Management of Changes in Web Service
Protocols

Ahmed Azough and Emmanuel Coquery and Mohand-Said Hacid

Claude Bernard Lyon 1 University, Btiment Nautibus,
8, boulevard Niels Bohr, 69622 Villeurbanne cedex France

Abstract. Web services constitute the new generation of web technolo-
gies for application integration. A web service can be considered is an
application offered by a provider service and could be invoked via the web
by a client service. Business Protocol notion is a very interesting formal-
ism to represent web services in terms of interactions with other between
services. Although its attractive concept of regrouping small and loosely
coupled pieces of application functionality around the network improve
flexibility and reach of existing IT infrastructure, the frequent and easy
occurrence of change in the different components can lead to inconsisten-
cies or errors. Business Protocol notion is a very interesting formalism
to represent a web service in terms of interactions with another one. The
aim of this work is to handel the change operations concerning the inter-
action process of a web service with represented by its business protocol
and secondly to propagate this change to its interlocutors in order to
guarantee the continuation of the communication.

1 Introduction

Web services are increasingly gaining importance in the development and de-
ployment of enterprize software applications. Although their attractive concept
of regrouping small coupled pieces of application functionality around the net-
work, the frequent and easy occurrence of change in the different components
can lead to inconsistencies or errors.

Nowadays economic environment is characterized by quick and easy change-
ability. For several reasons enterprize is frequently subject to change. Their eco-
nomic success more and more depends on their ability to flexibly react on change
at the market, the development, or at the manufacturing side. Enterprizes that
present it self as services implemented and invoked via the network can manage
many relevant adaptations to improve their service. This change may concern
business process as well as security and trust level. Naturally, network of web ser-
vices is highly dynamic. Since facilitating change is easier, change occurs more
frequently. But although the change itself is affordable, the impact of change
could be unmanageable or expensive.

Generally, the partners involved in a web service conversation exchange mes-
sages following a business or conversation protocol, which can define the possi-
ble and the correct order of messages invocation between the provider and the

client. Each one of them gives its possible conversation policy via its own busi-
ness protocol. If one of these interlocutors change the structure of his protocol
(e.g., introduce new operation invocations or delete some of them) especially
the provider service, the challenge is to decide whether this change affects the
interactions with the client service and if so how to manage the impact of this
change by minimizing the loss and maintaining compatibility.

After adopting a pertinent representation of web services for change detec-
tion, and resuming almost the works done on the automated management of
communicating components, we have developed an algorithm for propagation
of change on the web services and proofed its correctness. We adopt a compre-
hensive approach for the controlled evolution of web services business protocols
in cooperative web services framework. First, we introduce a set of elementary
operators with well-defined semantics for changing web services protocols. Sec-
ond, we present a process for the automated adaptation of protocols to assure
compatibility between two communicating web services.

This document is organized as following

2 Related Works

2.1 Conversational Model

Although SOA are emerging as the technology of choice for application develop-
ment many challenges should be raised to a better description and development
strategy of web services. Web services technology is characterized by two trends
of specification; the first is based on interface description that considers both
the provider and requester as web service and specify to each other how to
communicate invoking or delivering an operation.

The second is the one considering web services as a set of ordered operations
invoked depending to the result of each others, it allows to define the communica-
tion between a provider and a client as a complete conversation. A conversation
then is defined as a business protocol with collection of business steps taking
place in a prescribed manner and leading to business objective.

The conversation description model [[[[[-[6] and [8]-]]]]] is based on the state-
machine formalism that fits better to the reactive behavior and conversations
description facilitate web services operations specification rather that Petri nets
or activity diagrams. States are labeled by conversation levels attained by the
client and transitions are labeled by the names of messages corresponding to the
invocation of a service operation or to its reply (e.g. Names of operations from
WSDL service interface).

2.2 Change Management Approaches

The evolution control of the process choreographies in industrial workflows is a
close research problem to ours. Process Choreography is defined as the ordered
set of observable interactions of services with their users. In [12], Rinderle S,

Wombacher A, and Reichert M.U. addressed this challenge by first classifying
changes into additive and subtractive changes from the framework dimension
and into variant and invariant changes from the impact dimension. Propagating
changes to the partner public process is done by what we can call the "Raw
method”. Applying this method to web services consists on calculating directly
the differences between the new and the old version of the changing process,
to add the added par for an additive change and to delete the deleted part for
a subtractive change only if the change is classified as variant. Although this
approach allow for an easy calculation of change in the case of web service pro-
tocol, its cost would be expensive in terms of times and technology development
since it propagate all the changes occurred in the provider to the client. This one
could not be interested by this changes or would not make use of the new added
functionalities to its partner. Also in the case of invariant change, some server
changes could be interesting to the partner and worth a their propagation. After
exposing our approach, we will make a comparison between the two approaches
to highlight this inconveniences.

In [[[[9]]]], an approach for the evolution control of access rules in cooperative
systems is exposed. Authors propose a Meta model that describes organizational
entities and the relations between them. They then define a prototype for change
operation that occurs on an organizational model that preserves the model con-
sistency and correctness. Thus they propose an exhaustive list for basic and high
level operations on organizational models. After each operation, all former ac-
cess rules should either be migrated or adapted to the new organizational model.
Although the prototype of the operation of change is interesting, a joint analysis
of an operations set could be more adequate to organizational model evolution
that can produce a model totally different from the original one. The approach
gives no method to determine elementary operations performed by comparing
two versions of the organizational model.

In [14], Skogsrud H, Benatallah B and Casati F treat the problem related to
the controlled evolution of access control policy, how an enterprise could modify
its policy without disturbing ongoing negotiations. Each requester connecting
to provider to get a service activates an instance of negotiation that will save
all the levels achieved and the conditions satisfied by the client.The approach
proposes to rebuild a hybrid protocol for each non compliant instance until its
achievement. Although this idea could help to prevent from the deactivation of
clients privileges and the reload of the clients, its efficiency is discussed. Such a
decision could lead in a dynamic execution environment to hundreds or thou-
sands of independent hybrid policies supported simultaneously by the system,
which could lead to the crush of the security barrier.

3 Operation Based Approach

3.1 Description

Giving two services conversing following there business protocols, the conver-
sation can be cut after an abrupt change occurring in one of them, and all

data exchanged between users would be lost. Our aim is to manage this impact
by calculating the change produced in one protocol and projecting it to the
other with regards to the other service interests. We propose the scenario that
a provider/server service is conversing with a client one while a change occurs
in the provider protocol, our aim is to provide the best adaptation of the client
protocol in order to maintain the conversation. Some questions can be formalized
to build our point of view and invent our contribution to the problem:

1. How to model a structural change in a web service protocol? We have adopted
a modeling system based on elementary operations. By comparing the two
version of the changed protocol, we can intuitively produce a list of elemen-
tary operations performed on the old protocol version to create the new
one.

2. How to project changes to the client protocol? This is the core of our work.
By using the previous list of operations and the intersection protocol between
the client and server protocols we create the new client protocol.

3. Which change should be propagated to the client? In our approach, we ap-
ply a filter on changes by respecting a condition of propagation that take
consideration of the client interests using its previous behaviors.

f

gh@ ¢ 7

Fig. 1. Problem

3.2 Definitions

Business protocol: Business protocol is a formalism for web service specifi-
cation that defines supported messages and their order of invocation. We have
chosen to model business protocol using Deterministic Finite state machine, since
deterministic schema seems to be more adequate to web service execution and
facilitates their management. While

— States : represents different phases of the service conversation.
— Transitions : represent messages exchanged with other services.

P=(S, s, F, M, R)

S ={1,23, 4,5}

%]
o
Il

Fig. 2. BP

Execution path: An ezecution path is a transition sequence that starts from the
initial state of the protocol and ends with a final state of the protocol. A partial
execution path is an execution path except that its first and finale state are not
necessarily the initial and a final state of the protocol. The Execution-paths set
recognized by the business protocol Pg in Figure 2 is: EP= {{(1,2,a),(2,4,¢),(4,5,e)},
{(1,3,b),(3,4,(1),(4,578)}}

Conversation: A conversation of a business protocol is a word recognized by
its associated automata. It represents a complete message exchange supported
by a service following its business protocol. Due to determinism of the protocol,
to each conversation ¢ belongs a unique execution path. A partial conversation a
conversation where the first state and the last state are not necessary the initial
and a final state. The conversation set recognized by the business protocol P in
Figure 2 is CP= {a.c.e, b.d.e}.

Subparts of a conversation: Let X be a conversation of the Protocol P. A
subpart of X is an internal sequence of transitions of it. A subpart of P is an
partial conversation. Subparts sets are defined as following:

- Sp(X) ={ v |3V, v where v'.v.v" = X}
- Sp(P) ={ v |3V, v where v.v.v’ € CP}

Intersection protocol: Intersection protocol as defined in [[[[18]]]] is an inter-
esting tool that defines the possible conversation that can be hold between two
services. The figure shows the intersection protocol between two protocols of a
server (provider) Ps and its partner a client (requestor) web service Pc.

Compatibility: We say that two protocols Pg and P are compatible if and
only if they support some common conversations: CPs N C Pz # ©@. Previous
protocols Pg and Pg in figure 3 are compatible since: C Ps= {a.c.e, b.d.e} and
CPc={a.c.e, b.g} and CPs N CPc ={a.c.e}

PS(Provider) =
ES = Egar Sosr ESI mSI ES))
(1) c = (Ser Soor Fer Moy Re
L »————* Py=Psn P, = (S, s Fiy My R)
b d P, (Intersection) S; =S5.% 5S¢
! ’S:m = I(:SDSJFSDC)
a (o] e 1 = Fg x Fe
R =
P _(Client) o i M, = M. ~ M
c G e R, = {({e., &), (4), M)
() b d / Re(eq, am) , Ry(e;, do,m)>
S
p] a

Fig. 3. Intersection Protocol

Correspondence of states and transitions: Two states e € Pg and f € P¢o
are correspondents if and only if (e, f) € Pr = Ps N Pc or if one is created
by a change projection after the creation of the other. Notation: e < f. Two
transitions r1= (a, b, m) € RS and r2= (c, d, n) € RC are correspondents if and
only if a & ¢ and b < d and m=n. In Figure 3 Ps and P¢ have the following
correspondences:

— For states: 1 & a,2< (3,3 0,4< v, and 5 & A,
- For transitions: (1,2,0) & (@, 8,a), (2,4,¢) & (8,7,¢), (4,5,€) & (1,A¢)
and (1,3,b) < («,0,b)

3.3 Change Operations

To model protocol change we define a basic operation set that allow evolution of
the business protocol. Let P be a business protocol and P’ its new version after
a change operation. The figures 4 and describe these elementary operations.

4 Change Projection Process

Let Pg and Pc be the two Business Protocols related respectively to the server

web service and the client web service. Ps= (Sg, sOg, Fs, Mg, Rs) and Po=

(Sc, s0¢, Fo, Me, Re) After modification of the server web service, his business

protocol also changes to : P¢= (Sg, sOf, F§, Mg, R). An adaptation should

be done in order to create the new client protocol P.= (S¢, sO¢, Fl, M}, Re).
The steps that the process take are the following:

1. Determine the intersection protocol between the Old Protocols.

2. Deduce the list of change operations of the server protocol by comparing its
two versions.

3. Deduce the list of change operations to perform on the client protocol.

4. Calculate the new client protocol.

Operation Name Description Example Formal change
Create-State (CS) Create a new State P’= CS(P, s) S'=Su {s}
Delete-State (DS) Delete a state P’= DS(P, s) S'=5\{s}

Create-Transition (CT)

Create a transition

P'= CT(P, s, s', m)

R'=Ru {(s, s’, m)}

Delete-Transition (DT)

Delete a transition

P'= DT(P, s, s’, m)

R'= R\ {(s, s’, m)}

Become-Final-State (BF) Change an state to be final P’= BF(P, s) F'=Fu {s} and
or add a new state that S'=Su {s}
is final

Become-Not-Final-State (BN) | Change a final state to be P’= BN(P, s) F'=F\ {s}
non final

Change-Initial-State (CI) Change the initial state of the | P'= CI(P, s,) s,’= 8

automata

Fig. 4. Elementary Operations Description

= Create-State : p.'=createState(P,6)

Fig. 5. Elementary Operations

Old server Protocol —_ Change Operations
Py v List (server) ‘\
C5.=4(PaPas) 5 e 57050
L= D5 .={(PuPs 5) [5 € 5:1 5]
i — CT.={(P P | T e Ry R
DTa={(FaPaln) [re ReARGE Change Operations
Ps’ BFe={(PoPsu0 | T € o \ F, L?st (:Iient)
BN ={(Po,P,0) [T € Foh P —
3 O—O0—0 CLo={(Pe,P",1) If So'% Sp T CS,=1ot o

DSe={..}

DT.={.: New client Protocol

OIS server Protocol " ‘ —— P’ =
S : A Le Igfersectlon Protocol >C Y WL N)
o — 8
S -
>} PC - -
Old client Protocol _~ _/ -- (=)

Old client Protocol

7
New server Protocol > Corenr 1

Fig. 6. Process

4.1 Determination of the Operations list

Considering the two versions of the server protocol Py and P, the determina-
tion of the batch of elementary operations performed on Ps to produce P§ is
done intuitively by calculating directly the differences between the states and
transitions sets of the two protocols. The chart in figure 7 resume the formulas
used for each type of operation; the global list of change basic operation is the
union of all the operation lists.

4.2 Propagation Condition

To respect the interests of the client during the adaptation process of change
perorations a selective propagation should be performed in order to decide which
change occurring in the server is interesting for the client and which is not. In
particular for new created transitions which represent new operations created in
the server. In order to minimize time and effort we choose to predict beneficial
new operations to the client based on its previous behavior represented in the
intersection protocol.

To characterize potentially interesting new operations for the client we se-
lect in terms of conversations (cf Definitions) and we define a ”Propagateablility
condition” on new conversations of the server protocol.

” Propagateable conversation”: A new conversation is considered interesting to
the client if:

1. all its transitions belonged earlier to the old client protocol except for the
newly added transitions.

2. its final state is either a new final state in the server protocol or an old one
that had a finale equivalent state in the old client protocol.

This condition is formulated as in the Figure 9

List Name Calculation Formula
Create-State List CSLg={CS(Ps,Ps",s) | s € S’ \ S}
Delete-State List DSLg={DS(Pg,P5",S) | s € S5\ S5’}
Create-Transition List CTLg={CT(Ps,Ps’,r) | r € Rg" \ Rg}
Delete-Transition DTLg={DT(Ps,Ps’,r) | r € Rs\ Rs}
Become-Final-State BFLe={BF(P<,P<,f) | r € F&' \ Fe}
Become-Not-Final-State List BNLg={BN(Pg,Ps’,f) | r € F5\ Fg'}
Change-Initial-State List ClLe={CI(Ps,Ps’, S'ss) if Sos? Sos +

Global Operation List
COLg = CSLg u DSLg; U CTLg U DTLg U CILg U BFLg v BNLg

Fig. 7. Lists

DTLs={(Ps'Ps,(1,2,3)), (Ps',Ps,(1,3,6)), (Ps',Ps.(3,4,4))} |

DSLg={(Ps’,Pg,1), (Ps',Pg,3)}

1|

CSLs={(Ps',Ps,6), (Ps',Ps,7)}

CTLs={(Ps',Ps,(2,51), (P<',P5,(5,6,9)), (P’ Ps,(6,7,n))7 |

BFLs={(Ps".Ps,7)}

0

BNLs={(Ps’,Ps,3)}

Clg={(Ps’,Ps,8)

Fig. 8. Server List

¢ (X) is an Propagateable new conversation iff:
* Sp(X) n Sp(Ps’) = Sp(X) n Sp(Pe)
efeFg,vaf eF., fof}

Fig. 9. PropCondition

10

4.3 Client Change Operations List

To type of basic operation a propagation formula is used to create change oper-
ation list to perform for the client. The Figure 10 resume this formulas.

Delete Transitions Projection To propagate this change to the client proto-
col, we should use the delete-Transition operations list, and for each operation
in the list see if the deleted transition in the server protocol has a correspondent
transition in the client protocol, if so, we delete the correspondent transitions in
the client protocol.

Delete State Projection To propagate this change, we should for each oper-
ation of state deletion look for the correspondent state of the deleted state in
the client protocol.

Create State Projection The propagation of this operation is done by the
creation of a new state in the client protocol for each new state created in the
server protocol.

Create Transition Projection The projection of a ’create-Transition’ opera-
tion is done following the edges of the created transition.

— If the two states belong to the old server protocol and have correspondents
in the old client protocol, we create new transitions in the client protocol
between the correspondent states.

— If one of the states that limit the transition is new and the other is old, we
create transition between the new state created in the client protocol and
the correspondent state of the old states in the client protocol.

— If the states that limit the transition are new in the server protocol, we create
a new transition between the new states in the client protocol.

Change Initial state projection The projection of the change initial state
operation is done by looking for the correspondent state to the server new initial
state in the client protocol and naming it as the new client initial state. Many
cases can be treated:

1. the server new initial state is a new state in the protocol, in that case the
new correspondent state in the client protocol would be the client initial
state.

2. the second case is when the server new initial state is an old state in the
protocol
(a) If the state has a unique correspondent state in the client protocol this

one state would be the new initial state for the client protocol. This is
correct even if the new state has been newly created.

11

(b) If the new server initial state has many correspondent states in the client
protocol, the solution is not direct. We can opt for other three possible
choices: like determinization of protocol a transition count method or a
Statistic method

Become Final State projection The projection of a 'Become Final State’ is
done by performing become final operation on all the correspondent state to the
becoming final state in the client protocol.

Become Not Final State projection The projection of a 'Become Not Final
State’ is done by performing become Not final operation on all the correspondent
state to the becoming not final state in the client protocol.

Operation Propagation Formula
Delete-Transition DTLe={(Pc",Pe, (8¢, &, m)) | , ,
((es,&c)(es’6c),m)eS; and (Pg',Ps,(es,e5’,m))e DTLg}
Delete-State DSL={(P.",Pc.ec) | (es, ec)eS; and (Pg',Pg,e5) € DSLg and
{t e Sg |(t, ec) eSip\{es}r=0}
Create-State CSLe={(P.',Pc,s) | (Pg',Pg,s) e CSLg }
Create-Transition CTLe={(Pc/,Pe,(a’b",m)) | (Ps', Ps (&, b, m))e CTLg and
((3(a, b)ess | ((aa),(bb7) e S) or
(3aeSg | (a,a”) €S; and (Pg', Pg,b") eCSL.) or
(3beSq | (b,b") €S and (Pg, Pg ,@") eCSL.) or
((Ps', Pg ,b") CSL and (P’ Ps,a’) €CSLs)) ¥
Become-Final-State BFL={(P."Pe,s') | ((Pg', Pg,s) € BFLg and (s, s") €5;)
or ((Pg’, Pg,s') € CSLg and s' eFg)}
Become-Not-Final-State BNLc={(P¢",Pc,s') | (Ps', Ps,s) € BNLg and (s, s’) €S;and
{t e R I(t, s') eF\{s}=0}
Change-Initial-State If ((Ps', Ps ,s) € CSLs) ClLe={(Pc",Pc,s)>
Else If (318" Sc|(s,8)¢e5;) o] CIL={(P¢" Pc,s)F
Else "Non Deterministic protocol, use another method"

Fig. 10. PropageFormula

4.4 Example

5 Approach limits

Despite its importance our approach has some limits. This limits comes from our
choice to represent the business protocol as a deterministic finite state machine.
in fact and during propagation of the change operations the client protocol could
become non deterministic.

12

1 ‘ DTc={(P.',Pc,(a, B,a)), (Pc',Pe,(0,0,b))} 2 ‘ DSc={(P. P, 1)}
Pei < e Pe: oS
> () (ww)
B —

3 | CSc={(P.'Pu6), (P Pe7)}

Fig. 11. Process Steps

5.1 Create transition propagation Limit

Let create-Transition P’=(P,(2,5,f)) If the client protocol contains a transition
f that goes from a state that corresponds to the state 2 and leads to a state
non corresponding to 5, propagating this transition makes the client protocol
non determinist as depicted in Figure 12. A test before propagation to block the
propagation of such a transition or a determinisation of the protocol after the
propagation can solve the problem.

Fig. 12. limit1

13

5.2 Create transition propagation Limit

If the new initial state in the server protocol has many corresponding states in
the old client protocol, propagation this change makes the client protocol non
determinist. After the propagation of such a change a deterministation of the
protocol is necessary, we can also use statistical method to choose the new client
initial state between old ones.

Fig. 13. limit2init

6 Conclusion and Perspectives

The management of the impact of change in web service is a critical paradigm
that should be well studies and resolved in order to strengthen the service ar-
chitecture frameworks and minimize the fall of service oriented systems. Many
approaches where developed in order to control the evolution of web services but
yet their efficiency and power is discussed. During my internship, we focused my
supervisor and me on the adaptation of conversations when occurs a structural
change in a web service protocol. We developed a comprehensive approach for
the controlled evolution of web services business protocols in cooperative web
services framework. Our work has two important contributions:

1. Proposing a model with elementary and well defined semantics operation to
formalize the change of web service protocols.

2. Developing a new approach for adapting a client to the evolution of a server
by to maintain compatibility and converse-ability between them with regards
to client interests.

Important contribution of our work was to adopt a selective propagation of new
conversations added to the server. Such an approach helps as to predict the
client decision in implementing new operations. Another challenging issue that
we are working on and that will be developed in another separate contribution
is the protocol adaptation in ad hoc manner. How should we migrate active

14

conversations during there execution the change occurs? And how could we make
use of the data and parameters already exchanged between the client and the
server before the changes? Should we abort all conversations and reload them
to begin from the initial state of the new protocol? Another future work that
could be interesting to do is the adaptation following a new extended definition of
compatibility. In fact we could enlarge our definition of compatibility by imposing
that so that two systems be compatible, any message send by a partner should
have a response by the other, by this way, we will never have an error message
for non conformity or non support. We should for this extend also the definition
of our business protocol to distinguish from incoming and outgoing transitions
and to enlarge our propagation method to take this in consideration.

