concept selection, clustering of formal concepts and
biological interpretation. For the sake of brevity, only one resulting QSG is discussed.

Methods

From a computational perspective, three major steps are involved in our KDD process:

Pre-processing the data;1.

Computing formal concepts;2.

Post-processing formal concepts.3.

Data pre-processing
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The human SAGE libraries were downloaded in December 2002 from the NCBI web site (NCBI). In order
eliminate putative sequencing errors, all tags appearing only once in one library [Keime et al., 2007] were
discarded. The libraries were normalized by dividing the frequency of each tag by the total number of ta
composing that library. This frequency was multiplied by 300,000 (the estimated number of mRNAs
molecules per cell [Velculescu et al., 1999]) to give an integer value which means "the number of copies of
that mRNA per cell". The tags were identified by Céline Keime in February 2005 using Identitag [Keime et al.,
2004] and the updated RefSeq database dated 2/2/2005. A database containing all the information on the
tags, the libraries, and level of expression was created.

Applying the same treatments as those described in [Becquet et al., 2002], a gene expression matrix
displaying the expression level of 27,679 genes (or tags) in 90 biological situations (or libraries) was
generated.

Next, a feature selection process was performed: genes were filtered by means of an ANOVA analysis with
the BioConductor Package of the R software (see
http://www.bioconductor.org/repository/devel/vignette/howtogenefilter.pdf). This filter selects the tags that best
discriminate the samples with respect to the type of organ of origin of the cells.

Among the 27,679 tags, 5327 were found to better discriminate the seven groups of biological situations. This
allowed the construction of a matrix displaying the expression level of 5327 genes in 90 biological situations
on which all further experiments have been performed.

To apply efficient local set pattern mining techniques on Boolean data, we must identify a specific gene
expression property (in principle, several properties per gene could be encoded, e.g. over-expre
under-expression). In this study, we decided to focus on over-expression. Thus if a gene is over-expressed in
a situation then there will be a true value (1) in the corresponding Boolean matrix cell, otherwise the value is
0, i.e., false. Several ways exist for identifying gene over-expression [Becquet et al., 2002]. The
Middle-Range discretization technique was used: for this, the highest and lowest expression values were
identified for each tag and the mid-range value was defined as being equidistant from these two numbers
(their arithmetic mean). Then, all expression values below or equal to the mid-range threshold were set to 0,
and all values strictly above the mid-range were set to 1. Mainly two reasons guided this choice: 1. since the
level of discretization does not depend upon the value of one given parameter, it is more robust, and easier to
use; and 2. this discretization method has been validated through an automated evaluation method [Pensa et
al., 2004].

Extraction of formal concepts

A formal concept in a Boolean matrix is a maximal set of columns associated to a maximal set of rows such
that there are only true values between these lines and columns (Fig. 1). Intuitively, it is a maximal rectangle
of true values modulo arbitrary permutations of rows and columns, i.e., combinatorial rectangles. In our
Boolean gene expression data analysis context, a formal concept is a largest set of over-expressed ge
associated to a largest set of biological situations in which their over-expression is observed. Notice that
exception (false value) is tolerated here. Let us now formalize this pattern domain.

Assume G denotes the set of genes (tags in SAGE data, |G| = 5327 in our concrete instance) and S denotes
the set of samples (libraries for SAGE, |S| = 90 in our concrete instance). The over-expression property can
be encoded into a binary relation r ⊆ G × S. (gi,sj) ∈ r denotes that gene i is over-expressed in sample j. A
formal concept in r is a bi-set (X,T) ∈ 2G × 2S such that T = ψ(X,r) and X = φ(T,r). (ψ,φ) is the so-called Galois
connection and is defined as follows: φ(T,r) = {g ∈ G | ∀ s ∈ T, (g,s) ∈ r} and ψ(X,r) = {s ∈ S | ∀ g ∈ X, (g,s)
∈ r}. By construction, when (X,T) is a formal concept, X and T are closed sets, i.e., sets which are equal to
their closures given the two dual closure operators ψοφ and φοψ. Interestingly, it is possible to compute every
formal concept by computing every closed set on the smallest dimension, say the samples, and then
associate the corresponding closed set in the other dimension, say the genes, by using the Galois
connection. Each formal concept can be computed this way [Rioult et al., 2003].
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From the computational point of view, computing formal concepts from small data sets is often tractable ev
though the problem is exponential in the smallest dimension of the matrix. The problem is much harder as
soon as large contexts (the smallest dimension is more than a few tens) and a high density (i.e., a high
number of true values) are mined. The solution can come from the intensive research on set pattern mining.
For instance, extremely efficient algorithms have been designed for computing the so-called σ – frequent
closed sets, i. e., every closed set T of genes such that |φ(T,r)| > σ or every closed set such that |ψ(G,r)| > σ,
see among others [Pasquier et al., 1999; Zaki and Hsiao, 2002]. A survey on such algorithms was made
available thanks to the FIMI initiative [Goethals and Zaki 2004]. One should also note that the algorithms for
computing the so-called concept lattices are relevant for mining frequent closed sets (see Kuznetsov and
Obiedkov, 2002, for a review).

These techniques can be used for computing part of the collection of formal concepts, e. g., formal concept
whose one of the set component has a minimal size. However, when looking for complete collections and
when the Boolean data turns to be dense and/or large, these approaches fail. In many application domains, it
is clear that large enough patterns are useful but this imposes to consider not one dimension only. Intuitively,
an area constraint which would enforce that |X|∗|T| is over a user-defined threshold will avoid to capture
patterns that are not significant. Tackling such constraints is difficult because the specialization relations 
samples (respectively on genes) are in opposite directions (subset vs. superset). Considering constraints on
both dimensions and pushing them efficiently during the data mining phase is thus challenging but extreme
useful. This has been studied for constraint-based data mining of formal concepts in [Besson et al., 2005]
where the D-Miner algorithm is described. This algorithm not only enables to compute every formal concept in
rather dense Boolean matrices but also it exploits other user-defined constraints for pruning the search space
(e.g., pushing minimal size constraints on both sets that constitute the patterns). The input of D-Miner is
description of a Boolean matrix and the optional specification of constraints on the desired formal concepts.
The D-Miner software is freely available as part of the BioMiner software package (BioMiner, see availab
section).

Post processing collections of formal concepts

Let us assume now that well-specified collections of formal concepts have been extracted and stored. In other
terms, complete collections of patterns satisfying a given constraint were stored into pattern databases. Now,
the challenge is to support the subjective search for relevant patterns according to a specific analysis tas
biological question. Basically, two types of tools were implemented. First, querying tools over collections of
formal concepts were designed, which enables the operator to ask questions with respect to the collection o
formal concepts. Next, a technique for grouping similar formal concepts was designed.

These tools allowed the identification of formal concepts that appear to be interesting with respect to three
criteria: homogeneity in the library description, presence of a keyword in the gene description, and finally size
of the set components. Clearly, these selection criteria can be arbitrarily combined.

In order to cluster formal concepts, the possibility of performing a classical agglomerative hierarchical
clustering operation on formal concepts instead of genes or samples was considered. The main difficulty is 
define a similarity measure, which can take into account both genes and biological samples. The intuition is
that the overlap between two formal concepts with respect to common genes and situations can be measured
and used as a distance.

Definition. Let ci and cj be two formal concepts containing respectively Xi and Xj as sets of over-expressed
tags and Ti and Tj as sets of libraries, the distance between ci and cj is defined as follows:

where Δ is the symmetrical set difference between Si and Sj: SiΔSj = |(Si∪Sj)\(Si∩Sj)|.

Now, distances have to be computed between two clusters of formal concepts. Since there is usually much



Clustering formal concepts to discover biologically relevant knowledge... http://www.bioinfo.de/isb/2007/07/0033/main.html

6 sur 16 30/11/2007 20:57

more formal concepts than tags or libraries, we decided to use pseudo concepts, as suggested in [Robardet
et al., 2004]. The idea is to associate to each cluster a pseudo concept summing up the main characteristics
of the formal concepts it contains. A pseudo concept is composed of two fuzzy sets: one for tags and the
other one for libraries. A fuzzy set is a set whose element membership is quantified. For example, for a fuzzy
set of tags, a parameter αi

(a real number between 0 and 1) is used to measure the degree of membership of the ith tag. When αi equals
0, it means the ith tag is never present in the fuzzy set, and thus in the pseudo concept. Symmetrically, when
αi equals 1, it means the ith

tag is always present in the fuzzy set, and thus in the pseudo concept. Biologically, αi evaluates the
probability that the ith tag is over-expressed in the situations contained in the pseudo concept. The same
principle can be used for a fuzzy set of libraries.

Definition. Let S = {s1, s2, ..., sR} be the set of R libraries and G = {a1, a2, ..., aM} be the set of M tags, a
pseudo concept is (X', T', N) such that X' = {(a1,n1), ..., (ai,ni), ..., (aM,nM)}, m>T' = {(s1,m1),..., (sj,mj), ...,
(sR,mR)} and N is the number of formal concepts represented by the pseudo concept where for all i ∈ {1,...,M}
and j ∈ {1,...,R} then ai ∈ [0;1] and sj ∈ [0;1].

The pseudo concept (X',T',N) of a formal concept (X,T) is defined as follows:

The pseudo concept (X', T', N) of two pseudo concepts (X'1, T'1, N1) and (X'2, T'2, N2) is defined as follows:

Now, the typical merging phase of two clusters for a hierarchical clustering (like UPGMA) is efficiently
computed as a merge between two pseudo concepts. The clustering result can be represented on a graph
familiar to most biologists: the TreeView algorithm proposed in [Eisen et al., 1998] was used. A portable
implementation is available (see TreeView, http://genetics.stanford.edu/~alok/TreeView/). This helps the
biologist deciding at which depth a cluster of formal concept is analyzed, and the resulting bi-set will now be
called a Quasi-Synexpression-Group (QSG).

Every QSG can be viewed by representing the grouping of formal concepts it harbors either as a function of
genes or as a function of biological situations. In any case, a color-coding approach supports the visu
identification of potentially interesting QSGs. An option enables cluster selection: graphically, it is possible to
select an area of the TreeView output. This area corresponds to a formal concept set for which several
biological situations or tags are over-represented. The output is a representation of a new matrix showing
biological situations in line and the genes in columns. At the intersection, there is the number of formal
concepts in which the gene is found over-expressed within the QSG. Using this representation, it is easy to
identify which genes or situations are really in the QSG such that one can remove a marginal gene or
situation.

Availability

The implemented software prototypes used in this study are either online (BioMiner available on
http://liris.cnrs.fr/dmidb/BioMiner/index.php) or available for free upon request to the authors. We have
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implemented a web-based database, called SQUAT (for "SAGE querying and analysis tools"), which allow
biologist to query raw SAGE data as well as formal concepts and QSGs. This database is available at:
http://bsmc.insa-lyon.fr/squat and will be described elsewhere (Leyritz et al., in preparation).

Results

Generation of QSGs

64,836 formal concepts holding in the 5327×90 Boolean matrix were extracted. As a reminder, in such a
matrix, there are theoretically 290 possible formal concepts (~1030). Even if the end result is a very small
proportion (~6.5×10-26) of all possible combinations, this nevertheless represents an unmanageable amount
of information for the biologist.

In order to reduce it, formal concepts were first selected according to the tissue homogeneity and the size of
the formal concepts. The evolution of the number of formal concepts with respect to these criteria is shown on
Fig. 2.

Click on the thumbnail to enlarge the picture

Figure 2: Selection of formal concepts according to different 
criteria. The graph sums up the variations of the number of 
formal concepts according to different values of the 
parameters. "No tissue selection" means that all the formal 
concepts have the required minimal size (at least 3 tags and 3 
situations as the starting point). The black arrowhead points 
toward the formal concept set which was aggregated by 
clustering.

It is interesting to note that a large majority of the formal concepts involve libraries from different organ types,
since using the organ homogeneity criterion severely reduced the number of formal concepts. By using the
word "Brain" as a selection filter (note that 25% of our libraries are derived from brain), one drops from 41,114
formal concepts (obtained from a selection filter using no keyword, at least 3 tags and at least 3 libraries) to
961 ("brain" keyword, at least 3 tags and at least 3 libraries - cf. Fig. 2). The method therefore captures the
simultaneous over-expression of a limited number of genes that are mostly not tissue specific. This is
expected because of the local property of the extracted patterns.

This first selection procedure reduces the number of formal concepts but a second selection step can furth
simplify the biological interpretation. Therefore, the potential of the formal concept clustering method wa
assessed.

For this, from the original 64,836 concepts, the 1669 concepts involving at least 5 libraries and at least 5 tags
(see arrowhead on Fig. 2) were first selected. Those concepts were then grouped according to the
hierarchical clustering approach. The resulting clusters were visualized using Tree view [Eisen et al., 1998].
This leads to 50 QSGs than can be identified visually (Fig. 3). Numerous QSGs were analyzed (not shown).
Among those, a representative QSG associating 7 SAGE libraries to 13 tags (Tab. 1) was selected for further
studies.
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Click on the thumbnail to 
enlarge the picture

Figure 3: Visual selection of a quasi-synexpression-group (QSG). This 
classification is obtained from the 1669 formal concepts selected with the 
following selection criteria: the formal concepts associate at least five libraries 
with at least five tags. The visually selected QSG is composed in arrays by all 
95 formal concepts and in columns by 7 SAGE libraries (shown in bold) mainly 
present in the QSG. On the left, one can see the formal concept classification 
(only half of the classification is shown). A similar classification can be obtained 
by displaying the formal concepts as a function of tags.

Table 1: One sample of a biologically interesting QSG. 
A. Repartition of the formal concepts in the QSG with respect to the tags and the libraries of the cluster

Tag sequence
Library number

20 37 45 46 48 51 57
AGATCCTACT 14 13 0 9 0 13 13

AGCTCTCCCT 22 19 27 21 21 27 0

AGGCTACGGA 13 12 18 14 13 18 0

AGGGTGAAAC 16 14 19 0 16 17 11

CAGCTCACTG 18 17 15 19 0 15 17

CCCATCCGAA 67 60 71 65 45 61 47

CCTCCACCTA 14 14 16 16 11 0 13

CGGTTTGCAG 66 60 69 62 44 58 47

CTCTTCGAGA 0 15 17 16 11 14 9

GCGTGATCCT 18 18 20 17 16 16 16

GGCAAGAAGA 29 0 29 26 20 26 16

GTTGCTGCCC 56 51 54 50 35 40 46

TGGGCAAAGC 14 12 14 15 11 11 0
It should be read as follows: there are 14 formal concepts in the QSG that associates the tag AGATCCTACT to the 
library no. 20. The zeros points to tags/situations associations that were not found in any of the 95 formal concepts.

B. Identification of the tags contained in the QSG.

Tag sequence Tag identification Gene 
symbol

AGATCCTACT farnesyl-diphosphate farnesyltransferase 1 FDFT1

AGCTCTCCCT ribosomal protein L17 RPL17

AGGCTACGGA ribosomal protein L13a RPL13A

AGGGTGAAAC splicing factor, arginine/serine-rich 9 SFRS9

CAGCTCACTG ribosomal protein L14 RPL14

CCCATCCGAA Transcribed sequence with strong similarity to protein 
sp:Q02877 (H.sapiens) RL26_HUMAN 60S ribosomal protein 

L26

?

CCTCCACCTA peroxiredoxin 2 PRDX2

CGGTTTGCAG Nit protein 2 NIT2

CTCTTCGAGA glutathione peroxidase 1 GPX1

GCGTGATCCT aldo-keto reductase family 1, member A1 (aldehyde reductase) AKR1A1
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GGCAAGAAGA ribosomal protein L27 RPL27

GTTGCTGCCC seven transmembrane domain protein NIFIE14

TGGGCAAAGC eukaryotic translation elongation factor 1 gamma EEF1G

C. Description of the libraries contained in the QSG.

Library number Library name Library description
20 SAGE_LNCaP Prostate adenocarcinoma cell line

37 SAGE_A+ Prostate carcinoma cell line

45 SAGE_Chen_LNCaP Prostate carcinoma cell line

46 SAGE_Chen_LNCaP_no-DHT Prostate carcinoma cell line

48 SAGE_Chen_Tumor_Pr Prostate carcinoma bulk

51 SAGE_HS766T Pancreas adenocarcinoma cell line

57 SAGE_CPDR_LNCaP-C Prostate carcinoma cell line
These SAGE libraries were all constructed from carcinoma and almost all from prostate carcinoma.

Part A of Tab. 1
shows the main advantage of the clustering of concepts: all of the 7 libraries have a null value for at least one
tag. This means that no concept associates this tag with this given library. In order to understand the origin o
these null values, which can be considered as noise, it is possible to look back at the original gene
expression levels in these libraries.

The Fig. 4
shows two origins for this noise: first the employed discretization which can sometimes be too strict (tags
labeled with an asterisk in Fig. 4
would have been considered as over-expressed using a slightly lower threshold). The second one is 
experimental or biological: from their raw expression values, four tags cannot be considered as
over-expressed in some libraries (tags underlined in Fig. 4).

Click on the thumbnail to enlarge the picture

Figure 4: Origin of the noise in the concepts composing the 
presented QSG. Shown is a submatrix of the raw gene 
expression matrix with the tags and libraries composing the 
presented QSG. The expression values are expressed as 
"copies per cell" (see methods section). On the right side is 
shown the discretization thresholds used for each gene, as well 
as the mean expression value among all 90 situations. The 
shaded expression values correspond to the 0 values in Part A 
of Tab. 1. For a correspondence between tag sequence sand 
gene names, and between Library numbers and biological 
situations, see Tab. 1B and C, respectively.

Biological interpretation of one QSG

The QSG contains 7 SAGE libraries (Tab. 1). All these libraries are derived from prostate carcinoma (two of
them are adenocarcinoma). Six of them are cell lines and one of them is bulk. It is quite interesting to note
that this tissue homogeneity was not selected beforehand, and that even when using locally strong
associations, tissue-specific gene over-expression patterns have emerged.

The QSG contains 13 tags (Tab. 1). 12 of them are clearly identified: FDFT1, RPL17, RPL13A, SFRS9,
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RPL14, PRDX2, NIT2, GPX1, AKR1A1, RPL27, NIFIE14 and EEF1G.

Gene Ontology annotates FDFT1 as a gene involved in cholesterol biosynthesis. In particular, it is essential
for squalene synthesis [Tansey and Shechter 2000]. It was found amplified in oesophagus carcinomas
[Hughes et al., 1998].

RPL17
is annotated by Gene Ontology as a gene involved in protein biosynthesis and in signal transduction in the
NF-κB cascade. It was found in association with NF-κB during the differentiation of adherent blood cells as
macrophages [Day et al., 2004]. Other ribosomal proteins (RPL13A, RPL14 and RPL27) are present.
RPL13A was found to be involved in cell proliferation [Chen and Ioannou 1999]. It was also reported to be a
translation regulator [Mazumder et al., 2003] similarly to EEF1G [Zimmermann, 2003]. RPL14 was found
over-expressed in glioma [Qi et al., 2002].

Gene Ontology annotates EEF1G as a translational elongation factor involved in protein biosynthesis. It is
highly expressed in pancreatic cancers [Lew et al., 1992].

SFRS9 (alias SRp30c) is involved in splice site selection [Raffetseder et al., 2003]. It was found to be
over-expressed in cancer (Hela cell line) [Screaton et al., 1995]. It was also associated with the response to
oxidative stress by regulating the splicing of the glucocorticoid receptor of neutrophils [Xu et al., 2003] or
interacting with HSPs [Metz et al., 2004].

PRDX2 (alias NKEFB, PRP, PRXII, TDPX1, TSA) is annotated by Gene Ontology as a gene coding for a
protein involved in electron transport and response to oxidative stress. It was found in benign vascular
tumours of the skin [Lee et al., 2003] but also in breast cancers [Noh et al., 2001; Karihtala et al., 2003] and
prostate tumour cell lines [Shen and Nathan 2002]. Its function during oxidative stress seems to depend upon
environmental conditions, especially affecting the nitric oxide concentrations [Simzar et al., 2000].
Interestingly, it was found over-expressed in the AML-2/DX100 cell line, which is derived from the AML-2/WT
cell line and is more resistant to endogenous oxidative stress in spite of a catalase inhibition. This suggests
that changes in several gene expression levels - including an increase in the expression of PRDX2 -
characterize the adaptation of the cell line exposed to endogenous oxidative substances [Oh et al., 2004].
Finally, PRDX2 was found to be up-regulated in apoptosis resistant cell lines [Crowley-Weber et al., 2002].

GPX1
is annotated by Gene Ontology as a gene involved in response to oxidative stress. Like PRDX2, its product
has a peroxidase activity. It is also involved in the adaptation of cells to oxidative stresses [Anuszewska et al.,
1997].

AKR1A1
is a gene coding for a protein involved in oxidative molecule degradation (reductase), especially in the
reduction of biogenic and xenobiotic aldehydes [Barski et al., 1999].

Gene Ontology annotates NIT2
as a gene coding for a protein involved in nitrogen metabolism. This protein is well known in fungi (especially
Neurospora crassa) as a member of the GATA family of transcription factors. It is a positive global regulator
which controls the expression of entire sets of nitrogen-catabolyzing genes, especially nitrate reduction [Mo
and Marzluf, 2003]. For Homo sapiens, NIT2 cDNA has first been found in embryonal carcinoma of human
testis [Strausberg et al., 2002].

Altogether, three major tendencies emerge from this list of genes. First, there is a very strong connectivity
between most of these genes with cancer; second there are numerous genes coding for proteins involved
oxidative stress response, and third there are a significant number of genes coding for proteins involved
translation regulation.

It is known that exposition to an oxidative stress is a factor that favors development of different types of
tumors [Valko et al., 2004]. It is therefore reasonable to suggest that these genes are co-over-expressed 
respond to an oxidative stress to which cells have been exposed. This is in good agreement with
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epidemiological, experimental and clinical studies which have, over the last decade, implicated oxidative
stress in development and progression of prostate cancer [Pathak et al., 2005].

Another feature is the over-expression of proteins involved in translational regulation. We had already
observed the co-over-expression of various mRNAs coding for ribosomal proteins [Becquet et al., 2002]. The
over-expression of ribosomal proteins in several interesting contexts, including prostate cancers wa
independently reported [Vaarala et al., 1998]. The biological role for such an over-expression is still a matter
of debate [Naora 1999].

Statistical analysis of one QSG

In order to estimate the statistical significance of the regrouping of the genes in the QSG, two different web
tools were used: L2L [Newman and Weiner 2005] and GOToolBox [Martin et al., 2004]. Both tools provide,
given a gene list, GO categories that are statistically overrepresented as compared to a gene random
sampling. Using the genes contained in the previously described QSG, both sites returned as the first hit t
"protein biosynthesis" category:

p = 1.1×10-6 with L2L;

p = 9.35×10-8

with GOToolBox (using an hypergeometric test with a Benjamini-Hochberg correction for multiple 
testing and all UniProt identifiers generated from the RefSeq identifiers).

This fully confirms that the regrouping of genes in the QSG is highly statistically significant, and further back
up our biological analysis: the over-expression of proteins involved in translational regulation is a significan
feature captured by our analysis. In order to compare the statistical significance of the individual concepts that
composed the QSG, the 95 formal concepts composing the QSG were analyzed using a local version of L2L.
It appears that only 2 of them (2%) have lower p-values than the QSG for the GO category 'protein
biosynthesis'. Using GOToolBox, we also compared those formal concepts with the QSG and obtained similar
results. Altogether, these results show that a QSG is able to summarize the main biological functions
contained in the various formal concepts composing it. In this sense, a QSG is more informative than the
formal concepts separately.

A second important feature of the presented QSG was the appearance of the "response to oxidative stre
category. This category was indeed found over-represented, both with L2L (p = 1.09×10-4), and GOToolBox
(p
= 0.0011). This demonstrates that the statistical significance is somewhat less marked that for the "p
biosynthesis" category.

We also examined the 95 individual concepts for this category. 75 (80 %) of them had a p-value that was not
statistically significant (p
> 0.05) for this term. The only one concept, among the 95, which associates the 4 genes that were identified
as participating to the response to oxidative stress was then compared. It has a lower p-value (L2L
p-value=3.71×10-5; GOToolBox p-value= 3.02×10-4) than the QSG but the 'protein biosynthesis' category is
entirely absent. This therefore demonstrates one of the main interests of the QSG that is to associate to
significant extent different functions that were distributed to a sub-significant level in individual concepts.

We furthermore assessed the importance of locality of pattern extracted. For this we performed hierarch
clustering, SOM and k-means using Cluster, implemented by Michael Eisen (see
http://rana.lbl.gov/EisenSoftware.htm). For each method, several sets of parameters were tested. None of
these methods were able to capture the co-overexpression patterns that we biologically validated, since the
genes composing the QSG were scattered throughout the resulting clusters (data not shown).

Discussion
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The main advantage of local pattern discovery techniques is that they assume very little background
knowledge and fit well with exploratory unsupervised data mining processes. Complete collections of locally
strong associations can be extracted and presented for interpretation. As a result, unexpected associations
can be discovered.

The main drawback of these approaches is that huge numbers of patterns are extracted (up to millions)
Therefore, the required interpretation process has to be supported by means of sophisticated post-processing
techniques. In this paper, we propose a solution that severely reduces the number of patterns (i.e., our
technique performs an heuristic pattern aggregation) to be examined by the end user when dealing wit
intrinsically noisy data. Interestingly, at any moment, the analyst can however go back not only to the da
(including the original gene expression data) but also to each of the local patterns that has been used to build
a given cluster or QSG.

For gene expression data analysis, we believe that formal concepts allow an easier biological interpretation
than the popular association rules that were recently studied by several groups. Indeed, each formal conc
provides a "summary" of the information contained in many association rules because various (but sim
association rules can be generated from a unique formal concept [Rioult et al., 2003]. The number of patterns
is significantly reduced. Formal concepts are also easier to interpret since association rules only associate
genes (or samples) whereas formal concepts associate both genes and the biological samples in which they
are co-expressed.

However, generating biologically interesting hypotheses based on local patterns, like formal concepts, 
confronted with several difficulties. The necessity to encode Boolean gene expression properties is a key
issue. There is no single method to encode the over-expression property and it is sure that this choice has a
major impact on extracted patterns. Some recent efforts have been made to guide the choice of discretization
techniques and parameters [Pensa et al., 2004].

A second problem concerns formal concept extraction and comes paradoxically from its added value: the
strong locality of these patterns does not help to distinguish easily between valid formal concepts, say tr
positives, and spurious patterns due to noise. This has to be moderated when considering the
over-expression of genes since it is clear that SAGE data is much noisier for low expression levels that it is
for high expression ones. Again, recent techniques can be used for tackling these issues. For instance, we
can use user-defined constraints to look for large enough patterns and thus to avoid small patterns that are
indeed due to noise. It is also possible to use randomization techniques to remove some false positive
patterns [see, e.g., Gionis et al., 2006]. We decided to tackle this aspect by proposing a new clustering
method to group similar formal concepts. By applying such an approach on human SAGE data, a
manageable number (about 50) of interesting clusters of formal concepts or QSGs have been extracted and
one of them has been presented here in detail.

Without clustering patterns, the information contained in a QSG would have been distributed in 95 conce
scattered among 1669. This demonstrates the noise tolerance of the method and its power to condense
complex information into readable and understandable patterns. One should note that very heterogeneou
sources of noise are combined to produce the final "noise" observed in gene expression matrices. Some of
this noise should be disregarded (because of its artifactual origin) and some might be of biological interest
[Kaern et al., 2005]. Our clustering technique allows biologists to investigate this question since it can be used
to study the reason for the absence of a gene over-expression value and go back to the whole set of form
concepts contained in a QSG.

QGS can be ranked according to statistical criteria (like the p-value calculated by web-based tools, see
above). Nevertheless, this p-value can not be the only criterion. Functionally heterogeneous QSGs migh
biologically interesting. In that perspective, using a tool to aggregate formal concepts and visually select them
by a biologist - because they are supported by several biological situations of interest - avoids to eliminate
some of the patterns which may be interesting but do not hold the statistical test.

A careful analysis of one of the QSGs shows that it is possible to formulate very relevant biological
hypotheses. It was very rewarding that some of these hypotheses (such as the role of oxidative stress i
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generation of prostate cancer, or some proteins-proteins interactions) could be validated a posteriori through
a literature search. Nevertheless some novel hypotheses were also raised by this approach: what might be
the function of over-expression of some genes of the translation machinery in the generation of prostate
cancers? Ultimately, only biological experiments will be able to answer those questions.

We mentioned some fundamental limitations of popular global patterns used for gene expression data
analysis, i.e., clusters of genes or non-overlapping bi-clusters linking gene sets to sample sets. It is however
clear that these techniques, biclustering techniques and our approach are complementary. The former
provide feedback on global similarity structures. Biclustering techniques, that somehow include the
computation of formal concepts from derived Boolean matrices, might give rise to the discovery of
unexpected locally strong associations. It turns out that software platforms dedicated to the analysis of 
expression data, whatever their origin (i.e. SAGE, microarray, MSPSS, etc…), might support both clustering
and local pattern discovery. For instance, it is possible to use local patterns like formal concepts or
association rules when characterizing clusters. It is also possible to compute clusters from collections of l
patterns (e.g., biclusters, formal concepts). Last but not the least, it would make sense to integrate the tools
that work on Boolean data with the more classical techniques that compute biclusters from numerical g
expression data sets (see, e.g., the BicAT toolbox by Barkow et al., 2005). As a result, it means that we have
to support both the computation of various types of patterns and querying or more generally post-processing
on materialized collections of patterns. These observations motivate our current effort for a software
integration of many different solvers into a unique platform.
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