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Abstract. We propose an efficient real-time method for markerless 3D human motion cap-
ture that requires a single computer. Using input from at least three calibrated webcams,
an extended ”Shape from Silhouette” algorithm reconstructs the filmed person in real-time.
Fasts 3D shape and 3D skin parts analysis provide a robust and real-time system for human
full-body tracking. Animation skeleton and simple morphological constraints ease the motion
capture process. Thanks to fast and simple algorithms, and appliance to low-cost cameras,
our system is well suited for home entertainment device. Results on long video sequences
with fast and complex movements, demonstrate our approach robustness.

1 Introduction

Marker-free motion capture has long been studied in computer vision as classic and fundamental
problems. While commercial products are already available for real-time marker-use, robust on-line
marker-free systems remains an open issue because many real-time algorithms still lack robustness.
While most popular techniques run on pc cluster, our system require at least three low-cost cameras
(as webcams) and a single computer. In this paper we propose a fully automated human-machine
interaction device for home entertainment (see Fig. 2(a)). Because interactions constraint, our
system works in real-time (at least 30 fps), without markers (active or passive) or any particular
sensors.

To tackle the marker-free motion capture problem, several techniques has been proposed (ac-
cording to camera numbers and feature analysis). We only review some works related to our work.
Among various types of approaches many methods work with a single camera [1, 2]. When the
method is based on the object silhouette, they suffers from ambiguous response in case of local
minimum as different positions can yield the same silhouette. Other methods use multiple cameras.
Some of them work only on a 3D human shape analysis [3, 4]. These techniques provide good re-
sults when the 3D shape topology correspond to the filmed human topology i.e. each body parts is
clearly identifiable in the estimated 3D shape. With self-occlusion cases or large contacts between
limbs and body these techniques frequently fail. Caillette et al . [5] method involves shape and color
clues. They link colored blobs to a kinematic model to track individual body parts. This technique
requires contrasted clothing between each body parts for tracking, thus adding an usability con-
straint. Few methods provide real-time motion capture. Most of them run only with interactive
frame rate (10 fps for [5]).

We therefore propose a fully automated system for practical real-time motion capture from at
least three calibrated webcams. Our method runs at 30 fps because, it is based on simple heuristics,
driven by shape and skin parts topology analysis, and temporal coherence.

Figure 1(a) outlines the two main stages of our method : 3D reconstruction and analysis of
the 3D information. In the first section we present our work for real-time 3D reconstruction. We
explain in the second section our method for real-time full-body pose estimation Then, we discuss
on the results obtained from real and complex data. Finally, we conclude about our contributions,
and we present some perspectives for this work.

2 3D shape and skin parts estimation

We propose extensions for ”Shape From Silhouette” (SFS) algorithms, which reconstruct in real-
time 3D shape and 3D skin color parts of the person from calibrated cameras.
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Fig. 1. (a) System overview: Reconstruction algorithms and Pose estimation algorithms. Body parts label-
ing (b) and joint naming (c).
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Fig. 2. (a) Interaction setup. (b) Object reconstruction by surface and volumetric approaches represented in
2D. SFS computation using ”Projective Texture Mapping” method: First all silhouette masks are projected
on a stack, logical AND is used to compute the projection intersection.

Currently only SFS methods compute in real-time 3D shape estimation of an object, from its
silhouette images. Silhouette images are binary masks corresponding to captured images where 0
correspond to background, or 1 stands for the (interesting) feature of the object. The formalism of
SFS was introduced by A. Laurentini [6]. By definition, an object lies inside the volume generated
by back-projecting its silhouette through the camera center (called silhouette’s cone). With multiple
views of the same object at the same time, the intersection of all the silhouette’s cones build a
volume called ”Visual Hull”, which is guaranteed to contain the real object. There are mainly two
ways to compute an object Visual Hull.

Surface-based approaches Surface-based approaches compute silhouette cone surface intersec-
tions (see Fig. 2(b)). First silhouettes are converted to polygons. Each edge is back-projected to
form a 3D polygon. Then each 3D polygon is projected onto each other images, and intersected
with each silhouette in 2D. The resulting polygons are assembled to form polyhedral shape esti-
mation (see [7, 8]). Resulting Surface-based shape from silhouette is underlined Fig. 2(b). These
approaches are not well suited to our application because of the complexity of the underlying ge-
ometric calculations that are not real-time on a single computer. Incomplete or corrupted surface
models can be created, directly depending on polyhedron sharpness and silhouette noise.



Volumetric-based approaches Volumetric-based approaches [3, 9–11] generally estimate shape
by processing a set of voxels. The object acquisition area is split up into a 3D grid of voxels (volume
elements). Each voxel remains part of the estimated shape if it projection in all images lies in all
silhouettes (see Fig. 2(b)). This volumetric approach is adapted for real-time pose estimation, due
to its fast computation and robustness to noisy silhouettes.

We propose a new framework which computes a 3D volumetric shape and skin parts estimation
on a single computer. After 3D Shape from silhouette estimation on GPU, we compute voxels
visibility. Then all visible voxel which project themselves on skin masks, are then classified as
skin voxels. First we explain camera calibration, silhouette segmentation and skin segmentation
steps, which are input data for 3D estimations. Then GPU SFS implementation, voxel visibility
computation, and skin voxel computation are presented in second part.

2.1 Input Data

First, webcams are calibrated using the method proposed by Zhang et al . [12] which is one of the
most popular calibration algorithm. A Color calibration step is added to enforce coherency between
the two webcams using the method proposed by N.Joshi [13].

Second step consists in silhouette segmentation (see [14] for silhouette segmentation algorithm
comparative study). Then we assume that the background is static and the subject moves. We use
the method proposed by [9]. In beginning we acquire images of background (without user). The
user is then detected in the pixels whose value has changed. By hypothesis only one person is in
the field of view of webcams, then it is represented only by one connex component. Due to webcam
noise, we can have several connex parts, but the smallest are considered as noise.

Last step before voxels computation, we extract skin parts from silhouettes and color images.
Normalized Look-up Table method [15] provides fast skin color segmentation. This segmentation is
applied to each images limited to silhouette mask because skin color pixels outside to the silhouette
correspond to background pixels.

2.2 GPU SFS implementation

Volumetric SFS is generally based on voxel projection: a voxel remains part of the estimated shape
if it projects itself into each silhouette. To better fit a GPU implementation we choose the opposite:
we project each silhouette into the 3D voxel grid as proposed in [9]: if a voxel is intersected by all
the silhouettes projections, then it represents the original object. The classical N3 voxel cube can
be considered as a stack of N images of resolution N ×N . We stack the N image in screen parallel
planes. For each camera view, silhouette masks are projected on each slice using the ”projective
texture mapping” technique [16]. Intersection of silhouettes projections on all slices provides voxel-
based 3D shape. Intersection of silhouette mask projections on a single slice is underlined Fig 2(c).
To save video bus bandwidth, computations for a voxel cube are made in the same frame buffer,
which is tiled by all the N slices of resolution N ×N .

To estimate skin voxels, we compute each voxel visibility from each camera. The voxel visibility
is based on Item Buffer method used in some voxels coloring algorithms [17]. An unique identifier
is associated to each voxel (like color) and voxels are rendered on raster based frame buffers,
corresponding to each cameras views. For each frame buffers, colors describes visible voxels and
this enable bidirectional pixel to voxel mapping. If a voxel is skin consistent (i.e. it is mapped to
skin mask pixels in all of its viewing camera) then it is classified as skin voxel. To improve visibility
computation time, only surface voxels (i.e. voxels which have less than 26 neighbors) are tested.

To reduce computation time for pose estimation we propose to keep the visible voxels. Let Vskin

be the the selected voxels form shape voxel set, Vskin be the skin consistent voxel set, and Vall be
their union.

Our implementation provides up to 100 reconstructions per second. As webcam acquisition is
done at 30 fps, it allows us to save time for motion capture calculus, hence achieving our real-time
goal.



3 Motion Capture

Motion capture is equivalent to determine the pose of the body. It may be seen as classifying
each voxel to a body part. Joints labeling is presented in Figure 1(c). We propose a system based
on simple and fast heuristics. Less accurate than the registration based methods, this approach
nonetheless run at real-time. Robustness is increased by using a multi-modal scheme composed on
both shape and skin parts analysis, temporal coherence and human anthropometric constraints.

Our system runs on two steps: initialization and tracking; both use the same algorithm with
different initial conditions. The initialization step presented section 5 estimates anthropometric
values, and the initial pose. Then using this information, the second step tracks joint positions (see
section 4). The only assumption is that both hands and person’s face are partially uncovered, that
the torso is dressed, and that the clothing have a non-skin color. We present here some common
notations that the reader can refer to:

Lx denotes the length of body part x (see Fig. 1(b)),
Dx its orientation and
Rx its radius (of sphere or cylinder).
Jn denotes the value of a quantity J (joint position, voxel set...) at frame n.
l and r indices denote respectively left and right side
Vx denotes a set of voxel,
EVx its inertia ellipsoid and
Cog(Vx) its gravity center.
J(i) denotes the J quantity value at step i when dealing with iterative algorithms.

4 Body Parts Tracking

To achieve body parts tracking we assume to be known the previous body pose and anthropometric
estimations. Using 3D shape estimation and 3D skin parts we track the human body parts in real-
time. The tracking process works on active voxels Vact. This set of voxels is initialized to all voxels
Vall and updated at each step by removing voxels used to estimate body parts. First we estimate
head joints. Torso is connected to head, then we next track the torso. In the end we compute limb
joints that are connected to torso.

4.1 Head Tracking

This step aims to find Tn and Bn, the positions of the top of the head and the connection point
between head and neck at frame n.

Let Vn
face be the face’s voxels at the current frame. By hypothesis Vn

skin contains face and hands
voxels. Using Temporal coherency criteria Vn

face is the nearest connex component of Vn
skin from the

previous set of face voxels Vn−1
face .

The center of the head Cn is computed by fitting a sphere S(i) in Vn
act (see figure 3). S(i) is

defined by its center Cn(i) and radius Rhead.

head fitting algorithm Cn(0) is initialized as the centroid of Vn
face.

At step i of the algorithm, Cn(i) is the centroid of the set Vn
head(i) of active voxels that lie into

a sphere S(i− 1) defined by its center Cn(i− 1) and its radius Rhead (see Fig. 3(a)).
The algorithm iterates until step k when the position of Cn stabilizes, i.e. the distance between

Cn(k − 1) and Cn(k) falls below a threshold εhead.

head joints estimation Knowing Cn position, Bn (respectively Tn) is computed as the lower
(resp. upper) intersection between S(k) and the principal axis of EVn

head
(see Fig. 3(b)).

The back-to-front direction Dn
b2f is defined as the direction from Cn towards the centroid of

Vn
face (note that voxels from the back of the head are not in Vskin). At this point, we remove from
Vn

act the set of elements that belongs to Vn
head.
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Fig. 3. (a) Sphere fitting (light gray denotes Vn
face, dark gray denotes Vn

head(i)), (b) joints estimation and
(c) torso segmentation by cylinder fitting.

4.2 Torso Tracking

This step aims to find Pn the pelvis position, by fitting a cylinder in Vn
act. Torso shape estimated

by a cylinder provides simple and fast pelvis localization method. Let Vn
torso bet the set of voxels

that describes the torso, they are initialized using voxels Vn
act. At step i, the algorithm estimates

Dn
torso by fitting a cylinder CYL(i−1) in Vn

torso(i) (see Fig 3(c)). CYL(i) has a cap anchored at Bn,
as radius Rtorso, its length is Ltorso and its axis is Dn

torso(i).

Torso fitting algorithm Vn
torso(0) is initialized with Vn

act and the vector from Bn to Pn−1 define
Dn

torso(0) initial value.
At step i, Vn

torso(i) is computed as the set of elements from Vn
torso(i-1) that lie in CYL(i − 1).

Dn
torso(i) is then the principal axis of EVn

torso(i)
(see Fig. 3(c)).

The algorithm iterates until step k when the distance between the axis of CYL(k) and the
centroid of Vn

torso(k) falls below a threshold εtorso. Pn position is defined as the center of the lower
cap of CYL(k)

Global body orientation The top-down orientation Dn
t2d of the acquired subject is given by

Pn − Bn. Db2f was computed in 4.1. The left-to-right orientation Dn
l2r of the acquired subject is

given by Dn
l2r = Dn

t2d ×Dn
b2f .

Vn
act is then updated by removing its elements that belongs to Vn

torso.

4.3 Hands and forearms Tracking

We propose a simple and robust algorithm to compute the forearms joints positions. First we
compute hands position from skin voxels. Helped by given anthropometric measurement of forearm
length, we determine the elbows positions. Temporal coherence is used to compute their sides.

Let Vn
hand be the set of potential voxels of hands. Lstat/2 is a raising of arm length. Vn

hand is
defined by the voxels of Vn

skin−Vn
face that lie within a sphere defined by its center Bn and its radius

Lstat/2. By hypothesis Vn
skin contains hands and face voxels. The different forearms configurations

are:

Two distinct hands : Vn
hand contains several connex components. Let Vn

hand0 and Vn
hand1 be the

two biggest, corresponding to the two hands with Hn
x = Cog(Vn

handx) with x ∈ [0, 1].
Forearms have constant length Lfarm across time. The potential voxels for forearmx are the

voxels from Vn
act which lies within a sphere of radius Lfarm, centered in Hn

x . The connex component
of these voxels which contains Hn

x represents the forearmx. Let Vn
farmx be this connex component;

there are two possible cases to identify elbow.
If forearms did not collide i.e. Vn

farm0 ∩ V
n
farm1 = ∅, then we use the principal axis of EVn

farmx

and Lfarm to compute the elbow position En
x . The sides are computed using temporal coherence



criteria: the side of the forearmx is the same than the closest forearm computed at the previous
frame.

Else forearms collide and Vn
farm0 ∩ V

n
farm1 6= ∅. First we identify the hand sides by the property

of constant forearms length. Hn
x is right sided if

||d(Hn
x ,En−1

r )− Lfarm|| < ||d(Hn
x ,En−1

l )− Lfarm||

else Hn
x is left sided. The voxels vi of Vn

farm0 ∪V
n
farm1 are segmented in two parts Vn

farmr and Vn
farml

using point to line mapping algorithm (see 4.5). If vi is more close to [Hn
r En−1

r ] than [Hn
l En−1

l ], vi

is added on Vn
farmr. Else vi is added on Vn

farml. Principal axis of EVn
farmr

,EVn
farml

and Lfarm are used
to compute En

r and En
l .

One hand or jointed hands : Vn
hand contains only one connex component and it corresponds

to jointed hands or to only one hand (the other is not visible). We use the temporal coherence to
disambiguate these two cases.

If Hn−1
r and Hn−1

l are close to Vn
hand, then the hands are jointed and Hn

r = Hn
l = Cog(Vn

hand)
and we compute Vn

farm as proposed previously. We segment Vn
farm in two parts Vn

farmr and Vn
farml

by the orthogonal plane to [En−1
r En−1

l ] containing Hn
l. Principal axis of EVn

farmr
, EVn

farml
and Lfarm

are used to compute En
r and En

l .
Else the closest hand Hn−1

x to Vn
hand is used to compute the side of Hn

x and Hn
x = Cog(Vn

hand).
We compute Vn

farm as proposed previously and its principal axis of inertia is used to compute En
x.

No visible hand : Vn
hand is empty, then no hand is visible. We take back the positions computed

at the n− 1 frame to the current frame.

In all case Vn
act is updated by removing its elements that belongs into forearm or hand.

4.4 Shoulders Tracking

We have estimated articulations positions of the head, the torso, the hands and the elbows. To
finalize upper body tracking, we compute shoulders positions. As we argue that arms are in a
sphere centered on bottom head, with a radius of Lstat/2, then voxels of Vn

act which are in this
sphere, contain arms voxels and noise voxels. Let Vn

arms be the set these voxels.
Elbow is on one extremity of arm, then the second estimates shoulder. We know the current

position of elbow, then we determine arm voxels. Let Vn
armx (where x corresponds to the side) be

the closest 1 connex component of Vn
arms to En

x. Furthermore arm length Larm is constant, then
current shoulder position Sn

x for the x side is given by:

Sn
x = En

x +
Cog(Vn

armx)− En
x

|Cog(Vn
armx)− En

x|
Larm

Vn
act is updated by removing its elements that belongs into each arm.

4.5 Legs Tracking

All body parts but the legs have been estimated, hence Vn
act contains only the legs voxels. Our

leg joints extraction is inspired from ”point to line mapping” process used to bind an animation
skeleton on a 3D mesh [18]. The elements of Vn

act are split up into four sets Vn
thighl

, Vn
calf l, V

n
thighr

and
Vn

calfr depending of their euclidean distance to segments [Pn−1
l ,Kn−1

l ], [Kn−1
l ,Fn−1

l ], [Pn−1
r ,Kn−1

r ],
and [Kn−1

r ,Fn−1
r ] (see Fig. 4(a)). For the left/right side x, we compute the inertia ellipsoid EVn

calfx

(let Ex0 and Ex1 be its extrema points) and the inertia ellipsoid EVn
thighx

.
The knee is the intersection point of thigh and calf (Fig. 4(b)), hence the foot position Fn

x is
given by the farthest extrema point of EVn

calfx
from the inertia ellipsoid of Vn

thighx
(let say it’s Ex1).

Then knee is aligned on [Ex0Ex1], Ex0 sided, at a Lcalf distance of Fn
x. Hip position Pn

x is given
by the farthest extrema point of EVn

thighx
from the inertia ellipsoid of Vn

calfx, corrected to be at a
Lthigh distance of Kn

x.
1 In term of euclidean distance
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Fig. 4. (a) torso segmentation by cylinder fitting. (b) the ”binding” step of legs tracking and (e) legs
articulations estimation.

5 Body Parts Initialization

We present in this section our techniques to estimate the anthropometric measures and the initial
body pose. The literature in connection with this step can be classified in three categories. In the
first one [7], the dimensions and initial pose are manually specified. Second kind of methods need
of an initialization pose like T-pose [19]. These methods are real-time. The third class is composed
by fully automated methods [3] which are generally non real-time processes. Our approach is real-
time and fully automated for any kind of movements as long as the filmed person is standing up,
his/her hands are below the level of the head, and his/her feet are not joined. After anthropometric
estimations, our method computes each body parts parameters sequentially with the tracking step
ordering.

Anthropometric Measurements They correspond to lengths of each body parts[20]. We have
estimated some anthropometric measures as average ratios of the human body length. Let Lstat

be the acquired human body length, estimated as the maximum distance of foreground voxels to
floor plane. Hence, knowing Lstat, guesses for anthropometric measures are given by these ratios:

Rhead ≈ Lstat/16 Ltorso ≈ 3Lstat/8 Lcalf ≈ Lstat/4
Lfarm ≈ Lstat/6 Larm ≈ Lstat/6 Lthigh ≈ Lstat/4

Like for tracking step, active set of voxels Vact is initialized by all voxels Vall.

Head Initialization This step aims to find T0 and B0. From our initialization hypothesis, the
face’s voxels V0

face of acquired subject are defined by the top most connex component among V0
skin.

Then Head Tracking algorithm (section 4.1) is applied to compute T0 and B0, without estimation
of the face position step. V0

act is updated by removing elements that belongs to V0
head.

Torso Initialization The torso fitting algorithm (section 4.2) is applied using V0
act as initial value

for V0
torso(0).D0

torso(0) is initialized as the vector from N0 toward the centroid of EV0
act(0)

. Pelvis
position P0, D0

t2d and Dn
l2r are then computed. V0

act is updated by removing the elements that
belongs to V0

torso.

Arms Initialization We initialize hands and forearms positions using the tracking algorithm
presented Section 4.3. We have no previous arms position, then we can only compute forearms
positions when there is two distinct forearms. Having this criteria verified, we can compute H0

r,
H0

l,E0
l and E0

l. V0
act is updated by removing its elements that belongs into forearms. Shoulders
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Fig. 5. (a) (b) and (c) underline results for challenging poses. The user recovered pose is presented as an
animation skeleton having right sided parts in red and left sided parts in green. Shape voxels are presented
in white and skin voxels in red.

positions S0
r and S0

l are initialized using directly the shoulder tracking algorithm presented part
4.4.

Legs Initialization Tracking algorithm outlined Section 4.5 need of legs previous positions. We
simulate them by a coarse estimation of knees, feet and hips articulations, then we compute more
precise position of the legs articulations using the legs tracking algorithm.

V0
act contains the voxels that haven’t been used for any other parts of the body. First we compute

the set of connex components from elements of V0
act having their height below Lstat/8. If there is less

than 2 connex components, we assume that feet are joined and can’t be distinguished. Otherwise
we use the two major connex components V0

footl and V0
footr. Left and right assignation of voxel’s

set is done using the left-to-right vector Dl2r. For the left/right side x, let vx be the vector from
P0 to the centroid of V0

footx. Knee and Foot joints are guesses using the following equations:

K−1
x = P0 + vx

Lthigh

|vx|
and F−1

x = P0 + vx
Lthigh + Lcalf

|vx|

We estimate hips previous positions P−1
l and P−1

r as P0. Finally we compute F0
r, K0

r, F0
l and

K0
l using the legs tracking algorithm.

6 Results

Figure 2(a) outlines the system configuration. The acquisition infrastructure is composed of four
Phillips webcams (SPC900NC) connected to a single Pc (CPU: p4 3.2ghz,GPU: NVIDIA Quadro
3450). Webcams produce images of resolution 320× 240 at 30fps.

Our method has been applied on different persons doing fast and challenging motions. Thanks
to shape analysis and skin parts knowledge, our system is able to acquire the joint positions for a
challenging pose outlined on the Figure 5(a). This pose is difficult because the 3D shape topology is
not a human corresponding one. The temporal coherence is the success key for the pose presented
Figure 5(b). This underlines the case of jointed hands (4.3) which is successfully recognized. A
very difficult pose is underlines Fig. 5(c) which is successfully recovered by our system. Images of
Figure 6 argue that our system works for large range movements acquisition.

Some results are included in the supplementary video clip 2. This proves the robustness of our
approach on long video sequences with rapid and complex movements.

Our current experimental implementation provides more than 30 poses tracking per second
on a single computer, which is faster than the webcams acquisition frame rate. An optimized
implementation can be usable for current generation of home entertainment computers. As our
algorithm is based on 3D reconstruction, it is independent of the number of cameras used, but it
depends on the voxel grid resolution. We reconstruct a voxel grid composed by 643 voxels in a 6m3

box. This resolution is sufficient for entertainment human-machine interfaces.
2 http://liris.cnrs.fr/brice.michoud/gtas07videos/



Our motion capture system is based on a Shape-From-Silhouette algorithm. This algorithm
computes an object 3D shape estimation from its silhouettes. The result directly depends on the
silhouette segmentation quality, which is always an opened problem of the computer vision sci-
ence. If the silhouette mask contains some noises like camera noise or object shadows, the volume
reconstruction will be very noised. Thus the results of the motion capture will be worse. But our
method is also based on a skin segmentation which is a more robust faced to camera noise. Then
the hand and head articulations are more noise-resistant, than others articulations.

7 Conclusion

In this paper, we describe a new marker-free human motion capture system at least three webcams
connected to a single computer. Fully automated and working under real-time constraint, the
system is based on both a 3D shape analysis, human morphology constraints, and a 3D shape skin
segmentation. Combining different 3D information, the approach is robust to self-occlusion and to
coarse 3D shape approximation provided by voxel estimation sub-system. We are able to estimate
the fifteen main human body joints, at more than 30 frames per second, which can be used for
home entertainment applications.

The current system provides real-time motion capture for only one person. Current work aims
to provide motion capture of multiple persons filmed together in the same area, even they are in
contact. For home entertainment application, the major limitation is silhouette precessing, because
the background cannot be guaranteed to be static at home. We work on a new segmentation
algorithm based on statistical background model helped by optical flow algorithm.
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Fig. 6. Results for a wide range of movements


