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Figure 1: Some images rendered with Metropolis Instant Radiosity, a coherent ray tracer, and 1024 VPLs. Our method which

consists in describing a Virtual Point Light (VPL) sampler as a Markovian process provides very satisfactory results in many

cases: in mostly directly-lit scenes as shown in (a), (b) and, (c) with many light sources or complex scenes as shown in (d) and

(e), and with very difficult visibility issues as shown in Figures (f), (g), and (h).

Abstract

We present Metropolis Instant Radiosity (MIR), an unbiased algorithm to solve the Light Transport problem. MIR

is a hybrid technique which consists in representing the incoming radiance field by a set of Virtual Point Lights

(VPLs) and in computing the response of all sensors in the scene (i.e. camera captors) by accumulating their

contributions. In contrast to other similar approaches, we propose to sample theVPLs with an innovative Multiple-

try Metropolis-Hastings (MTMH) Algorithm: the goal is to build an efficient, aggressive, and unconditionally

robust variance reduction method that works well regardless of the scene layout. Finally, we present a fast ray

tracing implementation using MIR and show how our complete rendering pipeline can produce high-quality and

high-resolution pictures in few seconds.

1. Introduction

Many applications from film special effects to light indus-
trial design demand realistic rendering of complex scenes
and rendering programs that can produce that kind of photo-
realistic output. To achieve such a result, an class of meth-
ods generally called "global illumination algorithms", pro-

poses to simulate the response of a given sensor to the in-
coming light flux. In this article, we present a sampling strat-
egy, Metropolis Instant Radiosity, which replaces the incom-
ing radiance field by a effective set of Virtual Point Lights
(VPLs). Indeed, the quality of the sample set is primordial:
as shown, for example, in Figure 1.f, placing VPLs closed to
the light source will provide a bad solution, since the parts
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of the scene seen by the camera are not illuminated by the
regions close to the source. Conversely, Metropolis Instant
Radiosity presented here, will compute a VPL set which has
an interesting intrinsic property: each VPL will provide the
same amount of power to the camera. Figure 1 illustrates the
efficiency of our approach with very different situations.

The remainder of the paper is finally organized as follows.
Section 2 presents related work and Section 3, an overview
of our contribution. Section 4 reminds how the global illumi-
nation problem has been formalized as an integration prob-
lem suitable for Monte-Carlo integration. We also review,
with this formalism, the two techniques upon which we base
our method. Sections 5 and 6 expose in details the new sam-
pling strategies we set up to compute global illumination. In
Section 7, we present the results we obtained with our new
sampler and the comparisons with related approaches. The
limitations and future work are given in Section 8. Section 9
concludes.

2. Related Work

The rendering equation [Kaj86] is today the root of all re-
alistic rendering applications. In this article, we focus on
Monte-Carlo algorithms to solve the equation since they are
certainly the most efficient and versatile techniques. Kajiya
was the first to design an unbiased global illumination algo-
rithm of this type: he sampled the light reaching the image
plane by tracing light paths backwards from the eye point.
Due to intrinsic limitations and variance problems during in-
tegration, many other Monte-Carlo numerical schemes were
developed: the light tracing algorithm [DLW93] is quite sim-
ilar but builds paths starting from a light source instead of
the camera. Bidirectional path tracing, introduced by Lafor-
tune and Willems [LW93] then Veach and Guibas [VG94],
proposes to compute two independent paths, one generated
from the camera, the other one from a light source. Unfortu-
nately, despite their robustness, most Monte-Carlo samplers
are often inefficient since they do not have enough global
context to quickly find all the relevant light transport paths.

To solve these issues, an innovative numerical algorithm,
Metropolis Light Transport (MLT) was developed [VG97].
The decisive advantage of a Metropolis sampler over inde-
pendent Monte-Carlo estimators is its ability to exploit co-
herence in path space and therefore to preserve the sam-
pling context. Since 1997, the Metropolis-Hastings algo-
rithm has been widely explored. Pauly et al. [PKK00]
extended it by adding extra Monte-Carlo Markov Chain
(MCMC) mutations that handle participating media. Kele-
men et al. [KSKAC02] proposed a simplification of the MLT
algorithm which increases the acceptance rate and directly
works in the space of uniform random numbers used to
build up paths. Fan et al. [FCcL05] also used a Metropolis-
Hastings algorithm to populate photon maps by exploiting
coherence among light paths. More recently, [CTE05] de-
veloped an efficient algorithm that uses Metropolis mutation

strategies in a standard Monte-Carlo integrator. They first
generate a set of path samples from the camera to the light
sources, and then use a sequence of MCMC mutations to re-
distribute in an unbiased way the power of each path over
the image plane. All these techniques therefore build low
variance estimators and try to directly solve the problem in
its high-dimensional aspect. Unfortunately, they are slow as
they generally efficiently exploit neither the computation co-
herence nor the current CPU / GPU architectures.

Conversely, another large class of Monte-Carlo rendering
techniques focuses on the algorithmic speed rather than on
an aggressive variance reduction. The most famous one is
certainly Photon Mapping [Jen01] which consists in propa-
gating particles or photons, depositing them on the surfaces
of the scene and finally computing the resulting image with
a Monte-Carlo non-parametric estimation. Instant Radios-
ity [Kel97] is another elegant method to compute global il-
lumination for diffuse or not-too-shiny materials. The idea
is to propagate particles from the light sources and to store
a Virtual Point Light (or VPL) at each bounce. The physical
light sources and the indirect radiance field are thus replaced
by the VPL set. A gathering pass finally computes the image
by evaluating the radiance transfer between theVPLs and the
image plane. The main advantage of these methods is their
affinity with very efficient rendering systems. One may refer
to Wald’s PhD [Wal04] for detailed discussions and effective
ray tracing implementations of these approaches.

As any Monte-Carlo algorithm, Instant Radiosity and
Photon Mapping however suffer from variance problems.
Many solutions often called "importance-driven methods"
which consist in tracing importance particles from the eye
point and in using the resulting distribution to guide the pho-
ton tracing step have been proposed to address this issue
(see [Chr03] for a detailed discussion). As these techniques
do not seem suitable for interactive rendering, several re-
searchers proposed interactive variance reduction techniques
for Instant Radiosity. Wald et al. [WBS03] attempt to deal
with many light sources by building a cumulative density
function (CDF) depending on the light source contributions.
Segovia et al. [SIMP06] recently proposed a generic bidi-
rectional solution to sample VPLs for Instant Radiosity. Un-
fortunately, these two techniques may be slow to converge
when some difficult visibility problems have to be taken into
account.

3. Overview of our Contribution

All the above problems therefore motivated Metropolis In-
stant Radiosity (presented in Algorithm 1). As we want to
propose a rendering technique which remains numerically
robust and fast for all kinds of scenes, combining a Metropo-
lis sampler which can provide very relevant samples and In-
stant Radiosity which can be very efficiently implemented
sounds good. In this paper, we therefore present an inno-
vative VPL sampler using a modified Metropolis-Hastings:
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the "Multiple-try Metropolis-Hastings Algorithm" (MTHM)
[JSL00]. As we will show it, our method provides a faster ex-
ploration of the sampled space than any other related tech-
nique does, and finally offers very good estimators without
important performance penalties.

Algorithm 1Metropolis Instant Radiosity

1: Set all pixel intensities to 0
2: Compute the power Pc received by the camera (see Sec-

tion 5.1)
3: With a Metropolis-Hastings sampler (either the standard

version presented in Section 5.2 or the Multiple-try one
presented in Section 6), compute a set of n VPLs with a
density proportional to the power they bring to the cam-
era. We do not know the outgoing radiance functions
of the VPLs but we know the scene transmits the same
amount of the VPL power to the camera.

4: for i= 1 to n do
5:• Suppose that VPL i is on a diffuse surface and that

it has a constant outgoing radiance function equal
to 1. Compute the intensity of each pixel in the
screen and the total power P′ transmitted to the
camera through the scene from VPL i.

• As we know that VPL i transmits a power equal to
Pc/n to the camera and that there is a linear relation
between the outgoing radiance function of theVPL
and the transmitted power, rescale the intensities of
the pixels by a Pc

n P′
factor (see Section 5.4).

• Accumulate VPL i contribution.
6: end for

4. Solving the Light Transport Problem with

Monte-Carlo

This section gives a short overview of Monte-Carlo integra-
tion and reintroduces the appropriate formalism to the gen-
eral light transport problem. This formalism and this nota-
tion will be used further to present our hybrid strategy in
Sections 5 and 6.

4.1. Monte-Carlo Integration

The purpose of Monte Carlo integration is to compute an
integral of the form:

I =
Z

Ω
f (ω)dµ(ω) (1)

where Ω is the integration domain, f is a real valued
function and µ is a measure on Ω. I is thus the mean of
function f on Ω for the given measure µ.

A Monte-Carlo integrator simply consists in sampling
one or several random variable families and evaluating the
integrand. Let Y = (Yn)n∈N denote a sequence of random

variables. Under some specific conditions, Monte-Carlo
integration can compute the integral by reexpressing it as
the expected value of (Yn)n. In other words, I = E(Y ). A
common way to generate a suitable random variable family
is to consider a sequence of independent random variables
X = (Xn) with the same probability density function p
defined on (Ω,µ) and to use the weak law of large numbers

such that: I = E(Y ) = E
(
f (X)
p(X)

)

. This strategy is for

example, often used in path tracing algorithms.

4.2. Path Integral Formulation

As a Monte-Carlo integrator requires to formalize the
problem as an integration one, Veach proposed in his PhD
thesis [Vea97] to rewrite the light transport problem.

The Light Transport Equation

Veach first developed the "three point form" formulation
which describes the local lighting behavior of materials:

L(x′→x′′) = Le(x
′→x′′)+

Z

M
L(x→x′) fs(x→x

′→x′′)G(x↔x′)dA(x)(2)

L is the equilibrium outgoing radiance function, Le(x′→x′′)
is the emitted radiance leaving x′ in the direction of x′′, and
G(x↔ x′) is the geometric term between x and x’. It repre-
sents the differential beam between the two differential sur-
faces and is given by: G(x↔ x′) = V (x↔ x′)

cos(θ0) cos(θ′i )
||x−x′||2

where V (x ↔ x′) is the visibility term between x and x′

which is equal to 1 if x sees x′ and zero otherwise. θ0 (resp.
θ′i) is the angle between x → x′ and the surface normal
at x (resp. x′). fs(x→x′→x′′) is the bidirectional scattering
distribution function of the material. M is finally the union
of all scene surfaces and A is the Lebesgue (i.e. uniform)
measure on M.

Since formalizing the light transport problem as an in-
tegral equation is however not suitable to Monte-Carlo
integration, we have to reexpress it.

The Measurement Equation

Any pixel computation can be first defined as the response
of a hypothetical sensor to the incident radiance field. If

W
( j)
e (x→x′) is the responsivity of sensor j and I j, the power

it receives, we can define the measurement equation by:

I j =
Z

M×M
W

( j)
e (x→x′)L(x→x′) G(x↔x′) dA(x) dA(x′) (3)

The Path Integral Formulation

Using the light transport equation, the measurement equa-
tion can be recursively expanded to be expressed in an
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iterative way:

I j =
∞

∑
k=1

Z

Mk+1

[

Le(xk→xk−1)G(xk↔xk−1)W
( j)
e (x1→x0)

(
k−1

∏
i=1
fs(xi+1→xi→xi−1)G(xi↔xi+1))dA(x0) ... dA(xk)

]

The measurement equation can be finally reformulated as:

I j =
Z

Ω
f
( j)(x)dµ(x) (4)

f ( j) is defined for each path length k by extracting the
appropriate term from expansion (4), Ω is the set of all finite
length paths and µ the natural associated measure given by:

µ(D) =
∞
∑
k=1
µk(D∩Ωk) where Ωk is the set of all length

k paths and µk the associated product measure given by
dµk(x0 . . .xk) = dA(x0) . . .dA(xk).

With this formalism, the global illumination problem
is now as an integration problem we can solve by a
Monte-Carlo algorithm.

4.3. Metropolis Sampling for Light Transport

We give here a short overview of the Metropolis-Hastings
algorithm and its application to the global illumination
problem as introduced by Veach and Guibas [VG97].

Metropolis-Hastings (MH) Algorithm

We first recall that a sequence of random variables (X (t))t∈N
is a Markov Chain if X (t) depends only on X (t−1) through a
transition function g(·|x(t−1)). The goal of the Metropolis-
Hastings algorithm is to construct a Markov Chain that
has a equilibrium distribution π∞ by applying successive
mutations on its elements. This algorithm does not solve
a priori an integration problem but may provide a very
elegant variance reduction technique in the case where
many correlated integrals have to be computed.

The algorithm starts at t = 0 with the selection of
X (0) = x(0) randomly drawn from a distribution π0 with the
only requirement that π0(x

(0)) > 0. Given X (t) = x(t), the
algorithms computes X (t+1) as follows:

1. Sample a candidate value X∗ from a proposal distribution
g(·|x(t))

2. Calculate the Metropolis-Hastings ratio R(x(t),x∗),
where:

R(u,v) =
π∞(v) ·g(u|v)

π∞(u) ·g(v|u)

3. Sample a value for X (t+1) according to the following:

X
(t+1) =

{
X∗ with probability min{R, 1}
x(t) otherwise

It is possible to show that under general conditions, the
sequence (X (t))t∈N is a Markov Chain with equilibrium
distribution π∞.

Ergodicity

With the MH sampler, we can therefore sample almost any
distribution π∞. If we ensure the ergodic property of the
chain (i.e. that all states are equally probable according
to π∞ after a long time passed in the chain), we are
furthermore able to take all samples of the Markov Chain as
if they exactly follow the stationary distribution. To do this,
it is sufficient to ensure that g(x|y) > 0 when π∞(x) > 0
and π∞(y) > 0 since all states can be reached with only one
mutation step with a non-null probability.

Application to Light Transport

Veach and Guibas proposed to use a MH sampler as
a powerful variance reduction technique for the global
illumination problem. They first evaluate the total power
received by the camera and then use a Metropolis sampler to
compute correlated random variables with a density directly
proportional to the integrand f as defined in equation 4.
During the sampling process, they finally estimate the pixel
intensities by counting the number of paths going through
each pixel and by proportionally distributing the total
power over all of them. For a more detailed introduction to
Metropolis sampling and its application to rendering, we
refer to [Pha03].

4.4. Instant Radiosity

Instant Radiosity [Kel97] (IR) is a powerful method to com-
pute global illumination for diffuse or not-too-shiny mate-
rials. As shown in Figure 2, it actually consists in virtually
splitting each path x = {x0,x1, . . . ,xn} into three parts:

• xc = {x0,x1} where x0 is a location on a sensor and x1 is
a point seen by this sensor;

• xv is a point located just after x1: in a sense, xv "illumi-
nates" x1 and it is the VPL location we are looking for;

• xs is the remainder of the path. Its end is connected to a
light source while its first point is connected to xv. We
may notice that xs can be void if xv is located on a light
source.

Using the path integration formulation, we then generate and
store N random paths {xv,xs} from the light sources and
reuse these sub-paths for all camera pixels (i.e. the camera
sub-paths {x0,x1}). Therefore, we have for each pixel j:

I j = E

(

f ( j)(x)

p(x)

)

= E

(

f ( j)({xc,xv,xs})

p({xc,xv,xs})

)

As xc and {xv,xs} are independent:

p({xc,xv,xs}) = p(xc)p({xv,xs}))

We finally consider all the light sub-paths but only store the
ending point of each of them xv which is often called Vir-
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tual Point Light (VPL). For each VPL, we therefore store
its location, its density p({xv,xs}) and its outgoing radiance
function (which is constant if the surface is diffuse). In the
remainder of the article, we will say that xv is the geograph-
ical VPL and we will say that {xv,xs} is the path VPL. We
think that it is important to remind that each VPL is actually
a complete light path and not only its ending point. The ef-
ficiency of Instant Radiosity furthermore relies on the fact
that the VPLs are reused for all the sensors in the scene and
that the global illumination problem comes down to visibil-
ity requests between the VPLs and a point of the scene.

xv

x0

x1

xs

xc xs

0

1

Figure 2: The decomposition of a path into three parts: the

camera path, xc = {x0,x1}, the location of the VPL, xv and,
xs0 , the remainder of the path which "brings some power" to

xv. We have here a geographical VPL xv which contains two

path VPLs, {xv,xs0} and {xv,xs1} (see Section 5.3)

5. Metropolis Instant Radiosity

While the previous section presented the two major contri-
butions upon which our work is based, we introduce here the
core of our contribution, Metropolis Instant Radiosity (see
Algorithm 1). To be more precise, our goal is to propose
an efficient global illumination algorithm by computing a
Markov-Chain of VPLs such that each VPL will bring the
same amount of power to the camera.

As our algorithm relies heavily on marginals, we
first recall their definition. If X = (X0,X1 · · ·Xn−1) ∈
(Ω0 ×Ω1 × ·· · ×Ωn−1) is a random variable, then Xi is
simply called a marginal of X . Furthermore, if f is the
density of X , the density fi of Xi is defined by:

fi(y) =

Z

Ω0

· · ·

Z

Ωi−1

Z

Ωi+1

· · ·

Z

Ωn−1

f (x0, · · · ,xi−1,y,xi+1, · · · ,xn−1)

dµ(x0) · · ·dµ(xi−1)dµ(xi+1) · · ·dµ(xn−1) (5)

We therefore have to integrate f on ∏ j 6=iΩ j to obtain fi.

5.1. Compute the power Pc received by the camera

(Step 2)

We first compute the power Pc received by the camera by
generating a family of bidirectional paths going from the

camera to the light sources. To eliminate start-up bias, we
also resample the generated paths to provide a "good" ini-
tial random variable with a law close to the integrand f (c)

described in the next Section. For more details about this
technique, one may refer again to [VG97].

5.2. Generating the VPLs with Metropolis (Step 3)

The goal of a Monte-Carlo integrator for the Light Transport
problem is to integrate f ( j) as shown in Section 4.2 by
equation (4). To achieve this goal, the best sampling strategy
is to generate samples with a density directly proportional to
f ( j). What we propose here is thus to sample the entire path
space Ω proportionally to the response f (c) of the camera to
the power brought by a path, to project these samples on the
appropriate sub-space and to finally consider them as VPLs.

By directly using the Metropolis sampling technique
designed by Veach and Guibas, we are able to sample
a distribution of paths proportional to f (c). Indeed, as
indicated in Section 5.1, we first simulate a random variable
X0 with a density close to f (c) and then, we use the mutation
strategies proposed by Veach and Guibas to compute
a Markov-Chain with an invariant law proportional to
f (c) (see Section 7.1 for more details about the imple-
mentation). It is important to notice that these paths are
complete since they go from the camera to a physical light
source. In the remainder of the paper, we will finally set
the normalization constant a such as: a= 1

Pc
= 1

R

Ω f
(c)(x)dµ(x)

As the sub-path {xv,xs} is a marginal of x = {x0,x1,xv,xs}

and as we directly sample x with density a · f (c)(x), equation

(5) gives us the density p(c)vs ({xv,xs}) of {xv,xs}:

a· f
(c)
vs ({xv,xs}) =

Z

M

Z

M
a· f (c)({x0,x1,xv,xs}) dA(x0) dA(x1)

In other words, by sampling complete paths from the camera
to a light source with a density proportional to f (c), we also
have an interesting class of sub-paths {xv,xs} with a density

proportional to f (c)vs . Actually, they all bring the same amount
of power to the camera. Indeed, if ({xvi ,xsi})i∈[1...n] is a set
of n VPLs, then:

Pc =
R

Ω f
(c)({x0,x1,xv,xs})dµ{x0,x1,xv,xs}

≃ 1
n ∑
n
i=1

R

M

R

M
f (c)({x0,x1,xvi ,xsi})dA(x0)dA(x1)

p({xvi ,xsi})

≃ 1
n ∑
n
i=1
f
(c)
vs ({xvi ,xsi})

p
(c)
vs ({xvi ,xsi})
︸ ︷︷ ︸

= 1
n ∑
n
i=1

1
a·n = 1

n ∑
n
i=1
Pc
n

VPL i contribution

Additionally, we can remark that even if we know that every
VPL brings the same amount of power to the camera (equal
to Pc/n if there are n VPLs), the outgoing radiance function
of each of them is unknown (but not needed as we know Pc).

As soon as the sampling step is finished, we finally
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have a set a sub-paths ({xvi ,xsi})i: each of them is a path
VPL which "emits" light from xvi and transmits a power
equal to Pc/n to the camera.

5.3. Clustering the Physical VPLs (Step 3)

Each VPL is thus a complete sub-path which starts from a
light source and goes to the corresponding geographicalVPL
xv. While applying mutations on complete paths, it is further-
more possible that theVPL location xv does not change. This
case occurs when:

• The candidate is rejected and the path is duplicated;
• Only the sub-path xc = {x0,x1} is mutated;
• Only the sub-path xs is mutated.

With this sampler, each geographicalVPL can therefore con-
tain several path VPLs: if k path VPLs go to the given loca-
tion xv, the contribution of the geographical VPL xv will be
equal to k ·Pc/n. Finally, if the user requires m different lo-
cations for theVPLs (i.e. m geographical VPLs), the number
n of path VPLs that must be generated is not known but is
automatically determined during the sampling step by pre-
cisely monitoring the mutations.

5.4. Accumulating the VPL contributions (Steps 5)

After the sampling step, we have a set of m path VPLs xvi :
each of them brings a fixed amount of power to the camera
equal to Pi = ki ·Pc/n where n is the number of paths gener-
ated during the sampling step (i.e. the total number of path
VPLs) and ki is the number of path VPLs connected to xvi .
To compute the contribution Pi of VPL xvi for each pixel of
the screen, we simply dispatch its contribution Pi among all
pixels. To achieve such a result, we first suppose that the sur-
face at xvi is diffuse and that its outgoing radiance function is
constant and equal to 1. Then, we perform the lighting com-
putations and evaluate the intensity of every pixel. Once it
is done, we evaluate the total power P′i received by the cam-
era and scale all pixel intensities by a Pi/P

′
i factor such that

the total power emitted by xvi and transmitted to the camera
becomes Pi.

5.5. MIR with Common Renderers

Metropolis Instant Radiosity is conceptually different from
Instant Radiosity since we do not know the outgoing radi-
ance function of each VPL. This may be a practical limita-
tion since most of the implementations of Instant Radiosity
assume that this function is known and therefore base their
code-design on this assumption. Fortunately, our sampling
technique can be easily integrated to any of these renderers
by adding an extra pass: the VPL outgoing radiance func-
tion estimation. This pass simply consists in randomly cast-
ing rays from the camera and then, in scaling their outgoing
radiance function in relation to the power they bring to the

camera. Thus, we do not have to extend any pre-existing ren-
derer using Instant Radiosity since all the properties of the
VPLs (normal, power, and position) are determined.

6. A VPLMultiple-try Metropolis-Hastings (MTMH)

Sampler

In the previous section, we described a complete rendering
pipeline using a standard Metropolis-Hastings (MH) sam-
pler. The main problem with such a sampler is the impor-
tant correlation which may occur between successive sam-
ples in the chain: In worst cases, the algorithm may be slow
to converge and it may be trapped in a local mode of inte-
grand f (see Figures 3 and 4). To overcome these difficulties,
Liu et al. [JSL00] proposed an alternative strategy known as
Multiple-try Metropolis-Hastings sampling. What we pro-
pose here is to slightly change Step 3 of MIR by replacing
the MH Algorithm by the Multiple-try one.

6.1. TheMTMH Algorithm

The approach is to generate a larger number of candidates
thereby improving the exploration of π∞ near x. One of
these proposals is then selected in a manner that ensures
that the chain has the correct limiting stationary distribu-
tion. To achieve such a result, we still use a proposal dis-
tribution g, with optional negative weights λ(u,v) where the
symmetric function λ is presented further below. To ensure
the correct limiting stationary distribution, it is necessary to
require that g(x∗|x(t)) > 0 if and only if g(x(t)|x∗) > 0, and
that λ(x(t),x∗) > 0 whenever g(x∗|x(t)) > 0. Let x(0) denote
the starting value, and define w(u,v) = π∞(v)g(u|v)λ(u,v).
Then, for t ∈ N, the algorithm proceeds as follows:

1. Sample p independent proposals X∗1 . . .X∗p from g(·|x(t)).
2. Randomly select a single proposal X∗j from the set of

proposals, with probability proportional tow(x(t),X∗j ) for
j = 1, . . . , p.

3. Given X∗j = x∗j , sample p− 1 independent random vari-
ables X∗∗1 , . . .X∗∗p−1 from the proposal density g(·|x∗j ). Set

X∗∗p = x(t).
4. Compute the generalized Metropolis-Hastings ratio:

Rg =
∑
p
k=1w(x(t),X∗k )

∑
p
k=1w(X∗j ,X

∗∗
k

)

5. Set

X
(t+1) =

{
X∗j with probability min{Rg, 1}

x(t) otherwise

We can give an intuitive explanation to understand the
MTMH algorithm. With a standard Metropolis-Hastings
sampler, we test two samples, x and x∗, and keep only one
of them with the respective probabilities 1-min(1,R) and
min(1,R). With MTMH, we conversely test two families of
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samples, (x∗1 . . .x∗p) and (x∗∗1 . . .x∗∗p ), and keep only one ele-
ment of each family x∗j or xi = x

∗∗
p with the respective prob-

abilities 1-min(1,Rg) and min(1,Rg): instead of only testing
two points, we finally also deal with their "Metropolis neigh-
borhood".

6.2. Application to VPL Sampling

As the limiting properties do not change with a MTMH
sampler, the generation of complete paths x will provide the
sub-path class {xv,xs} that has the same properties as those
obtained with a standard Metropolis-Hastings sampler. We
set λ(u,v) = [g(u|v) ·g(v|u)]−1 to encourage certain types
of proposals: by using this specific λ, w(xi,x

∗) corresponds
to the importance weight π∞(x∗)/g(x∗|xi) and the chosen
candidate X∗j becomes the probably most interesting sample
among X∗1 . . .X∗p . The decisive advantage of MTMH sam-
pler over a Metropolis-Hastings one is algorithmic. Since
the VPL generation step is not the most expensive one in
a complete rendering pipeline, we have some computation
time to finely tune theVPL distribution:MTMH is therefore
quite appropriate to achieve this goal since it tends to decor-
relate the successive VPLs and to explore the whole inte-
gration space faster. For a classical Metropolis Light Trans-
port (MTL) implementation, this approach may be however
much less interesting since generating 2k− 1 extra paths
without using them may be inefficient. Nevertheless, we may
notice that if we find a way to use all of them, MTMH may
also provide an aggressive variance reduction technique in a
MTL environment.

7. Implementation and Results

We present in this section how we have implemented our
complete renderer, the results we obtained withMIR, and fi-
nally, several comparisons with existing similar approaches.

7.1. The VPL Sampling Pass

The first thing to do is to virtualize and replace the com-
plete incoming radiance field by a set of Virtual Point Lights
computed with our Metropolis Sampler. As described in the
previous sections, we generate these VPLs by mutating and
projecting light paths which go from the camera to a light
source. Since our method is limited to diffuse and not-too-
shiny environments, we do not deal with caustics and there-
fore only use bidirectional perturbations: for a complete and
detailed explanation of the technique, we refer to [VG97].

7.2. Rendering with Coherent Ray Tracing

The core of our implementation relies on coherent ray trac-
ing algorithms and implements the OpenRT API [DWBS03].
To render a picture, we therefore use the now classical ren-
dering technique: "Instant Global Illumination" presented
in [WKB∗02]. First, we perform the ray casting requests

with a finely tuned coherent ray tracer using the SIMD SSE∗

instruction sets today available on almost every commodity
PC. This approach simply consists in packing several rays
inside one vectorized structure and performing all the opera-
tions by using SSE operands. Then, we use Interleaved Sam-
pling [KH01] to accumulate distinct VPL contributions for
every pixel inside a n×m tile. Once these contributions have
been accumulated, we finally filter the resulting picture in-
side the continuous zones of the screen with a discontinuity
buffer, thereby virtually providing n×m times more samples
per pixel. More details about these techniques and the con-
struction of efficient acceleration structures for ray tracing
can be found in the literature [Wal04,Ben06,Hav00,WH06].

7.3. MTMH vs MH

We present here some simple configurations to show why
it may be attractive to use Multiple-try Metropolis-Hastings
rather than Metropolis-Hastings. In this section and the re-
mainder of the article, we will use 10 candidates forMTMH,
a commonly used value in computational statistics.

(a) - 12800 VPLs (b) - MH (c) - MTMH

Direct Indirect RMS error

Ground Truth 49% 51 % -
MH (128 VPLs) 100 % 0 % 0.04%

MTMH (128 VPLs) 56 % 44 % 0.005%

Figure 3: Direct / Indirect modes: (a) is the reference im-

age. (b) shows the results obtained with a MH sampler: the

sampler gets stuck in the direct local mode. (c) shows the re-

sults obtained with a MTMH sampler: it was able to explore

direct and indirect local modes.

As shown in Figure 3.b, the MH sampler gets stuck in
the direct local mode. Even if it will finally find the indi-
rect contributions, the large correlation between successive
samples will produce a "non-representative" sample set if a
small number of VPLs are used. Conversely, MTMH pro-
vides much better results as shown in Figure 3.c: with very
few VPLs, it proposes a good sample distribution with a di-
rect/indirect repartition close to the reference one.

Figure 4 presents another kind of configuration where we
explicitly create two important local modes: the parts of the
scene seen by the camera can be illuminated either by the
left room or by the right one. As expected, with only 256
VPLs, the MH sampler does not equally explore the two lo-
cal modes whereas the MTMH Algorithm provides much
better results by computing a more representative sample set.
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(a) (b) - MH (c) - MTMH

Figure 4: Exploration of left/right contributions: (a) is the

overview of the scene: the two lights have power. (b) shows

an image computed with 256 VPLs and a MH sampler. (c)

is the same scene with 256 samples, the same computation

time, but computed with a MTMH sampler.

In the remainder of the article, we will therefore always use
MTMH instead of MH.

7.4. Results with Easy Configurations

We present here the results we obtained with Metropolis
Instant Radiosity in "easy" scenes, i.e. scenes which are
mostly directly lit. We compare our approach with two
other methods, Bidirectional Instant Radiosity [SIMP06]
and {Standard Instant Radiosity + Efficient Light Source
Cumulative Distribution Function} (CDF) [WBS03]. The
first method consists in generating a larger number of
VPLs than desired from the camera or the light sources, in
computing the power they transfer to the camera and finally,
in keeping the most relevant candidates (i.e. those which
bring the larger contributions). The second method consists
in computing the power brought by each physical light
source to the camera through direct and indirect contribu-
tions and in associating to each of them the corresponding
density. As shown in Figure 5, a standard sampling without
any variance reduction technique gives poor results. On
the contrary, the three other methods achieve much more
satisfactory renderings with very comparable qualities. This
can be easily explained by the fact that the three approaches
try to generate a VPL distribution with a density close to
the power brought to the camera. Since the scene is mostly
directly illuminated, Wald’s et al. approach approximates
it by first computing a suitable CDF for the physical light
sources. The resampling method tries to compute it by
discarding the less interesting ones. Metropolis Instant
Radiosity finally approximates it by directly simulating the
desired density through a Markov-Chain.

We may also remark that the three approaches are
complementary. Indeed, the MTMH sampler chooses
the best candidate with a technique close to a sampling
/ resampling strategy. Furthermore, associating to each
source, a density proportional to the power they bring to the
camera, remains interesting with a MTMH sampler since
it decreases the rejection rate during the sampling process
(see Table 1) and accelerates the VPLs generation. This

with CDF without CDF

Office 50 % 54%
Shirley’s Scene 10 54 % 91%

Table 1: Rejection Rate with MTMH

combination is all the more efficient if we generate a large
number of VPLs or if the environment is highly occluded.

7.5. Results with Difficult Visibility Configurations

As presented above, MIR is efficient for scenes which
are mostly directly lit. However, the decisive advantage
of our strategy is its ability to handle very hard visibility
issues. To prove it, we compared our approach to Standard
Instant Radiosity (SIR) and Bidirectional Instant Radiosity
(BIR) by testing the three techniques with two awkward
configurations presented in Figures 1.f and 4.a. To be fair,
we finally ensure that the VPL generation time with BIR is
close the VPL generation time MIR.

As shown in Figures 6.a, 6.b and 6.c, Standard Instant
Radiosity fails to find the relevant VPLs since it does not
discard the direct contributions. With BIR, the result is
much better but an important noise is still noticeable. With
MIR, we finally achieve an excellent result. The difference
between the two approaches can be intuitively explained:
BIR proposes to build a sample distribution with a density
proportional to the power brought to the camera in an
approximate way since the sampling / resampling strategy
provide the exact density only if we resample an infinity of
candidates. Furthermore, to ensure that we do not discard
a VPL which brings some power to a small part of the
screen, we must set a non-null probability for all VPLs
and therefore increase the variance of the estimator. On the
contrary, MIR proposes to compute the desired density with
a Markovian process. Since we have an appropriate initial
random variable and an efficient mutation strategy using
multiple candidates, the density is obtained very soon in the
chain and the overall quality of the resulting estimators is
very good.

The scene presented in Figures 6.d, 6.e, 6.f finally shows
that sampling VPLs with independent random variables can
be extremely inefficient. With this layout, the ratio of the
measure of relevant paths and the measure of all paths is
indeed so small that both bidirectional and standard VPL
sampling strategies are inefficient. On the contrary, MIR
effectively explores the integration space around the relevant
candidates and provides a very good VPL distribution.

7.6. Overall Results

Table 2 sums up the computation times obtained with our im-
plementation with the scenes and the camera positions pre-
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(a) - Reference (standard) (b) - Standard (c) - Bidirectional (d) - CDF (e) - MTMH

RMS error: 0.02% RMS error: 0.007% RMS error: 0.008% RMS error: 0.009%

Figure 5: Tests with Shirley’s scene 10. The reference image is computed with 12800 VPLs, the other ones, with 256 VPLs.
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One Dragon Room

Path Length1 2

Ratio

0.25

Three Dragon Room

(a) - Standard (b) - Bidirectional (c) - MTMH (d) - Standard (e) - Bidirectional (f) - MTMH (h) - Path Lengths

Figure 6: Indirect Illumination Stress Tests: all pictures are computed with 1024 VPLs. We also give the different numbers of

paths per length obtained while performing the mutations.

sented in the article. For almost all scenes, MIR provides
more relevant sample sets with a smaller amount of time.
For the Three Dragon Room scene, where it is slower, MIR
spends the most time to the evaluation of Pc (see Section 5.1)
because we do not fix the total number of paths but the to-
tal number of paths which bring some power to the camera.
However, even if we let the same computation time to BIR,
the resulting distribution is much less relevant. On the other
hand, if we want to achieve the quality provided by MIR
with BIR, the needed resampling rate is superior to 1000 and
thus inappropriate for interactive rendering. Finally, the cur-
rent implementations of the samplers is neither optimized
nor multi-threaded and we believe that the sampling process
can be easily accelerated.

8. Limitations and Future Work

Even if we think that our approach provides significant im-
provements in difficult cases, we must clearly underline its
limitations. First, as our method is view-dependent, flicker-
ing issues may occur. To solve this kind of problem, Ghosh
et al. [GDH06] recently proposed a sequential Monte-Carlo
technique to limit flickering while sampling environment
maps. Adapting and applying this strategy to the genera-
tion of VPLs may provide satisfactory results. Secondly,
Instant Radiosity and MIR only handle diffuse or not-too-
glossy surfaces. Directly usingVPLs to illuminate very spec-
ular surfaces will produce very high variance estimators: it
would be interesting to generate reflected ray and find a dif-
fuse surface to perform the VPL gathering. We think that
this simple approach can provide good results but we must
clearly formalize it to make it unbiased (a similar technique
has been proposed by Kollig and Keller [KK04]: it consists
in handling the numerical exception during the gathering
pass by casting camera paths). Thirdly, even if our approach
provides good results with directly-lit scenes in compari-

son with other importance-driven methods, we think that the
better sample distribution offered by a low discrepancy se-
quence will give higher-quality results. Moreover, Owen and
Tribble recently proposed a Quasi-Monte Carlo Metropolis
Algorithm [OT05] which could provide a good sample space
stratification and an effective exploration of the integration
space thanks to MCMC mutations. Finally, our technique
cannot handle caustics and this can motivate an alternative
but attractive research direction: trying to set up an interac-
tive Metropolis Light Transport system.

9. Conclusion

We presented in this paper Metropolis Instant Radiosity
(MIR), a new sampling strategy to generate a finely-tuned
set of Virtual Point Lights and handle all kinds of visibility
or other difficult integration layouts in diffuse and not-too-
glossy scenes. In essence, MIR uses a Metropolis sampler
to compute a VPL family with a density directly propor-
tional to the power they bring to the camera. Our approach
is very fast as we use a Markov-Chain and therefore coher-
ently exploit the information from one VPL to the next one.
In addition, this strategy is optimal with a one-pixel camera
and provides, in practice, very good results with many differ-
ent layouts. For both directly and indirectly-lit scenes, MIR
is able to find the most relevant physical light sources and
more generally, the most relevant parts of the scene. Finally,
our approach handles very difficult visibility layouts with al-
most no performance penalty compared to simpler configu-
rations. As our method is an extension of Instant Radiosity,
the final gathering pass finally remains fast since it can be
easily integrated in many efficient rendering pipelines using
GPUs [SIMP06] orCPUs [WKB∗02].
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Scene 6 Scene 10 Office Conf Theater Cruiser Three Dragon Room

VPL generation time (MTMH) 0.32s 0.31s 0.31s 0.49s 1.0s 0.92s 2.4s
VPL generation time (Bidirectional) 0.82s 0.82s 0.62s 0.92s 1.0s 1.3s 1.0s

Rendering Time 4.5s 5.0s 3.2s 7.4s 11.1s 7.7s 7.1s

Table 2: Computation times on a Core Duo T2600: the interleaved sampling pattern size is equal to 8× 8 and the screen
resolution, to 1024× 1024. The resampling rate for BIR and the number of candidates generated with MTMH are equal to
10. As we use the same renderer for Bidirectional Instant Radiosity and Metropolis Instant Radiosity, the rendering times are
identical. The given VPL generation time finally includes the construction time of the CDF for the physical light sources.
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