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Abstract

Pervasive information systems give an overview
of what digital environments should look like in
the future. From a data-centric point of view,
traditional databases have to be used along-
side with non-conventional data sources like data
streams, services and events to deal with new
properties of such information systems including
dynamicity, autonomy and decentralization.

In this context, the definition of continu-
ous queries combining standard relations, data
streams and services in a declarative language
extending SQL is clearly an ambitious and mo-
tivating goal. Those continuous queries could
express an event management functionality (e.g.
event filtering, event composition), associate
events with data from legacy systems, and per-
form cost-based optimal calls to services.

In this paper, we define virtual tables with
binding patterns to represent services of the per-
vasive environment. By the way, relations, data
streams and virtual tables can be homogeneously
queried using a SQL-like language, on top of
which query optimization can be performed. We
also introduce a new clause defining the optimiz-
ing criteria to dynamically choose the best way
to handle each event.

A prototype on top of STREAM, a DBMS de-
voted to data streams, has been devised on which
first experiments have been carried out on syn-
thetic data.

Keywords Continuous Query; Query Opti-
mization; Non-Conventional Data Sources; Data
Streams; Services; Pervasive Systems

1 Introduction

Pervasive information systems give an overview
of what digital environments should look like in
the future. Information systems tend to be more
and more decentralized and autonomous, at the
infrastructure level as well as at the data and
process level. On the one hand, personal com-
puters and other handheld devices are now de-
mocratized and take a large part of information
systems. On the other hand, data sources may
be distributed over large area through networks
that range from a world-wide network like the In-
ternet to local peer-to-peer connections like for
sensors.

Even data tend to change their form to han-
dle information dynamicity. The relational
paradigm has been widely adopted in DataBase



Management Systems (DBMS) for many years,
but other forms of data sources are now emerg-
ing, mainly as data streams and services.

Data Streams Queries in traditional DBMS
are “snapshot queries” expressed in SQL: a
query is evaluated with the current state of the
database, and the result is a static relational ta-
ble. The “snapshot” term expresses that the re-
sult represents only the state of the database at
the moment of the query, and is never updated.
With dynamic data sources, “snapshot queries”
may be not sufficient as it would be computation-
expensive to periodically execute them and ob-
tain up-to-date results.

Data streams open new opportunities to view
and manage dynamic systems, such as sensor
networks. The concept of queries that last in
time, called continuous queries [10], allows to
define queries whose results are continuously up-
dated as data “flow” in the data streams. Data
Stream Management Systems (DSMS) have been
studied in many works [1, 3, 8, 11, 15, 23, 26].

Services With the development of au-
tonomous devices and location-dependent
functionalities, information systems tend to
become what Mark Weiser [24] called ubiqui-
tous systems, or pervasive systems. Pervasive
systems [6, 7, 17, 19, 20] are distributed sys-
tems of devices able to communicate with
others through network links. They offer to
users access to devices and control over their
environment through various types of interfaces.

The abstraction of device functionalities al-
lows the system to automate some of the possi-
ble interactions between heterogeneous devices,
in order to facilitate the use of the whole sys-
tem. Such device functionalities are often repre-
sented by services. Service discovery is a com-
mon issue [27] in distributed systems (pervasive

systems, grids, or even Internet), that tackles
service representation, knowledge sharing, and
remote execution. In dynamic environments like
pervasive systems, the discovery should also be
dynamic in order to reflect the currently avail-
able services.

As devices may be sensors or actuators [13],
services may represent some interactions with
the physical environment, like taking a photo
from a camera or displaying a picture on a
screen. These actions bridge the gap between
the computing environment and the user envi-
ronment, and can be managed by the pervasive
system. This paper will not consider service dis-
covery techniques, but will consider a way to use
and compose services with the notion of action-
oriented queries.

From a data-centric point of view, traditional
databases have to be used alongside with non-
conventional data sources like data streams, ser-
vices and events to deal with new properties
such as dynamicity, autonomy and decentral-
ization. Query languages and query process-
ing techniques need to be adapted to those data
sources. In this context, the definition of contin-
uous queries combining standard relations, data
streams and services in a declarative language
extending SQL is clearly an ambitious and mo-
tivating goal. We begin by illustrating the prob-
lem with an example that will be used as a run-
ning example throughout this paper.

1.1 Motivating Example

The motivating example is inspired by the night
surveillance scenario presented in Aorta [25]. It
illustrates the need for the integration of services
from a dynamic environment in a declarative
query language and for associated optimization
techniques.



The night surveillance scenario considers a
room containing motion sensors and network
cameras. The surveillance consists of handling
events from motion sensors to trigger a photo of
the location of the involved sensor and to send
it to the administrators via their cell phones.
The cameras need to pan/tilt/zoom to focus on a
given location (if achievable) before actually tak-
ing the photo. This configuration phase is costly
in term of response time to an event and depends
on the dynamic state of the device (current head
position of the camera), so a cost-based evalua-
tion of the optimal device is needed, or even a
group optimization to benefit from parallelism.

In order to express this behavior in a declar-
ative way, the environment can be described us-
ing data schemas for the entities and the events,
and functions for the actions and the predicates.
Then, a query language similar to SQL can ex-
press the specified behavior in terms of joins, se-
lections and functions. Query optimization tech-
niques can be applied to optimize the entire pro-
cess.

In Aorta [25], this environment is modeled
using three data sources: a relation containing
phone numbers of administrators, a data stream
for sensor events (indicating its current location
and its horizontal acceleration value ‘accel x’),
and a “virtual device table” for cameras. Three
functions are also needed for the scenario: the
action to take a photo, the action to send a
photo, and a predicate that checks that a camera
is able to take a photo of a location. We made a
synthesis of this environment in Figure 1.

The continuous query for the night surveil-
lance scenario is given in AortaSQL [25]
in Figure 2: an Action Query called
“night surveillance” is active from midnight to
6:00 am every day (cf. start and stop clauses).

Data Sources:

relation phone( id, owner, number );

stream sensor( id, accel_x, location );

virtual device table camera( id, ip_address );

Functions:

photo(camera_ip, location, directory_name) :

file_name

sendphoto(phone_number, file_name) : void

coverage(camera_id, location) : boolean

Figure 1: The environment for the night
surveillance scenario from Aorta [25]

CREATE AQ night_surveillance AS

SELECT sendphoto(p.number,

photo(c.ip_address,s.location,

"photos/admin"))

FROM sensor s, camera c, phone p

WHERE s.accel_x > 500

AND coverage(c.id, s.location)

AND p.owner = "admin"

START atTime(0,0,0) -- 00:00:00

STOP atTime(6,0,0) -- 06:00:00

Figure 2: The query for the night surveillance
scenario from Aorta [25]

Despite the interest of Aorta, the following ob-
servations can be made:

1. At the query language definition level, no
clear distinction is made between event
management and stream management. For
example, in the above scenario, an event is
represented as a tuple in the ‘sensor’ data
stream, but is however still handled as an
event: it triggers a single action (taking one
photo) and may not be duplicated due to
a join with a relation or another stream.
This semantics is not compatible with other
DSMS like in [3, 26, 15, 8].

2. The optimizing criteria are implicit: in the
above scenario, the goal of the query is to
choose the camera with the least estimated



response time for each event, and cannot be
declaratively modified to choose another cri-
terion like, for example, the photo quality.

3. At the query processing level, logical and
physical steps seem to be merge in a single
step. This choice limits the opportunities
for query optimization techniques.

4. Only limited support is provided for contin-
uous query processing. Specific operators
for streams, like windows over streams [12]
or relation-to-stream operators [3], are not
tackled, as well as joining several streams,
relations and virtual device tables.

Expressing queries such as the night surveil-
lance scenario requires a framework that remains
compatible with standard continuous query pro-
cessing, allowing to reuse the query optimization
techniques of DSMS, and that integrates the no-
tion of action like in Aorta.

1.2 Evolution of Continuous Queries

In this paper, we present an ongoing effort to
develop a framework for Action-Oriented Con-
tinuous Queries (AOCQs), whose aim is to inte-
grate services, i.e. distributed functionalities, in
continuous queries over data streams. AOCQs
allow the definition of queries combining stan-
dard relations, data streams and services using
a homogeneous representation, in a declarative
language extending SQL.

The first requirement to achieve this ambi-
tious goal is to define a common framework to
deal with non-conventional data sources. Rela-
tions and data streams can share the same rep-
resentation as time-varying multisets of tuples
like in [3]. We represent sets of similar ser-
vices as virtual tables containing a tuple per

service and associated with one or more bind-
ing patterns [14, 18, 22] indicating which vir-
tual attributes correspond to input and output
parameters of the service functions. We keep
backward compatibility with standard DBMS as
we use standard relations, while extending the
power of expression of queries to handle the no-
tion of time. Event flows are represented as data
streams, in order to avoid the mismatch between
events and standard data tuples.

AOCQs can imply services that are statically
bound [18, 22] or dynamically discovered in the
pervasive information system, like in [21]. The
optimal services (at a given time for a given data
set) are selected and called during query execu-
tion. AOCQs can then express an event manage-
ment functionality like event filtering and com-
position, and perform cost-based optimized calls
to services. In pervasive environments, those
queries can use services of the pervasive sys-
tem to execute actions: continuous queries can
smoothly evolve from data-oriented queries to
action-oriented queries.

In this setting, the main contributions of this
paper are:

• An extension of SQL to homogeneously ex-
press operators over relations, data streams
and services, and an associated query pro-
cessing technique to handle time-variations
of data and dynamic calls to services dur-
ing execution. An additional SQL clause,
called the collapse clause, is proposed to
define an optimizing criterion over groups of
tuples.

• The development of a prototype of a query
processor for AOCQs, from which first ex-
perimental results over synthetic data are
described. For the time being, the AOCQ
processor is built on top of the STREAM



prototype [3], a DSMS developed at Stan-
ford University, and allows to show both the
power of expression of AOCQs and the ca-
pabilities of the query processor.

In Section 2, we situate our problem within
the related works. In Section 3, we define a ho-
mogeneous representation for non-conventional
data sources as virtual tables. We tackle query
processing techniques for virtual tables and the
collapse clause in Section 4. We describe our
implementation prototype and discuss some ex-
perimental results in Section 5. We then con-
clude and discuss some open issues in Section 6.

2 Related Work

Data Streams In modern information sys-
tems, some data sources may generate continu-
ous unbounded streams of data elements. For
compatibility with the relational model, data
streams are commonly modeled as an append-
only multiset of timestamped tuples whereas re-
lations are considered as time-varying multisets
of tuples (creation, update, deletion) as in [3].
This widely adopted model [23, 26, 11, 1, 8, 15]
allows to manage structured data streams along
with relations.

Time is an important notion for data streams.
Tuples have an order in the stream, which is of-
ten supposed to be the order of arrival, and are
timestamped. Timestamps are also supposed to
reference a shared system clock, otherwise a syn-
chronization mechanism is required [5].

Various data sources may generate data
streams: e.g. sensors, that ranges from phys-
ical sensors (light, temperature. . . ) to logical
sensors (network monitoring, applications. . . ).
However, some other data may be considered
as streams: transfers of large tuple sets from

distributed databases are equivalent to data
streams [22], even if they are bounded streams.

Costly Data Sources Data streams are often
seen as virtual relational tables, but the gener-
ation of the tuples depends on several factors
that can make it slow or unsafe. Some tuple at-
tributes may also be expensive (in term of time
or resources) to be acquired.

Unsafe data sources like sensor networks may
introduce some latency and disorder for the tu-
ples. Synchronization among events from differ-
ent streams may then be erroneous. [5] proposes
a system to cope with these problems thanks to
a stream conditioning mechanism that reorders
and synchronizes tuples.

Some safe data sources or function evaluations
may also be slow, like web services or sensed at-
tributes. Introducing asynchronous calls to data
sources and synchronization operators in query
execution plans, like in [18], allows to process in-
complete tuples until their costly attributes are
required, which gives time to complete the asyn-
chronous call and fill in the missing attribute
values. [25] introduces a selection among pos-
sible candidates (devices offering the same ser-
vice) based on their current state, to choose the
optimal way of evaluating a function, here ex-
ecuting an action in a pervasive environment.
Furthermore, group optimization allows to op-
timally distribute simultaneous function evalua-
tions among the possible candidates.

Continuous Query Definition Continuous
queries over data streams are based on the re-
lational paradigm. Standard query operators on
relations (Select, Project, Join, Aggregate. . . )
are then used, but their semantics may be un-
clear or ambiguous. [3] identifies three cate-



gories of operators to work with streams and
relations: relation-to-relation (standard opera-
tors), relation-to-stream, and stream-to-relation.
Stream-to-stream operators are absent because
they can be composed from other operators.
A continuous query is a tree of operators with
streams and/or relations as input, and a stream
or a relation as output. Some systems [26, 1, 15]
do not express the difference between operator
categories, and work, in their semantics, only
with data streams.

Selection and projection operators keep a clear
semantics with data streams. Selection opera-
tors filter tuples based on the values of their at-
tributes, and projection operators keep only a
subset of the attributes of tuples. There is no
difference between data streams and relational
tables for these operators.

With continuous queries, data streams are
supposed to be unbounded. However, aggrega-
tion operators for relations need to have a com-
plete view of all tuples (e.g. the count opera-
tor in SQL), which is impossible for unbounded
streams. A mechanism of punctuations [12], in-
dicating the end of a group of related tuples, is
needed in order to allow the aggregation operator
to output its resulting aggregated tuples, thus
creating an aggregated stream. In [3], aggrega-
tion operators are seen as relation-to-relation op-
erators: the transformation of the input stream
into a relation is done by other operators, and
the output is a time-varying relation.

Join operators face the same problems as ag-
gregation operators. Unbounded tuple streams
potentially require unbounded memory space in
order to be joined, as every tuple should be
stored to be compared with every tuple com-
ing from the other stream. The sets of tuples
should then be bounded. A window defines a
bounded subset of tuples from a stream (it is the

only stream-to-relation operator in [3]), based
on time or on the number of tuples. Sliding
windows [3, 12] have a fixed size and continu-
ously move forward (e.g. the last 100 tuples, tu-
ples within the last 5 minutes). Hopping win-
dows [26] have a fixed size and move by hop,
defining a range of interval (e.g. 5-minute win-
dow every 5 minutes). In [8], windows can be
defined in a flexible way: the window upper and
lower bound are defined separately (fixed, slid-
ing or hopping), allowing various type of win-
dows. [3] defines also a partitioned window as
the union of windows over a partitioned stream
based on attribute values (e.g. the last 5 tuples
for every different ID). With windows, join op-
erators handle bounded sets of tuples and tradi-
tional techniques can be applied. Although the
output is intuitively thought as a stream, join
operators are seen in [3] as relation-to-relation
operators: the output is a time-varying relation.

Continuous queries can be expressed in a
declarative language. Most of the articles [3,
26, 15, 8] propose an extension of SQL in or-
der to work with both relational databases and
data streams. Some articles [10] tackle continu-
ous querying over distributed XML data sets and
propose an extension of XML-QL. Others [1] are
based on a box representation of operators, ex-
pressing queries as a flow of tuples. However,
when working with the data stream semantics
mixed with the relational paradigm, SQL tends
to be widely adopted as a base for query lan-
guage extensions. Data streams are represented
using a relation schema, like for relational tables.

The traditional query structure (select –
from – where) can still express selection, pro-
jection, join, even aggregation (group by –
having), except that the from clause contains
references to streams. The main extension is the
definition of windows for the streams. In some



articles [3, 15], window specifications are added
in the from clause for each stream, defining
the time-based or count-based size. Other ex-
tensions [26, 8] add a clause to express a global
window for every stream of a query (only time-
based).

As continuous queries may be running for-
ever, a continuous query management system
should allow an administrator to express when
and how long a query should be activated. Some
extensions propose commands (like SQL com-
mands create, drop) to activate and deacti-
vate queries [10, 15], whereas others [8, 25] in-
tegrate clauses in the language to express start
time and expiration time.

Continuous Query Processing The long-
running nature of continuous queries changes the
definition of execution plans. An execution plan
is composed of operators that may handle data
streams, making the execution more dynamic
than for standard queries. Two methods appear
in the literature to cope with this dynamicity.

The first method is the construction of a global
execution plan, like in [3, 15, 26, 1], which is an
extension of a standard execution plan where in-
put and output of operators are queues of tu-
ples instead of relations. As several queries may
be running simultaneously, the system can share
common operators (on the same streams) among
the different queries.

The second method is to dynamically dis-
tribute tuples to one of their possible next opera-
tors, each tuple creating its own execution plan.
Operators (called Eddies [8]) are responsible of
the choice of the destination for each tuple they
have processed, depending on the dynamic state
of other candidate operators.

The optimization process always depends on a

chosen cost metric. In traditional DBMS, stan-
dard queries are often optimized based on the to-
tal execution time of the query. This cost metric
is no longer available for continuous queries due
to their long-running nature. Other cost metrics
are then proposed in the literature. The pro-
cessing time by tuple seems to be the natural
extension of the previous cost metric adapted to
data streams. Another approach is the bottle-
neck metric [22] that optimizes the throughput
of the queries.

3 Dealing with Non-
Conventional Data Sources

Non-conventional data sources are data sources
that cannot be represented as tuples in standard
relations, like in conventional databases. The
transactional paradigm cannot be directly ap-
plied to a data management system that handles
dynamic sources like data streams, or dynami-
cally discovered services.

For the purpose of integrating non-
conventional data sources in an augmented
DBMS, we propose a homogeneous represen-
tation of relations, data streams and services
with some renewed definitions for relations,
streams, tables, and virtual tables. We keep the
presentation rather informal, the basic notions
being simple.

3.1 Relations and Data Streams

A relation schema is a name associated with a set
of attributes. Each attribute has a name and a
definition domain of atomic values. A tuple over
a relation schema is an element of the Cartesian
product of its attribute domains.

A relation over a relation schema is a multiset



of tuples. Tuples can be inserted in a relation,
and later deleted from it.

A stream can be defined as a relation where tu-
ples cannot be deleted, i.e. an append-only mul-
tiset of tuples. Tuples inserted in a stream are
associated with their insertion date.

The following definition of a table is inspired
by the work on data streams in [3] and the asso-
ciated prototype. As data sources are dynamic,
the notion of time needs to be explicit, in con-
trast with the transactional paradigm. Time is
represented as a discrete and ordered domain of
timestamps (e.g. positive integer values). Two
events are considered simultaneous if they are
both associated with the same timestamp.

In order to homogeneously represent a relation
and a stream, we define a table over a relation
schema as a multiset of tuples associated with
their insertion timestamps. In other words, a
table represents a relation where each tuple is
associated with its insertion timestamp. A table
represents a stream if no tuples can be deleted
from the table. It can then homogeneously rep-
resent a relation or a stream.

We consider the instantaneous relation [3] of a
table at a given timestamp as the multiset of tu-
ples that have been inserted until this timestamp
included, and that have not yet been deleted.
Note that a tuple can be inserted and deleted si-
multaneously, i.e. at the same timestamp. For a
table representing a stream, the number of tuples
of its instantaneous relation may only grow, as
no tuple can be deleted: a stream is unbounded.

Example 1 Tables for relations and streams
Figure 3 and Figure 4 show two tables represent-
ing a relation “phone” and a stream “sensor”.
The instantaneous relations for both tables are
represented at timestamp 25 and at timestamp
30. Note that at timestamp 30, the tuple “Bob”

has been deleted from the “phone” table. Note
also that several tuples can be inserted simulta-
neously, like at timestamp 27 in the “sensor” ta-
ble.

TABLE phone( id INTEGER, owner CHAR(10),

number CHAR(10))

Timestamp @ 25

(34,"Alice","069911XXXX") @ 10

(25,"Bob" ,"069922XXXX") @ 12

Timestamp @ 30

(34,"Alice" ,"069911XXXX") @ 10

(18,"Charlie","069933XXXX") @ 26

(24,"David" ,"069944XXXX") @ 28

Figure 3: Schema and two instantaneous rela-
tions at different timestamps for the table repre-
senting the “phone” relation

TABLE sensor( id INTEGER, accel_x FLOAT,

location BYTE)

Timestamp @ 25

(18, 362.15, ’a’) @ 16

(65, 569.42, ’e’) @ 25

Timestamp @ 30

(18, 362.15, ’a’) @ 16

(65, 569.42, ’e’) @ 25

(18, 236.78, ’a’) @ 27

(17, 718.64, ’d’) @ 27

(98, 624.16, ’c’) @ 28

Figure 4: Schema and two instantaneous rela-
tions at different timestamps for the table repre-
senting the “sensor” stream

3.2 Services

A service is an external entity (in regard to the
query management system) that can compute
one or more functions. We define a service inter-
face as a group of semantically related functions.



A function can have several input parameters
(may be none) and several output parameters
(at least one). When called with atomic values
for its input parameters, a function returns zero,
one or several result lines of atomic values, each
line containing all output parameters.

Example 2 Service Interface
Figure 5 shows the definition of a service inter-
face providing three functions: checkCoverage()
that indicates if the service can take a photo of
a given location, checkCost() that indicates the
cost of taking this photo, and takePhoto() that
actually takes it.

SERVICE INTERFACE cameraInterface {
FUNCTION checkCoverage( target BYTE ) :

( status BOOLEAN )

FUNCTION checkCost( target BYTE ) :

( status FLOAT )

FUNCTION takePhoto( target BYTE ) :

( result BLOB )

}
Figure 5: Example of Service Interface

To smoothly integrate services in our frame-
work, we propose to use the notion of binding
patterns. A binding pattern models an access
pattern to a relational data source as a specifi-
cation of “which attributes of a relation must be
given values when accessing a set of tuples” [14].
A relation with binding patterns can represent
an external data source with limited access pat-
terns [14] in the context of data integration. It
can also represent an interface to an infinite data
source like a web site search engine [18], provid-
ing a list of URLs corresponding to some given
keywords. In a more general way, it can repre-
sent a data service, e.g. web services providing
data sets, as a virtual relational table like in [22].

In our framework, we propose to define a vir-
tual table using a service interface as a general-

ization of a table: its schema can contain virtual
attributes and is associated with binding patterns
involving functions from the service interface. A
virtual attribute is an attribute whose value is set
during query execution, i.e. is not set when the
tuple is retrieved from the data source. A bind-
ing pattern is a rule that indicates which func-
tion from the service interface has to be invoked
in order to retrieve the values of some virtual
attributes (the output parameters) when values
are set for some other virtual attributes (the in-
put parameters).

Example 3 Binding Patterns
Figure 6 shows the definition of a virtual table
“camera” and its associated binding patterns us-
ing the service interface cameraInterface given
in Example 2. The virtual table schema contains
one non-virtual attribute id and four virtual at-
tributes: when a value is given for the virtual
attribute location, the three binding patterns can
be invoked if needed to independently retrieve the
values of the other virtual attributes coverage,
cost and photo.

VIRTUAL TABLE camera ( id INTEGER,

location BYTE VIRTUAL,

coverage BOOLEAN VIRTUAL,

cost FLOAT VIRTUAL,

photo BLOB VIRTUAL )

BINDING PATTERNS FOR camera

USING cameraInterface {
FUNCTION checkCoverage( location ) :

( coverage )

FUNCTION checkCost( location ) : ( cost )

FUNCTION takePhoto( location ) : ( photo )

}
Figure 6: Schema and binding patterns for the
virtual table “camera”

A virtual table, like non-virtual tables, con-
tains tuples. However, as those tuples contains



virtual attributes, we refer to them as virtual
tuples. Each virtual tuple is bound to one ser-
vice that implements the service interface used
by the virtual table. During query execution,
when a binding pattern is invoked for a virtual
tuple, the required function is invoked from the
service to which this virtual tuple is bound. Like
tuples in a table, virtual tuples can be inserted
in a virtual table, and deleted from it.

Example 4 Virtual Tuples
Continuing the previous example, Figure 7 shows
instantaneous relations for the virtual table
“camera”, i.e. the virtual tuples it contains, at
timestamp 25 and 30. Only the non-virtual at-
tribute id has a value. The ‘*’ indicates that
no value is set for the four virtual attributes lo-
cation, coverage, cost and photo. Each virtual
tuple is bound to a service, indicated by the ser-
vice reference, e.g. ‘Camera2’, ‘Camera3’. Note
that the tuple bound to the service ‘Camera2’
at timestamp 25 no longer belongs to the table
at timestamp 30, because the service itself is no
longer available in the pervasive environment.

Timestamp @ 25

(2, *, *, *, *) # Camera2 @ 12

(3, *, *, *, *) # Camera3 @ 12

(5, *, *, *, *) # Camera5 @ 25

Timestamp @ 30

(3, *, *, *, *) # Camera3 @ 12

(5, *, *, *, *) # Camera5 @ 25

(8, *, *, *, *) # Camera8 @ 27

(6, *, *, *, *) # Camera6 @ 28

Figure 7: Two instantaneous relations at differ-
ent timestamps for the virtual table “camera”

In other words, a virtual table represents a
set of services providing the same functionali-
ties, i.e. implementing the same service inter-
face. Tuples can be dynamically inserted and

deleted as such services are discovered in a per-
vasive environment. The services can also be
manually added by a system developer. An ex-
treme case is a virtual table containing one and
only one static virtual tuple, i.e. a virtual tuple
that cannot be deleted: the virtual table is then a
simple interface to one statically bound service,
or even one function, as it is used in previous
works [14, 18, 22]. We call such a virtual table,
a static virtual table, as opposed to the general
case, a dynamic virtual table.

Example 5 Environment for the Night Surveil-
lance Scenario
The environment for the night surveillance sce-
nario is represented in Aorta [25] with a relation,
a stream, a virtual device table and three func-
tions (Figure 1). Using our framework, it can
be represented in a homogeneous way with four
tables.
Along with the “phone” and “sensor” tables de-
fined in Example 1, and the “camera” virtual ta-
ble defined in Example 3, one more table is re-
quired: a static virtual table “sendMMS”, defined
in Figure 8, representing a function that sends
a MMS (Multimedia Message) to a cell phone.
It is statically bound to a service from the envi-
ronment implementing this function (not repre-
sented in the figure).

To end up, virtual tables generalize the notion
of tables representing relations and streams. It
can then be thought as a homogeneous represen-
tation for all data sources needed in a pervasive
environment: relations, streams, static and dy-
namic virtual tables. Table 1 summarizes the
constraints for each type of data sources.

System developers can work with a common
representation of the different data sources avail-
able in their computing environment. More im-
portantly, they can devise their queries involv-



Type of Data Source Tuple Insertion Tuple Deletion Binding Patterns
Relation yes yes no
Stream yes no no

Static Virtual Table no no yes
Dynamic Virtual Table yes yes yes

Table 1: Summary of constraints for each type of data sources

SERVICE INTERFACE sendMmsInterface {
FUNCTION send( message CHAR(255),

picture BLOB,

destination CHAR(10)) :

( status BOOLEAN )

}

VIRTUAL TABLE sendMMS( text CHAR(255) VIRTUAL,

image BLOB VIRTUAL,

phone_no CHAR(10) VIRTUAL,

result BOOLEAN VIRTUAL )

BINDING PATTERNS FOR sendMMS

USING sendMmsInterface {
FUNCTION send( text, image, phone_no ) :

( result )

}
Figure 8: Schema and binding patterns for the
static virtual table “sendMMS”

ing different types of data sources using a single
SQL-like declarative language, without worrying
about the particular implementations of the data
sources.

4 Query Processing for AOCQs

AOCQs are continuous queries over relations and
data streams, with the addition of virtual tables
for functions and services. Simple queries could
be expressed using a SQL-like declarative lan-
guage. CQL (Continuous Query Language [3])
provides syntax extensions to SQL in order to
handle the specificities of data streams and to

allow continuous queries.

As a query language for our framework, an
extension of the semantics of CQL is required to
include the notion of virtual tables and the asso-
ciated processing techniques for virtual tuples.

However, the introduction of virtual tables
raises the need to define a new functionality: ex-
pressing optimization criteria to choose the opti-
mal tuple(s) among a group of possibilities. We
need to choose the optimal virtual tuple corre-
sponding to an event so that only the “optimal”
service is actually invoked. We present a solu-
tion to this need through a new clause in SQL:
the collapse clause.

Example 6

For the night surveillance scenario, we need to
handle events, represented as tuples in the “sen-
sor” table. In order to take a photo of the event
location, those tuples have to be associated with
a “camera” service, represented as tuples in the
“camera” virtual table. More than one service
may be able to take the photo. However, only
one photo is needed: the system should select the
“optimal” service, i.e. the service with the least
estimated response time. The definition of “opti-
mal” is context-dependent: it justifies the intro-
duction, at the declarative level, of a new clause
in SQL.



4.1 Continuous Query Processing
with Virtual Tables

4.1.1 Taking into account Virtual Tables

All data sources are represented as virtual tables
associated with binding patterns. Non-virtual
tables are only extreme cases with zero binding
patterns. In a logical query plan, intermediary
tables between operators are also virtual tables
as well as the output table of the root operator.

After a query is parsed, its semantics is
checked using the metadata catalog referenc-
ing the names and properties for tables and at-
tributes. It is then transformed into a logical
query plan of operators like joins, selections, pro-
jections, aggregations.

The metadata catalog also contains the bind-
ing patterns associated with virtual tables. A
specific operator, the dependent join [14], is re-
quired to realize a binding pattern: it provides
values for the binding pattern input attributes
(by an equality predicate with another attribute
or a constant value) and allows to retrieve the
values for the binding pattern output attributes.
Binding patterns add constraints on the join or-
der for the tables: a dependent join operator
should have values for its input attributes, so
other dependent joins that retrieve those values
(as the output attributes of their binding pat-
terns) should occur before.

A dependent join operator produces an output
table containing virtual tuples with values for
the binding pattern input attributes. However,
it is not already necessary to invoke the service
function associated with the binding pattern to
retrieve the output attribute values. On the con-
trary, it is interesting to keep the tuples as long
as possible in a virtual form (with no values for
the output attributes), in order to make asyn-

chronous calls [18] to the functions and speed up
the global query processing.

Two additional logical operators need to be
integrated in the operator tree for each required
binding pattern. An invocation operator makes
asynchronous calls to the function associated
with the binding pattern, and a binding oper-
ator actually sets the requested values into the
tuple attributes. Note that the invocation op-
erator is not blocking for the tuple whereas the
binding operator can block a tuple as long as
the asynchronous call has not returned its result
lines. The blocking operator ensures that the
virtual attributes involved in the binding pattern
have their actual values for every output tuple it
produces. In [18], the binding operator (called
“Request Synchronizer”) is present but the in-
vocation operator is integrated in the table scan
operator for the data source. The independence
of the invocation operator allows a more flexi-
ble query plan and leads to further optimization
possibilities.

Query optimizations techniques can be applied
on the logical query plan. Operators can be re-
organized in order to minimize the number and
size of tuples to process, e.g. by pushing selec-
tion operators down before joins or introducing
projections. The number of function calls can
also be minimized, e.g. by pushing selection op-
erators down before invocation operators. Fur-
ther optimization techniques can be applied to
the physical representation of the query plan,
like merging some operators, in order to com-
pute an optimal physical query plan. For this
step, we rely on well-known logical optimization
techniques and do not propose new ones.



4.1.2 Continuous Query Execution

In the execution phase, the query processor actu-
ally executes the physical query plan. Whereas
in traditional DBMS, the query processor ex-
ecutes a query plan once to produce a result-
ing table, the continuous query processor needs
to schedule each operators in (near) real-time,
in order to process new tuples from the data
streams and insertions/deletions of tuples from
the relations, and to propagate them through the
operator tree. [3] studies some scheduling algo-
rithms for this context.

In order to realize the binding patterns, the
virtual tuple processing technique follows the
same principle as the asynchronous iteration
technique in [18]. When processed by a bind-
ing operator, an input virtual tuple may be du-
plicated according to the number of result lines
for the corresponding function call: each result
line will produce one output tuple. Every output
tuple contains a copy of all the attribute values
from the input virtual tuple, including the input
attributes of the binding pattern. It also con-
tains the values for the output attributes of the
binding pattern that are retrieved from the result
line. The output tuples are virtual in the general
case: the output table of the operator may still
contain some binding patterns for other virtual
attributes.

Example 7 and Example 8 demonstrate two
AOCQs, one involving a static virtual table and
one involving a dynamic virtual table.

Example 7 Using a Static Virtual Table
In Figure 9, an AOCQ expressed in CQL [3]
allows to define the following behavior: for
each phone, send a MMS containing a
“Hello (name) !” message and a “welcome.jpg”
image (interpreted as a BLOB constant in
the query). The query uses the “phone” table

defined in Example 1 and the static virtual table
“sendMMS” defined in Figure 8. As the query
is continuous, all current and future phones
inserted in the “phone” relation will receive
a MMS. Note that the tuple corresponding to
“Bob” does not belong to the resulting table
at timestamp 30 because it is deleted from
the “phone” table (see Figure 3). However,
the corresponding call to the service function
happens at timestamp 12 (when the tuple is
inserted in the “phone” table). It is possible
to keep a trace of that tuple by requesting the
resulting stream of inserted tuples instead of
the resulting relation (like with the istream
keyword in CQL [3]).

SELECT phone.owner, phone.number, sendMMS.result

FROM phone, sendMMS

WHERE phone.number = sendMMS.phone_no

AND sendMMS.image = BLOB("welcome.jpg")

AND sendMMS.text = "Hello "||phone.owner||" !"

Resulting Table:

Timestamp @ 25

("Alice" ,"069911XXXX",true) @ 10

("Bob" ,"069922XXXX",true) @ 12

Timestamp @ 30

("Alice" ,"069911XXXX",true) @ 10

("Charlie","069933XXXX",true) @ 26

("David" ,"069944XXXX",true) @ 28

List of Function Calls:

sendMMS ("Hello Alice !", BLOB("welcome.jpg"),

"069911XXXX") : (true) @ 10

sendMMS ("Hello Bob !", BLOB("welcome.jpg"),

"069922XXXX") : (true) @ 12

sendMMS ("Hello Charlie !", BLOB("welcome.jpg"),

"069933XXXX") : (true) @ 26

sendMMS ("Hello David !", BLOB("welcome.jpg"),

"069944XXXX") : (true) @ 28

Figure 9: Example of a query using the static
virtual table “sendMMS”



Example 8 Using a Dynamic Virtual Table
In Figure 10, an AOCQ allows to handle events
from the “sensor” stream (see Figure 4): each
tuple that has a ‘accel x’ value greater than 500
is associated with every service from the virtual
table “camera” (defined in Example 3 and 4) that
covers its location. This coverage is indicated by
the boolean virtual attribute ‘coverage’. The vir-
tual attribute ‘photo’ represents an actual photo
provided by the service. As the result table is a
join between a stream and a virtual table, no re-
sult tuple can be deleted: the result table is itself
a stream.

SELECT sensor.id, sensor.location,

camera.id, camera.photo

FROM sensor, camera

WHERE sensor.accel_x > 500.0

AND sensor.location = camera.location

AND camera.coverage

Result (stream):

Timestamp @ 25

(65, ’e’, 2, BLOB("photo001.jpg")) @ 25

(65, ’e’, 3, BLOB("photo002.jpg")) @ 25

Timestamp @ 30

(65, ’e’, 2, BLOB("photo001.jpg")) @ 25

(65, ’e’, 3 ,BLOB("photo002.jpg")) @ 25

(17, ’d’, 3, BLOB("photo003.jpg")) @ 27

(17, ’d’, 5, BLOB("photo004.jpg")) @ 27

(17, ’d’, 8, BLOB("photo005.jpg")) @ 27

(98, ’c’, 5, BLOB("photo006.jpg")) @ 28

Figure 10: Example of a query using the virtual
table “camera”

4.2 The COLLAPSE Clause

Virtual tables provide a mean to represent ser-
vices that are dynamically discovered in a perva-
sive environment. In Example 8, each tuple from
the “sensor” stream is joined with every tuple

from the “camera” virtual table, i.e. all avail-
able services. Even if a condition on the cov-
erage allows to discard some tuples, the result
table may contain several tuples corresponding
to one event: with the binding patterns, the sys-
tem has to invoke the takePhoto() function for
several services. Although this behavior may be
wanted, the goal of the night surveillance sce-
nario is to choose the best way to handle each
event, i.e. to call only the best service to han-
dle an event. With the “camera” virtual table,
the best service for a given location is the one
with the minimum value for the ‘cost’ virtual at-
tribute.

It could be expressed using a nested query
as in Figure 11. However, nested queries are
not satisfying for this goal as it complexifies the
query design. The optimizing criterion is not
well identified and may still select several tuples
in case of equality.

SELECT sensor.id, sensor.location, camera.photo

FROM sensor, camera

WHERE sensor.accel_x > 500.0

AND sensor.location = camera.location

AND camera.coverage

AND camera.cost =

( SELECT MIN(camera.cost)

FROM camera

WHERE camera.location = sensor.location

AND camera.coverage )

Figure 11: Query that selects the best service
using a nested query

AOCQs may need to explicitly express crite-
ria to choose the optimal service for each event.
From a data-centric point of view, the goal is to
extract the first tuple from a group of tuples ac-
cording to a given ordering. On the one hand,
it is similar to the definition of a top-K query
(here with K=1) applied to sub-groups of tuples.
On the other hand, computing one tuple from a



group of tuples is similar to an aggregation.
However, standard aggregation functions like

MIN, MAX or AVG, accept only one param-
eter and return only one value. Some DBMS
like PostgreSQL allow to define User Defined Ag-
gregates (UDAs) that accept several parameters,
but still return one value. Even if the return
value may be composite, i.e. a structure com-
posed of several attributes, it does not allow a
simple syntax to express the required optimiza-
tion. Furthermore, it requires the development
of a new UDA adapted to the type and number of
involved attributes for each query. Three func-
tions are required for a UDA: an initialization
function that initializes the aggregate state with
the first tuple of the group, an iteration function
that updates the aggregate state for each follow-
ing tuple, and a finalization function that returns
the aggregated value computed from the aggre-
gate state. UDA function are developed using
DBMS-specific language, with a non-declarative
approach: query optimization opportunities are
thus reduced for the query processor.

Example 9 Using a User-Defined Aggregate
over several Attributes
Figure 12 shows a possible query syntax using
such a UDA: the UDA MIN aggregation func-
tion works only for three attributes and returns a
composite value containing this three attributes,
retrieved from the tuple that minimizes the first
attribute. This syntax is ambiguous as it does
not show the composite nature of the function
output.

In this setting, we propose a new clause for
SQL in order to express such an aggregate in
a generic and unambiguous way: the collapse
clause. It allows to define an aggregate function
returning several attributes that are retrieved
from the optimal tuple for each group. Figure 13

SELECT s.id, s.location,

UDA_MIN(c.cost, c.id, c.photo)

FROM sensor s, camera c

WHERE s.location = c.location

AND c.coverage

GROUP BY s.id, s.location

Figure 12: Example of a query using a User-
Defined Aggregate UDA MIN over three at-
tributes

shows the syntax of the collapse clause. It has
to immediately follow the group by clause.

GROUP BY groupAtt1, groupAtt2, ...

COLLAPSE (att1,att2,...,attN) INTO name

USING orderAtt1 [ASC|DESC],

orderAtt2 [ASC|DESC],

...

Figure 13: Syntax of the collapse Clause

The set of attributes (‘att1’,‘att2’,. . . ,‘attN’)
are the collapsed attributes returned by the ag-
gregate function. The optimal tuple corresponds
to the first tuple of the group when it is ordered
according to the using part (like with an or-
der by clause in SQL). The into part defines
the name for the set of collapsed attributes, so
that they can be referenced as ‘name.attribute’
in the select clause and/or the having clause.
Collapsed attributes can thus be used like other
standard aggregate values in these both clauses.

Example 10 Using a collapse clause
In Figure 14, a collapse clause extracts for
each group (‘s.id’,‘s.location’) the tuple that min-
imizes the ‘c.cost’ value, i.e. the first tuple in
each group ordered by the ‘c.cost’ value in as-
cending order. The name of this collapsed set is
‘bestCamera’: the collapsed attributes are identi-
fied by ‘bestCamera.cost’ and ‘bestCamera.photo’
in the select clause and in the having clause.

A collapsed attribute set can be defined as an



SELECT s.id, s.location,

bestCamera.cost, bestCamera.photo

FROM sensor s, camera c

WHERE s.location = c.location

AND c.coverage

GROUP BY s.id, s.location

COLLAPSE (c.cost, c.photo) INTO bestCamera

USING c.cost ASC

HAVING bestCamera.cost < 5

Figure 14: Example of a query using a col-
lapse clause

implicit table whose schema contains the group-
ing attributes and the collapsed attributes. The
implicit table contains the collapsed tuples for
all groups. The query result is then a join be-
tween this implicit table and the other tables
based on the equality between the grouping at-
tributes. This definition allows a generalization
of the collapse clause: the implicit table can
contain more than one optimal tuple for a group,
as in top-K queries. A query can specify the
maximum number K of collapsed tuples for a
group. The integration of ties, i.e. tuples with
the same order level, in the collapsed result may
be specified with a ‘+’ mark after the number,
indicating that more than K tuples can be inte-
grated if they are ties with the Kth tuple. The
default behavior is a collapsed result of strictly
one tuple.

A special case is to use the Pareto optimality
to express a multi-objective query [4]: the opti-
mizing parameters are not an ordered list, but
a set. The keyword pareto replaces the maxi-
mum number of tuples in the collapsed result, as
all Pareto-optimal tuples are integrated.

Example 11 Different forms of the collapse
clause
In Figure 15 (using the “camera” virtual table
with an additional ‘quality’ attribute), the first
collapse clause is the default case: for one

group, the collapsed set contains only one tuple
that maximizes a quality attribute and, in the
case of equality for the first criterion, minimizes
the cost attribute. The second clause extracts the
three least expensive camera, with the best quality
in case of equality. The third one uses the same
criteria to extract at least two cameras, but may
also include cameras that have the same cost and
quality as the second best one. The last clause
extracts the Pareto-optimal tuples, i.e. the one
with the best cost and the one with the best qual-
ity: as it may be the same tuple, the collapsed set
may contain only one tuple or two tuples. Note
that in the last clause, the order of the ordering
attributes is not relevant.

COLLAPSE (c.cost,c.photo) INTO bestCamera

USING c.quality DESC, c.cost ASC

COLLAPSE (c.cost,c.photo) INTO bestCamera[3]

USING c.cost ASC, c.quality DESC

COLLAPSE (c.cost,c.photo) INTO bestCamera[2+]

USING c.cost ASC, c.quality DESC

COLLAPSE (c.cost,c.photo) INTO bestCamera[PARETO]

USING quality DESC, c.cost ASC

Figure 15: Example of collapse clauses using
two ordering attributes

Although we present it in the context of
AOCQs to choose the optimal service(s) to be
called for a given event, this clause can be
applied to other cases, in particular in non-
continuous query, e.g. in multi-objective query
processing [4] or to declaratively define complex
aggregations like in [9, 2].

5 Implementation

Continuous query processing techniques are in-
spired from standard query processing tech-
niques [16]. However, the introduction of the
notion of time impacts on the whole conception.



We propose an architecture of an AOCQ-enabled
DSMS. We choose to build our AOCQ proces-
sor prototype on top of an open-source DSMS:
STREAM [3], whose prototype is developed at
Stanford University. We explain the integration
of additional functionalities in order to handle
some AOCQ concepts, and describe first experi-
mental results from our prototype.

5.1 AOCQ Processor Architecture

The architecture of the AOCQ processor is com-
posed of six main modules, as shown in Fig-
ure 16. Query analysis is performed first by the
query parser, and then by the query optimizer.
The query optimizer checks the query semantics
with the metadata catalog, and produces a con-
tinuous query evaluation plan. The query plan
manager is responsible for the simultaneous exe-
cution of all produced plans: it schedules the dif-
ferent query operators in a (near) real-time fash-
ion. The data source manager provides access to
the data sources and handles function calls via
the service interface manager. This architecture
is obviously compliant with the STREAM archi-
tecture described in the next section.

Figure 16: Architecture of the AOCQ processor

5.2 The STREAM Prototype

STREAM provides support for “a large class of
declarative continuous queries over continuous
streams and traditional stored data sets” [3]. It

is composed of a CQL parser, a query analyzer
that produces execution plans, and a plan man-
ager that schedules operators to execute the con-
tinuous queries. Execution plans are optimized
at the logical level, then at the physical level.
The prototype allows to register relations and
streams schemas, and to associate them with a
physical data source. A physical data source is
an interface (in C++) that is currently imple-
mented as a file reader for both relations and
streams. Support for four data types is provided:
byte, integer, float, and fixed-length string.

In the current implementation, CQL allows to
define queries similar to SQL: select – from
– where – group by. The from clause is ex-
tended to define windows over the streams. The
relation-to-stream operators (IStream, DStream,
RStream) are expressed by a keyword with
parenthesis surrounding the whole query text.
Aggregation functions are limited to the min,
max and avg functions over integer and float
attributes.

5.3 Implementation of new Operators

In order to handle AOCQs, we extend the
STREAM prototype to integrate the collapse
clause and the notion of binding patterns. For
the time being, only limited support for binding
patterns has been integrated in the implementa-
tion.

The collapse clause is integrated as a sort of
polymorphic aggregation function: it can accept
any type and number of input parameters, and
its output parameters follow the same schema
as the input parameters. We limit the col-
lapse clause to the default case returning only
one tuple, and with only one ordering attribute.
Its implementation implies a modification of the
analysis of the select clause, and some impacts



on the execution of the aggregation operator in
query plans.

5.4 Experimentation

We choose to experiment the night surveillance
scenario described throughout the paper. The
AOCQ is represented in Figure 17. Two tables
and two virtual tables have been defined to rep-
resent the environment (cf. Example 5). The
window specification ‘[now]’ indicates that a tu-
ple from the “sensor” table will not be joined
with tuples inserted at a later timestamp in other
tables.

SELECT s.TIMESTAMP, s.id, p.id

best.id, best.cost, best.photo,

best.result

FROM sensor s [now], camera c, phone p, sendMMS

WHERE s.accel_x > 500

AND s.location = c.location

AND c.coverage

AND sendMMS.image = camera.photo

AND sendMMS.phone_no = p.number

GROUP BY s.TIMESTAMP, s.id, p.id

COLLAPSE (c.cost, c.id, c.photo,

sendMMS.result) INTO best

USING c.cost ASC

Figure 17: AOCQ for the night surveillance
scenario

In order to test the query, test data have
been generated for the two tables “sensor” and
“phone”: 10000 random tuples in “sensor” with
a timestamp between 1 and 9999 indicating a ‘ac-
cel x’ value between 300 and 900 and a location
label between 26 possibilities (‘a’ to ‘z’), and 6
tuples in “phone” representing 6 administrators
receiving the photos.

50 cameras have been simulated in the virtual
table “camera”: for each camera, the virtual tu-
ple is represented by one tuple for each location,
so that the predicate ‘s.location = c.location’ will

select one tuple, and with a random value for
the ‘coverage’ boolean (a location is covered by
at least one camera, one camera covers around
20% of the locations) and the ‘cost’ value. The
virtual table “sendMMS” contains one tuple: to
simulate the virtual tuple, we simply discard the
predicates related to this table.

In order to monitor more closely the query in
Figure 17, it is divided into one sub-query joining
the tables “sensor” and “camera”, producing a
stream of tuples representing all possibilities to
handle the events, and one main query selecting
the optimal tuple by joining the previous stream
with the tables “phone” and “sendMMS”, and
by applying the collapse clause.

As a result, the sub-query generates a stream
of around 76000 tuples. Without the col-
lapse clause, the main query result set contains
more than 450000 tuples, whereas the collapse
clause reduces this number to around 45000, i.e.
by a factor of 10.

Along with the predictable saving in the num-
ber of tuples, this example shows the power of
expression of AOCQs: the optimizing criteria be-
ing explicitly expressed as the ‘cost’ attribute
of the camera, it can be declaratively changed
in the query definition thanks to the collapse
clause. Additional experiments have been sched-
uled to assess the validity of our prototype.

6 Conclusion

In this paper, we have presented our frame-
work for Action-Oriented Continuous Queries
(AOCQs) that allows to build queries over rela-
tions, streams and services. It is built on top of
the CQL specifications [3] that manage streams
and relations.

The AOCQ framework introduces tables and



virtual tables as a unified mean to represent re-
lations, streams and services. A virtual table has
virtual attributes and is related to a service in-
terface, using binding patterns to indicate which
virtual attributes should be used as an input for
a service function call or retrieved as an output
from a service function call. At the query plan
level, a dependent join operator realizes a bind-
ing pattern. During query execution, an invoca-
tion operator makes asynchronous calls to func-
tions in a non-blocking manner, and a binding
operator is used to block until the data are effec-
tively retrieved from the function call. The un-
derlying principle of virtual tables can be used as
a mean to take in charge the dynamicity of per-
vasive environments where services appear and
disappear.

Many services may be able to provide a virtual
attribute value for a specific query. We have thus
introduced the collapse clause that declara-
tively defines a criterion for the selection of a
sub-set of service function calls. The collapse
clause builds an implicit table that contains the
top-K tuples from a group of tuples according
to a given ordering. The collapse clause in-
tends to replace and augment the procedural and
ad hoc user-defined aggregates that are available
today in DBMS.

We have also presented first implementation
and experimentation results of the collapse
clause on top of the STREAM prototype [3]. For
the time being, the prototype includes a mecha-
nism to identify virtual attributes so as to insert
dependent joins, invocation operators and bind-
ing operators in the execution plan of queries.

This first implementation and experimenta-
tion has presented the collapse clause used in
the running example of our article. In future
work, we plan to implement invocation and bind-
ing operators within STREAM and to develop a

benchmark on real data sets and real services.
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