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1. INTRODUCTION 
 

In Computer Graphics, deformable 

object animation by physically based 

models is often achieved by use of 

mass-spring system. Indeed, such 

discrete model makes it possible to 

obtain interactive animation time, even 

for complex scene, hardly reach with 

other more complex models. At the 

contrary, although visually credible, 

these mass-spring models do not permit 

to easily integrate physical properties 

data, making thus difficult to render 

physically correct simulations. 

For this reason, we propose in this paper 

a new 3D formulation achieved by 

assembling elemental bricks made up of 

vertices and edges, which are next 

transformed into a mass-spring system: 

vertices or masses, are thus connected 

along the edges by the mean of springs. 

Our model strength lies then in the 

analytic determination of the spring 

coefficient values (stiffness), making it 

possible to reproduce the behaviour of 

any object. Thus, the stiffness values of 

the discrete model are directly deduced 

from the mechanical properties of the 

real object (elasticity, shearing, 

compressibility, etc.). 

We validate our model by handling 

some experiments like shearing or 

inflexion. In particular, comparisons are 

made between our model and a 

reference solution. This new discrete 

model could then be useful to 

interactively simulate the behaviour of 

soft tissues (whose mechanical 

parameters are known), for example 

within the framework of medical 

simulators.  
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2 RELATED WORKS 
 

Mass-spring systems have largely been 

used in the animation context, because 

of their simple implementation and their 

possible applications for a large panel of 

deformations. An important problem of 

these models is to choose an appropriate 



meshing, as springs stiffness constants 

are generally empirically set [5]. 

Solution based on optimisation 

algorithms [2,4] may provide with 

automated stiffness determination. 

However, its efficiency depends on the 

number of springs and requires 

expensive computation time. Moreover, 

the process should be repeated after any 

mesh alteration. 

Direct analytic solution to parameterise 

the springs should save computer 

resources. The Mass-Tensor approach 

[3,6] aims at simplifying finite element 

method theory by discretising the 

constitutive equations. Despite its 

interest, this approach requires pre-

computations and storage of an 

extensive amount of information for 

each mesh component. 

Van Gelder has proposed an approach 

highly referenced [7]. A new 

formulation is given for triangular 

meshes, allowing calculating spring 

stiffness according to elastic parameters. 

However, numerical simulations 

completed by a Lagrangian analysis 

exhibited the incompatibility of the 

proposal with the physical reality. 

Therefore, controlling realistically the 

elastic parameters has been proved 

difficult [1]. 

 

3 TENSILE PROPERTIES 

AND EXPERIMENTS 
 

Linear elastic isotropic and 

homogeneous material can be 

characterized by four parameters: 

Young’s modulus, Poisson’s ratio, shear 

modulus and bulk modulus. They are 

generally extracted by a set of 

experiments (Fig. 1). 

 

 

Figure 1: The 3 physical experiments: 

elongation, shearing, inflation (from left to right). 

 

Elongation experiment 

The Young’s modulus and the Poisson’s 

ratio are measured by elongation 

experiments, measuring alterations on 

each axe as response to a pressure P. 

The Young’s modulus E (in Pa) defines 

the elasticity of a material by:  

 
Poisson’s ratio ν (without unit) 

characterizes the thinning (
0/2 iiδ  with 

),( yxi ∈ ) induced by the elongation:  

  

 

 

Shearing experiment 

The deviation angle θ (Fig. 1) is induced 

by two opposite forces F, and 

characterises the shearing amplitude G:  

with 0A , the area of the base. For small 

deformations, it reads: 

 

Inflation experiment 
It consists in measuring the inflation ∆V 

resulting from a concentric pressure ∆P, 

applied to each face (Fig. 1). The Bulk 

modulus B is defined by (* for small 

deformations): 

*  



4. OUR 3D MODEL 
 

To be able to reproduce the mechanical 

behaviour with mass-spring systems, we 

have to determine the stiffness 

coefficient of the springs to match real 

materials. We propose to carry out 

numerically the experiments previously 

described, and to establish a relation 

between the stiffness coefficients and 

the imposed tensile parameters. 

We consider as sample a x0×y0× z0 

parallelepiped. Fig. 2 displays the best 

3D configuration for these diagonal and 

edge links. We propose a methodology 

to calculate these parameters 

analytically, within the Lagrangian 

framework. For each experiment on 

Fig. 1:  

 (1) We build the Lagrangian as the sum 

of the springs potential after 

deformation, as well as the one of 

external forces (null kinetic term). 

 (2) We establish a 2nd order Taylor’s 

expansion in deformations and apply 

least action principle. It reads linear 

equations. 

 (3) From section 3, we express the 

mechanical characteristics according to 

the stiffness coefficients. 

 (4) We solve this set of equations (the 

mechanical characteristics are input 

parameters). 

 

As it may be noticed, inner diagonals 

fully define the shearing modulus, thus 

for a cube, kd may be determined 

proportionally to G (and E, ν): 

  
Next, the non-diagonal edge stiffness kx 

(resp. ky, kz) has to satisfy two relations 

(E and ν). A solution can be found but 

restricted to ν=0.25. Thus, we propose to 

add two new forces ⊥F induced by the 

elongation. They have to be identical in 

both directions for symmetry reasons 

(Fig. 3). It leads to a new system that 

after resolution reads for i ∈ x0,y0,z0{ }:  

  

 
 

Figure 2: Links in the 

3D element 
Figure 3: Orthogonal 

correction forces. 
 

The Lagrangian equation of the inflation 

test verifies that this solution satisfies 

the definition of the bulk modulus. 

Finally, from these parameters, we can 

tackle the simulation of any object 

composed of mesh elements: 

 (1) Compute all forces applied to an 

element; (i) internal, including forces 

due to springs and correction forces, or 

(ii) external, like gravity or interaction 

with neighbourhood. 

 (3) Calculate accelerations and 

velocities according to an integration 

scheme (explicit or implicit Euler, 

Verlet, etc.). 

 (4) Displace each mesh node 

consequently. 

 

5 EVALUATION OF THE 

3D MODEL 
 

As some approximations have been 

made, effective mechanical properties of 

our meshed models have been tested 

against small and large deformations; 

the more pertinent ones follow. 



Limits in shearing 

As expected, for a stressed cube, the 

relative error on G does not depend on 

E. This error increases with ν, but 

remains reasonable for small shear angle 

and compressible material (Fig. 4). 
 

 
Figure 4: Measured error on shearing in a cube 

according to E and ν 

 

Next, we stress a composite shape. 

Fig. 5 illustrates the influence of the 

mesh resolution. 
 

   
2x2x6 sampling: M=13%, SD=1.3%, MAX=33% 

4x4x12 sampling: M=6%, SD=0.33%, MAX=14% 

8x8x24 sampling: M=3%, SD=0.03%, MAX=6% 

Figure 5:  Shearing: superposition of our wired 

model with a colour gradation FEM reference. 

(M for Mean Error, SD for Standard Deviation, 

MAX for Max Error). 

 
Limits in deflection 

This experience constitutes a relevant 

test to evaluate mass repartition and 

good behaviour in case of large 

deformations (inducing large rotations). 

At equilibrium, under gravity loads, the 

top of the beam is under tension while 

the bottom is under compression, 

leaving the middle line of the beam 

relatively stress-free (Fig. 6). 

 

We notice that results are dependent of 

the sampling resolution, as for any other 

numerical method; however the fibber 

axis profile keeps close to the expected 

analytical. 

 

6 CONCLUSIONS AND 

FUTURE WORK 
 

We proposed a mass-spring model that 

ensures fast and physically accurate 

simulation of linear elastic, isotropic and 

homogeneous material. It consists in 

meshing any object by a set of cubic 

mass-spring elements, and in adding 

some corrective forces orthogonal to 

elongation forces. By construction, our 

model is well characterised by the 

Young’s modulus, Poisson’s ratio, 

shearing modulus and bulk modulus, for 

small deformations. The spring 

coefficients have just to be initialized 

according to simple analytic 

expressions. The amplitude of the 

corrective forces is simply derived from 

the elongation forces. Limits of our 

model have been given by comparing 

our results with those obtained by a 

 
4x1x1 sampling: M=16.31%, SD=2.83%, MAX=38% 

8x2x2 sampling: M=7.08%, SD=0.58%, MAX=16.7% 

16x4x4 sampling: M=0.68%, SD=0.03%, MAX=4.05% 

Figure 6: (left) Cantilever submitted to gravity,

(right) FEM reference solution with superposition 

of our 16x4x4 model, (see Fig 5 notations).  



finite element method, chosen as 

reference for preciseness. We exhibited 

that our model can also support large 

deformations. The accuracy increases 

with the mesh resolution. 

In the future, we are looking to apply the 

same technique to other geometrical 

elements, for example parallelepipeds, 

tetrahedron or any polyhedron. This 

would increase the geometrical 

reconstruction possibilities and would 

offer more tools for simulating complex 

shapes. 

Mesh optimization or local mesh 

adaptation would probably improve the 

efficiency of the model. For example, 

we can modify the resolution in the 

vicinity of highly deformed zones, 

reducing large rotations of elements 

undergoing heavy load. 

Moreover, it may be interesting to 

investigate a procedure to update the 

spring coefficients and corrective forces 

when the deformations become too 

large. 
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