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The main goal of this study is the 

registration of renal SPECT (Single 

Photon Emission Computerized 

Tomography) and 2.5D US (Ultrasound) 

images. In the proposed approach, the 

matching is performed after kidney 

segmentation in both images. The 

SPECT segmentation is achieved using 

a deformable model based on a simplex 

mesh. And the 2.5D US image 

segmentation is carried out in every 2D 

slice by mean of a deformable contour. 

Next, the registration is carried out using 

a nonlinear optimization algorithm, and 

this registration was also used to correct 

the movements in the US image caused 

by the patient respiration during 

acquisition. The registration was 

evaluated quantitatively comparing the 

distance between a manual segmentation 

in the US image and the model extracted 

from de SPECT image. Qualitative 

expertise is currently been realized. 

 

INTRODUCTION  
 

In the current clinical procedure, the use 

of medical images for diagnosis, 

planning, evaluation, and treatment 

settings is of essential importance. 

Within this study, the main goal is the 

registration of renal SPECT and 2.5D 

US images. SPECT images are 

extremely valuable in the diagnosis of 

various renal disorders. However, 

uncertainty in the anatomic definition on 

SPECT may limit their usefulness: 

often, there isn’t enough anatomical 

detail to determine the position of a 

lesion. To overcome this problem, 

integration with structural images of the 

kidneys is used to impose anatomical 

information on the functional one.  

 

Image registration is the process of 

transforming different sets of data into 

the same coordinate system [9]. The first 

approach is to use fiducial marks visible 

in both images. This is efficient, but 

very invasive. Some devices permit to 



acquire two image modalities at the 

same time, leading to an obvious 

registration stage, but unfortunately at 

excessive cost. Finally, an alternative 

approach is to achieve a registration 

only based on image contents. 

In the literature, few works deal with 

registration between SPECT and 2.5D 

US images. Examples are described in 

[2,10], nevertheless it was carried out 

with help of an optical position sensor. 

Other example of similar kind of 

registration between MR and a sparse 

set of US slices has been achieved using 

the probability of existence of vessels 

[14]. There are also works on 

registration of US and MR using 

intensity and gradient information [15] 

or between US images [16] using a 

correlation measurement like mutual 

information. In our approach, the 

registration is carried out by performing 

a matching of previous segmentations of 

the kidneys in both images. 

 

This paper is organized as follows: 

Section 1 and 2 present the acquisition 

and segmentation steps respectively for 

SPECT and 2.5D US images, including 

an evaluation of the segmentation. In 

Section 3, the registration algorithm is 

explained, and some quality evaluations 

are presented. Finally, a discussion and 

some perspectives of the work are 

exposed.  

 

1. THE SPECT MODALITY 
 

The first step of our SPECT/US 

registration task is to perform a 

segmentation of the kidneys in the 

functional image. The SPECT images 

were obtained injecting Tc-99m DMSA. 

This radioactive isotope is transported 

by blood and will be fixed by the renal 

cortex, thus exhibiting kidneys perfusion 

and function. A set of images are taken 

at different projection angles through a 

dual-head (SMV DST-Xli) gamma 

camera acquisition. 3D images were 

reconstructed by the OSEM (Ordered 

Subsets Expectation Maximization) 

iterative method, using 64 projections at 

180º. The images size was 128x128x128 

with 4x4x4mm voxels. 

 

1.1. SPECT Segmentation  
 

The SPECT segmentation of the kidneys 

is achieved using a deformable model 

method because of its robustness and 

high noise immunity [12]. A simplex 

mesh [4] that is iteratively adjusted to 

the shape of the kidney has been chosen 

for the model implementation. This 

mesh has been successfully applied to 

the segmentation of cardiac SPECT 

images [13], and in a previous work on 

renal segmentation [6]. 

 

In a simplex mesh, the position of each 

vertex is expressed according to the 

position of its 3 neighbors and some 

shape parameters. Deformation is thus 

very easily handled by discrete 

geometric entities. Dynamics of the 

model is controlled by means of a 

Newtonian law of motion: 
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where m the vertex mass unit (usually 

1), Pi the vertex position, γ  the damping 

factor, Fint internal forces extracted from 

the mesh (to obtain a smooth 

deformation), Fext external forces 



extracted from the image (to push the 

mesh towards the borders), κ  and λ 
weighting associated to the forces. 

 

The first step is to define a mesh around 

each kidney. The initial isosurface is 

determined by the “marching tetrahedra” 

algorithm [18]. Then, the simplex mesh 

is obtained directly from the topological 

dual of this triangulation. 

 

Two types of mesh deformations were 

tested, that can be differentiated by the 

external forces field they use. The first 

one was based on image gradient using 

the GVF (Gradient Vector Flow) 

algorithm [21]. Thus, borders are 

located in areas of high gradient 

characteristics. The other type of mesh 

deformation was based on voxels 

intensity to obtain a result similar to an 

isosurface but smoothed because of the 

mesh rigidity. For this, the external 

forces field was obtained using central 

differences in a smoothed binary image 

of the kidneys. 

 

 
Fig. 1: SPECT image segmented by a 
simplex mesh 
 

1.2. Evaluation of SPECT 

Segmentation 
 

Evaluations for both gradient and 

intensity SPECT segmentation were 

carried out on 27 exams, which were 

part of routine examinations ordered by 

physicians. Parameters used for the 

model dynamics were empirically set as: 

κ=0.8, λ=0.2, γ=0.65. 
 

Using a graphic interface the 

segmentations were evaluated 

qualitatively by a medical experts 

commission. The evaluation range was 

from 1 to 5 (1: very bad, 2: bad, 3: good,  

4: very good, 5: excellent [19]). For all 

images, the gained score was 5. 

 

Thus, according to experts, both 

methods exhibit equivalent results and 

are acceptable. At this step, none 

method can be qualitatively 

differentiated. However, registration 

results, in Section 3, will permit to 

discriminate which edge definition is the 

more appropriate in the experts’ opinion. 

 

Finally, it might be interesting to 

evaluate quantitatively these 

segmentations, for example, by 

comparing with phantoms or with a 

localized registration [10]. 

 

2. THE 2.5D US MODALITY 
 

The second step in the whole 

registration process is to segment the 

kidneys in the anatomical data. Thanks 

to an optical localizer (Praxim 

Surgetics® station) permitting to track 

the position of a rigid body fixed to the 

US probe [7], the considered 2.5D US 

images are composed of a set of 

freehand 2D US images with associated 

spatial coordinates. Each US image was 

obtained using an echo camera Aloka 

55D-630 at resolution 480x640 with a 

0.25x0.19mm pixel size. 

 



2.1. Segmentation of 2.5D US  
 

The 2.5D US image segmentation 

process is conducted separately in each 

slice of the 2D images set. This 2D 

segmentation is performed by mean of a 

deformable contour method, using a set 

of Gabor filters to capture image 

features in multiscale. 

 

Although deformable contours have 

high noise immunity, they are very 

sensitive to the initialization. 

Furthermore, compared with other 

medical imaging modalities, US images 

are particularly difficult to segment [11, 

20] since their quality is relatively low, 

with significant noise even in very 

bright regions. Moreover, the tissue-

tissue boundaries of kidney are 

relatively more difficult to localize in 

US image than for other organs, and 

previous studies have shown that even a 

manual segmentation is not 

straightforward. Thus, to achieve an 

automatic segmentation is not an easy 

task, leading to the necessity of a 

manual initialization. 

 

 
Fig. 2 : Manual localization of the ellipsoid 
axes coincident to the kidney ones in 3D 
 

The initialization consists in positioning 

an ellipsoid in the kidney location. Thus, 

the user intervention simply results in 

identifying the principal axes of the 

kidney (axial, and sagittal or coronal) in 

a US image. This initialization is 

realized by choosing a central slice of 

the kidney, and next rotating, scaling 

and moving 2 axes in the image, the 

third one being automatically deduced 

thanks to symmetry. If both kidneys 

appear in the 2.5D US image then one 

ellipsoid is positioned for each kidney. 

Fig. 2 shows an US slice and the 3D 

position of the ellipsoid axes. 

 

In the literature, Gabor functions have 

often been used for the segmentation of 

US images [17, 20] due to their 

appropriate texture characterization. 

Here, we used circular functions to 

capture image features in multiscale. 

After experimenting various 

frequencies, the set of central 

frequencies of the Gabor functions have 

been selected empirically to F={0.08, 
0.2, 0.35}; and the usual θ={0, π/6, π/3, 
π/2, 2π/3, 5π/6} set of angles has been 
used (covering 180° degrees) as in [20]. 
 

Next, the filtering step is performed to 

obtain a set of images EF,θ for every 2D 
US image, where F is the radial center 
frequency and θ  the Gabor filter angle. 
Using this image set, borders of the 

kidney are searched with help of active 

contours [3, 8, 12]. For this, the contour 

is defined by a set of points{ } PN

iiP 1= . The 

dynamics of each vertex is given by a 

Newtonian law of motion, like in eq. (1), 

and the internal force is defined as: 
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where α and β are weights that control 
tension and rigidity of the curve, 

respectively. 

 



In order to obtain a more appropriate 

field of external forces (smooth and 

without undesired locals minima), the 

GVF algorithm [21] is used. Moreover, 

we need to eliminate forces 

corresponding to the renal medulla, 

because otherwise they may attract the 

contour that falls in a local minimum, 

leading to incorrect border 

determination. Three edge maps, 

obtained from the EF,θ images calculated 

with the three central frequencies, are 

introduced to the GVF algorithm. Thus, 

three force fields are obtained, that 

permit to carry out a coarse-to-fine 

deformation (from the lowest to the 

highest frequency). 

 

As initial contour for each 2D US 

image, we use the resultant ellipse of the 

intersection between this image and the 

previously defined initial ellipsoid. We 

apply affine transformations to this 

ellipse to better match the kidney 

borders. This adjustment was carried out 

maximizing the integration, along the 

ellipse, of the filtered image gradient in 

the direction normal to the ellipse. This 

way, the vector ]ˆ,ˆ,ˆ[ˆ tsp α=  of the optimal 

rotation α̂ , scaling ŝ , and translation t̂ , 

is obtained for each ellipse, with: 
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where θFE∇  is the gradient of the filtered 

image, N(Pi) is the normal to the ellipse 

at point Pi, and T(·;p) is the 

transformation with vector of parameters 

p. Thus, the resultant ellipse is deformed 

using the forces field obtained with the 

minimum frequency Gabor filter. Then, 

the resultant contour is deformed 

sequentially with the other force fields, 

carrying out a coarse-to-fine 

approximation. The dynamics of the 

contour were controlled by means of eq. 

(1). 

 

After the deformation step, only some of 

the points Pi are kept, ie. the ones with a 
value mi in the edge map fF with 
maximal frequency greater than 20% of 

the maximal value. These curve 

segments are united if they have a 

separation smaller than a threshold (30 

pixels approx.). Finally, all the small 

curve segments are eliminated, 

providing with highly confident border 

segments. Fig. 3 illustrates the final 

result of the whole US segmentation 

process. 

 

Fig. 3 : Superposition of automatic (green) 
and manual (yellow) US segmentation. 
 

2.2. Evaluation of US Segmentation  
 

For the evaluation of the segmentation, 

it was taken a 2.5D US to one patient 

and two volunteers. The used parameters 

were empirically selected as: κ=10, 
α=0.6, β=0, γ=0.65, λ=1. 
 

It was requested to medical experts to 

mark the kidney borders in each one of 

the 2D images by help of a graphic 

interface. They only delineated those 

borders they can clearly identify. The 



distance between this manual 

segmentation and the semi-automatic 

one issued from our method has been 

measured. Table 1 shows the percentage 

of images in which the initial ellipse was 

not positioned correctly (in those 

images, the distance was not measured), 

the average distance, and the percentage 

of borders found in comparison to the 

manual segmentation. Results exhibit 

the good behavior of our method, 

leading to detecting the kidney edges 

with a precision of approximately 1.5 

mm. For patient B, initialization failed 

for several images, mostly for those 

lying at the extremities of the kidney or 

because of highly noisy. 

 

Table 1 : Results of our US segmentation 
according to manual contouring. 

Patients A B C 

bad initialized 
images [%] 

0.0 18.0 4.1 

Average distance 
[pix] 

5.09 11.06 7.18 

Edges found [%] 60.86 77.10 79.46 

 

3. REGISTRATION 
 

 For the registration of the structures 

found in both images, a nonlinear 

optimization algorithm is used [5]. 

Furthermore, this registration is also 

used to correct the movements in the 

2.5D US image caused by the patient 

respiration during acquisition, leading to 

an accurate global localization of the 

kidney in each slice. 

 

 First, a pre-registration is made with a 

similarity transformation (gravity 

centers and main directions). It is based 

on the position of the kidney delivered 

in the initialization of the 2.5D US 

image segmentation, and on the 

segmentation of the SPECT image. 

Next, to achieve the registration, a 

minimization is carried out over the 

quadratic distance between the points 

found in the 2.5D US image and the 3D 

kidneys model extracted from the 

SPECT image. During the acquisition of 

the 2.5D US images, movements caused 

by the respiration induce that the kidney 

position in each 2D image is slightly 

different. To correct this movement, it is 

necessary to register each US slice 

separately and then to realize a global 

registration of the 2.5D US image. Thus, 

iterations are realized with registrations 

of two types: a rigid registration for 

every slice and a general registration 

using a similarity transformation. The 

parameters of the similarity 

transformation are three rotation angles, 

three translations, and one scale 

parameter. This process is repeated until 

the mean movement of the points found 

in the 2.5D US image is less than 0.5 

pixels. Levenberg-Marquardt algorithm, 

optimized by the distance transform, 

was used for the minimization of the 

quadratic distance. This implementation 

is comparable with the popular ICP 

algorithm [1, 5]. Fig. 4(a) shows the 3D 

kidneys model and the points found in 

the 2.5D US image, after registration. 

Fig. 4(b) shows a SPECT/US 

registration example. 

 

3.1. Evaluation of the Registration 
 

 Registration was achieved on the same 

set of patient than in section 2.2. In the 

quantitative evaluation, distance after 

registration between the 3D model 

extracted from the SPECT image and 

the manual contouring in the US image 



has been measured. As the registration 

process tries to align the kidney borders 

in both images, this can be considered as 

a quality measure of the registration. 

Table 2 shows the average distances for 

both gradient and intensity SPECT 

segmentation. The results are of good 

quality, and show similar performance 

for both SPECT segmentations. 

 

Table 2. Quantitative registration evaluation 

Type of SPECT 
segmentation 

Average distance 
[mm] 

gradient 3,24 

intensity 3,30 

 

In a previous study, medical experts 

have been evaluating the same 

registration method, but without the 

correction of the US localization,  

with a poor 3.13 average score over a 1 

to 5 range. A new expertise is currently 

being realized. And as it was the case 

for the quantitative one, we are 

confident in obtaining better results. 

 

4. CONCLUSIONS 
 

A method was developed in order to 

register renal SPECT and 2.5D US 

images. The method is based on a 

previous segmentation of the images. 

The SPECT segmentation, 2.5D US 

segmentation and registration, were 

evaluated separately. Results show that 

the registration was successfully 

performed. However its quality could be 

improved. Our method take into account 

movements due to respiration, 

registering each 2D US image, but 

important enhancement can be achieved 

through better acquisition protocol to 

reduce movements of the kidneys during 

the acquisition phase. Moreover, we 

believe that the introduction of priors 

shape of the expected anatomical 

structure will be a significant advantage 

during the segmentation process, leading 

thus to a better registration. From the 

medical point of view, it may also be 

useful to have an objective automatic 

correlation between lesions seen in the 

SPECT with what appears in the US, for 

example the ratio between functional 

lesions and volume of the kidney. 

 

 

Fig. 4 : (a) 3D kidneys model and the points 
found in the 2.5D US image, after the 
registration. (b) Example of SPECT/US 
images registration. 
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