
A Context-based Mediation Approach
to Compose Semantic Web Services

Michael Mrissa, Chirine Ghedira, and Djamal Benslimane
Claude Bernard Lyon 1 University, Lyon, France

{firstname.lastname}@liris.cnrs.fr

Zakaria Maamar
Zayed University, Dubai, U.A.E

zakaria.maamar@zu.ac.ae

Florian Rosenberg and Schahram Dustdar
Technical University of Vienna, Vienna, Austria

{florian, dustdar}@infosys.tuwien.ac.at

Abstract

Composition of Web services is a keystone towards the develop-

ment of interoperable systems. However, despite the widespread adop-

tion of Web services, several obstacles still hinder their smooth auto-

matic reconciliation when being composed. Consistent interpretation

of data exchanged between composed Web services is hampered by

different and implicit modeling assumptions and representations. In

this paper, we look into the value-added of context to enrich data ex-

change between Web services. We present a context-based mediation

approach for semantic Web services engaged in composition.

1

1 Introduction

Developed around a platform-independent protocol stack that heavily relines

on standards like SOAP [2], WSDL [4] and UDDI [26], Web services1 are now

widely adopted as a standard means to interconnect applications over the

Internet. Web services reach their full potential when composed into business

processes that provide users with value-added functionalities. Composition

means orchestrating several Web services according to a business process,

which is specified with a composition language. Nowadays, WS-BPEL [5] is

the de facto standard for Web services composition. Coming from the domain

of workflow management, WS-BPEL provides several constructs that permit

handling complex interactions between business partners, such as concurrent

invocation, fault recovery and conditional switches.

Despite a wide adoption, WS-BPEL still remains focused on syntactical

aspects with no emphasis on semantic composition aspects. Moreover, the

Web service protocol stack was not initially developed for satisfying the re-

quirements of a successful semantic exchange. Semantic exchange requires

Web services to understand the content that interactions permit conveying,

i.e., being able to correctly interpret the semantics of the data they send and

receive. To meet such requirements, recent work from the Semantic Web

community aims at explicitly describing the semantics of Web services. Sev-

eral languages and frameworks (e.g., WSMO [1], SESMA [11], DIANE [13],

1A Web service is a software component that is described and being accessed via stan-
dard XML-based protocols.

2

OWL-S [15], and WSDL-S [17]) aim at propelling Web services to the level

of semantic Web services. Such approaches use ontologies (shared descrip-

tions of a domain knowledge [10]) as agreements on a common vocabulary.

Efficient description and management of the semantics of data are major

requirements to the success of system interoperability.

However, the aforementioned initiatives do not exploit the potential that

context offers when it comes to describing the different aspects of data. The

use of context representation has been widely explored in the domain of mul-

tidatabase systems [12] in order to clarify the semantic and schematic aspects

of data, but is barely studied in the field of Web services. The term context

relates to the collection of implicit assumptions that are required to perform

a correct interpretation of data. We advocate that accurate data interpreta-

tion not only depends on a reference concept, but also on several properties

and characteristics that form its context of interpretation. This context needs

to be explicitly specified, so related data can be clearly understood. Partic-

ularly in the case of Web services composition, meeting the challenges of

automatic semantic interpretation and data flow handling requires explicit

context description and management.

In this paper we aim at investigating the automated semantic reconcilia-

tion of semantic Web services. The rationale of this reconciliation is backed

by Maamar et al., who argue that a contextual semantic composition of Web

services is subject to satisfying two conditions [14]. The first condition is

that Web services must agree on the meaning of the exchanged data, and

3

the second condition is that semantic-data conflicts must be automatically

resolved using the information that context caters. In this paper, we focus on

data heterogeneities that arise when Web services from different origins take

part in a composition. We propose to annotate Web services’ descriptions

with data semantics. This annotation is integrated into a semantic-mediation

architecture that handles information heterogeneities using semantic objects

and Web services’ contexts.

Our main contribution in this paper revolves around a proposal for

context-based mediation for reconciling semantic Web services engaged in

composition. A mediation architecture is presented, based on first, the con-

textual annotation of WSDL messages, and second, a model that supports

explicit description of context, both validated in previous work [19,20].

The rest of the paper is organized as follows. Section 2 reviews literature

on semantics and mediation of Web services. Section 3 presents a motivating

example and summarizes the different types of implicit assumptions that can

hamper the correct interpretation of data exchanged between Web services.

Section 4 summarizes our context model for describing data semantics of Web

services, and proposes a solution to manage context information. Section 5

shows how the previous model is integrated into a mediation framework for

WS-BPEL business processes, and details the functioning of the different

elements of this framework. Section 6 details the prototype developed as a

proof-of-concept of our framework. Section 7 concludes the paper and gives

some directions for future work.

4

2 Related Work

This section presents different initiatives related to semantic description and

mediation aspects of Web services that helped shape our proposal.

2.1 Semantic Description of Web services

At the crossing of the semantic Web and Web services domains, research in

the field of semantic Web services is very active. Most approaches intend to

describe the semantics of Web services, either with novel semantic descrip-

tion languages [1,11,13,15] or with extensions to syntactic standards [9,17].

These approaches bind to domain ontologies in order to explicitly describe

the intended meaning of data, including data that Web services exchange.

OWL-S [15] is a subset of the OWL [24] ontology language. It is a general

ontology for building semantic Web services, and was designed to be coupled

with syntactic description formats like WSDL. OWL-S consists of three el-

ements: service profile, process model, and service grounding, that describe

“what the service does”, “how the service works”, and “how to access the

service”, respectively. OWL-S advocates to separate the grounding and ab-

stract views when describing the data that Web services exchange. Abstract

view binds the data to an OWL conceptual description. Grounding view

describes the physical representation of data which generally follows XML

Schema [27]. This separation allows different physical representations of the

same concept, and strengthens as well the role of ontologies in the abstract

5

representation of data semantics.

From the DERI laboratory, WSMF [6] supports the development and

description of semantic Web services with a conceptual model. This model

recommends maximal decoupling between Web services, and was designed

with the idea to enable mediation as a service. WSMO [1] is a formal language

and ontology based on the WSMF conceptual model that describes multiple

aspects of semantic Web services.

Medjahed and Bouguettaya [16] propose a foundational architecture for

semantic Web services. Their work is based on the concept of community,

which gathers services from the same domain of interest and publishes the

functionalities offered by Web services as generic operations. The authors

provide a general template referred to as community ontology for describ-

ing semantic Web services and communities. Their work follows a realistic

community-centric point-of-view, and adopts a peer-to-peer solution to man-

age communities, which addresses problems of centralized approaches.

DIANE Elements (DE) and DIANE Service Description (DSD) are object-

oriented languages built on a critical analysis of the requirements of semantic

Web service description, and on the difficulties of OWL-S and WSMO to ful-

fill these requirements [13]. DE and DSD use configurable sets and fuzzy logic

to support semantic discovery of Web services. DE is a general ontology lan-

guage with specific features to enhance semantic Web service description.

DSD describes services with the constructs provided by DE. DSD revolves

around the notions of service request and offer descriptions.

6

SESMA [11] is another description format for semantic Web services, that

was designed to provide a language with a compact syntax. SESMA supports

non-deterministic service description, and is compatible with standards such

as WSDL and WS-BPEL. Its main advantage is to be a lightweight language

for semantic description of Web services. It remains close to WSDL and

WS-BPEL descriptions, and its semantics is not built on top of OWL.

With WSDL-S, Miller et al. annotate WSDL with several extensions re-

lated to operations and messages [17]. These extensions refer to concepts of

domain models in order to specify semantics of messages, but also precon-

ditions and effects of operations. WSDL-S is also described as a lightweight

approach for semantic annotation of Web services.

SAWSDL is a W3C working draft that defines a set of extension attributes

for WSDL 2.0 (with WSDL 1.1 support) to describe the semantics of WSDL

components [9]. The objective of SAWSDL is to define how semantic an-

notation of WSDL is accomplished, but it is not intended to specify which

language has to be used for the semantic description. It only provides the

mechanisms to bind ontology concepts to WSDL annotations.

To wrap up this section, it should be noted that none of the existing ap-

proaches use context to describe the semantics of data. Hence, the approach

presented in this paper is one step towards enriching Web services’ descrip-

tions with context information. Therefore, it should be possible to combine

or extend the aforementioned works with the context-based approach we

present in this paper.

7

2.2 Mediation between Web services

Mediation between Web services has received a lot of attention from the

research community. Many mediation approaches rely on the concept of

mediators for solving data heterogeneities between participants in a compo-

sition. Mediators were firstly introduced in the domain of databases [28],

and later adapted to the domain of Web services.

Mocan et al. [18] propose WSMX, an implementation of the Web Service

Modeling Ontology project (WSMO). WSMX is a mediation architecture for

Web services integration. The mediator component is a key part of their

architecture and is designed as a service. It mediates concepts between dif-

ferent ontologies that business partners bind to. The mediation solution that

Mocan et al. propose relies on a semi-automated graphical interface that al-

lows users to define conversion rules between ontologies. The end-user is

helped by suggestions from the system, based on the structure of concepts

and already established relations between concepts.

Cabral and Domingue [3] provide a broker-based mediation framework to

compose semantic Web services. Their approach follows the WSMF concep-

tual framework. The mediator component is a key part of their architecture

and mediates concepts between ontologies that business partners refer to.

Williams et al. [29] use agents to perform semantic mediation between input

and output parameters of Web services by encapsulating the composition

into an agent, that controls the operation progress.

Spencer et al. [25] present a rule-based approach to semantically match

8

Web services’ outputs and inputs. A description-logic reasoning system ana-

lyzes OWL-S descriptions and generates multiple data transformation rules.

This approach focuses on the conversion between different representations of

matching OWL-S classes.

While mediation and semantic description of Web services in a composi-

tion are very active research fields, to the best of our knowledge, none of these

works actually considers context to solve semantic heterogeneities of data in

Web services composition. In the following, we present a context-based me-

diation approach while arguing the benefits of context in the domain of Web

services.

3 Limitations of Semantic Approaches

In this section, we demonstrate using the classical travel example the need

for additional meta-information to accurately interpret the data exchanged

between Web services. We stress as well the limitations of current semantic

approaches relatively to the concern of semantic interpretation of data.

3.1 Motivating Example

We consider a user who plans a trip to Japan, and wishes to rent a car during

her stay. The WSDL files of Flight Booking and Car Rental companies are

composed with the help of a graphical composition editor2 in order to consti-

2Examples include Oracle BPEL Designer, IBM BPWS4J Editor, Vergil VCAB Com-
poser, or Active Endpoints ActiveWebflow Designer.

9

Figure 1: Flight-booking and car-rental Web services

tute the workflow presented in Fig. 1. A basic Addition Web service is used

to deliver the sum of flight booking and car rental prices. This Web service

is deemed appropriate because of the inherent limitations of XPath, which

only supports integer arithmetic and is not intended to perform arbitrary

computations [5]. In addition, we assume that the data flows between Web

services verify low-level data compatibility. By low-level compatibility, we

mean that data objects are described with the same data types (generally

with XML Schema type system). This verification is easily performed by the

composition editor program.

In Fig. 1 flight-booking Web service computes prices in Euros and with

a scale factor3 of 1 because the WSDL file was provided by the European

branch of the company. However, car-rental Web service uses local currency,

i.e. Japanese Yens, and a scale factor of 1000, so there is a need to multiply

the value exchanged by 1000 to obtain the actual price. Prices need to be

converted into the same currency and scale factor before they can be added

and presented to the user.

3A number used as a multiplier in scaling (WordNet, http://wordnet.princeton.edu/).

10

Moreover, date and time representations differ. Flight-booking Web ser-

vice uses an European notation (dd.mm.yyyy and 12:00 AM/PM), whereas

car-rental Web service uses a Japanese notation (yy.mm.dd and 24:00). This

example, albeit simple, shows so far how much low-level compatibility is in-

sufficient to meet for the requirements of semantic exchange. Indeed the

interpretation of data will be inaccurate because data bind to different con-

texts and should be interpreted differently.

The WS-BPEL community currently solves semantic heterogeneities by

manually describing the conversion of data between different semantic repre-

sentations. However, this solution is tedious and not scalable. Plus it needs

to be performed upfront (i.e., at design time) by domain experts, and relies

on XSLT stylesheets and XPath expressions to convert data. It requires ex-

perts to have technical knowledge about both XPath and XSLT, and about

the semantics of the domain concerned. Last but not least, it is not adapted

to on-the-fly associations between Web services.

In the following, we discuss the main types of heterogeneities related to

the implicit assumptions that can hamper a correct interpretation of domain

ontology concepts

3.2 Heterogeneous Implicit Assumptions

The role of domain ontologies is to provide users with an agreement on the

interpretation of described concepts. Therefore, the different semantic prop-

erties related to domain concepts remain implicit in domain ontologies. With

11

semantic properties, we refer to the different aspects and characteristics that

permit to establish the context of the current interpretation of a concept.

These assumptions on the interpretation of concepts remain implicit in the

ontology, because the initial purpose of ontologies is to describe a domain

knowledge, which includes concepts and the relations between them, and

also relevant properties of concepts, but not their different possible contexts

of interpretation.

From a provider’s point of view, performing semantic interoperability

with ontologies is often tedious, because Web services have usually different

interpretations of the same concept. Hence, providers need to adapt their own

implicit assumptions on the interpretation of concepts to the assumptions of

ontologies. Solving data interpretation discrepancies remains at the charge of

Web services providers. This task is still performed manually and at design

time. Discrepancies between semantic properties are due to different implicit

assumptions on data interpretation. These discrepancies are summarized as

follows.

3.2.1 Value Heterogeneities

Domain ontologies often make implicit assumptions about the values of se-

mantic properties. As shown in Section 3.1, prices are generally assumed to

have a scale factor of 1. However, some organizations usually handle prices

with a scale factor of 1000. In this case, we say that the values of the scale

factor semantic property differ. Resolving such heterogeneities requires ex-

12

plicit description of the semantic property and its associated value.

3.2.2 Structural Heterogeneities

Domain ontologies implicitly follow a static structural representation of se-

mantic properties that are relevant to the described application domain.

However, it appears that even in the same domain, different semantic proper-

ties and structural organizations could be relevant to Web services providers.

For example, price concept could have different relevant semantic prop-

erties depending on the needs of travel agencies. Some agencies could use

different scale factors and ignore the currency aspect because their partners

all use the same currency, whereas some other agencies could make opposite

assumptions. These structural heterogeneities between semantic properties

need to be explicitly described, so it becomes possible to determine if a par-

ticular structure of interpretation of a concept is compatible with another.

3.2.3 Semantic Heterogeneities

Semantic heterogeneities relate to semantics used for describing semantic

properties. They are not visible as long as the context of interpretation

remains implicit, but appear when the context is explicitly described. For

example, an English provider could use the word “VATIncluded”, whereas a

French one would use the word “TVAIncluse” to describe the same semantic

property, which specifies whether or not Value-Added Taxes are included in a

price (synonymy conflict). In order to solve such semantic conflicts, explicit

13

vocabulary is required to describe semantic properties.

It appears from the above that different types of heterogeneities affect

semantic properties. In the following section, we show how the notions of

context and semantic object can be used in order to explicitly describe seman-

tic properties. We present afterwards a context-based approach to handle the

aforementioned limitations.

4 A Context Model for Web Services

In order to overcome the limitations we report in Section 3, we proposed

in [19] a context model that is built around the notion of semantic object

and context. This model gives providers the means to explicitly describe

the implicit assumptions they make on data. In this section, we present the

arguments that back this model, and provide insights on the description of

context information, before discussing its integration into the Web services

model.

4.1 Context Model: Main Concepts

The context model revolves around the notion of semantic object. This one

extends a data object with additional meta-data, so the context of interpreta-

tion of a data object is made explicit. Basically, a semantic object contains

(1) a data part that has a value v of type t described in a type system

language, and (2) a semantic part that has a concept c of the application

14

domain, and a context C represented as a tree of meta-attributes, referred

to as modifiers. Modifiers make explicit the semantic properties of semantic

objects. They are also semantic objects, so they have a value, a type, a

domain concept they refer to and possibly a context. Web services providers

need to know these modifiers for a correct interpretation of a semantic object.

Semantic objects with different contexts may be converted into a common

context, which allows to compare them and even to enable data exchange

between Web services.

For the needs of our model, we defined two categories of modifiers: static

and dynamic. It is mandatory to provide static modifiers in order to make

clear the semantics of a semantic object. On the contrary, dynamic mod-

ifiers can be inferred from other modifiers belonging to the same semantic

object. More details about the properties of modifiers and the possibilities

of conversion raised by this model are given in [19]. In order to illustrate the

proposed context, let us consider the following example:

• concept = domain ns:price,

• value = 5,

• type = xsd:double,

• Context = [

– (ctxt ns:currency, xsd:string, “euro”, [

∗ (ctxt ns:country, xsd:string, “France”, null)

∗ (ctxt ns:date, ns:date, 15.05.2005, [

· ctxt ns:dateformat, xsd:string, “dd.mm.yyyy”, null]]

– ctxt ns:scalefactor, int, 1, null

15

– ctxt ns:VATIncluded, xsd:bool, true, [

∗ ctxt ns:VATRate, float, 19,6, null]

•] //end of context

This example describes price as a semantic object along with its con-

textual characteristics. To handle a concrete price, one needs to know

the following details: currency, date related to this price due to currency

changes over time, and Value Added Taxes (VAT) rate applied to this price.

We notice from this representation that (ctxt ns:country, xsd:string,

‘‘France’’, null) modifier is static, i.e, it cannot be inferred from the val-

ues of other modifiers. This static modifier can help infer the “euro” value of

the currency modifier, being given a rule that states Euro is the currency of

France. Currency modifier is then qualified as dynamic. In addition, we no-

tice that country modifier helps infer the value of dateformat, which is then

a dynamic modifier. Accurate interpretation of the price semantic object is

then possible with the attached context.

The multiple cases of heterogeneity presented in Section 3.2 can now

be explicitly handled with context, and thus will not be viewed as implicit

discrepancies anymore, but rather as well-known heterogeneities between in-

stances of schemas. Indeed, context information could be directly added to

the domain ontology. However, we explain in the next section why we deem

appropriate to separate context from domain knowledge, and to store context

information into dedicated context ontologies.

16

4.2 Context Representation and Integration

In this section, we detail our recommendations on how to store the informa-

tion required to represent context. To this purpose, we first give an insight on

the different strategies for ontology design. Then, we present the advantages

of context ontologies, and how they are separated from domain ontologies,

before presenting our WSDL annotation that achieves the integration of con-

text into the Web services protocol-stack.

4.2.1 Strategies for Ontology Design

The design of a domain ontology can be seen from different perspectives,

which are referred to as top-down, bottom-up and middle-out approaches [22,

23]. A top-down approach consists in first agreeing on the most general con-

cepts in order to provide a shared representation of the world. This shared

representation is then adjusted for the sake of meeting the needs of the local

views of the participants. It is a very reliable strategy in a limited environ-

ment, in which the number of participants and the discrepancies between

their views of the world, are limited. However, it is not efficient in an open

world like the Internet. Indeed, it is not guaranteed that an unknown and

constant changing number of participants could agree on a single view of

the world. On the contrary, a bottom-up approach starts from the local and

very specific conceptualizations of the participants, and follows a generaliza-

tion process towards a consistent representation of the domain knowledge.

Compared to the top-down approach, this approach is more adapted to in-

17

teractions in an open world, but it appears to be less efficient in a limited

environment.

The middle-out approach strengthens the middle concepts of the ontol-

ogy into identifiable groups, and follows both specialization and generaliza-

tion steps to build the domain knowledge representation. Generally, it is

recommended to combine top-down, bottom-up, and middle-out approaches,

in order to model the domain knowledge of different participants in an ontol-

ogy [23]. In our case, we identify two of these three approaches and associate

them with context and domain ontologies, in order to describe providers’

semantics.

4.2.2 Context vs. Domain Ontologies

Our proposal to make the distinction between context and domain knowledge

comes from the fact that the heterogeneities presented in Section 3 do not

concern the domain knowledge itself, but rather relate to providers’ local and

yet implicit assumptions on the interpretation of domain concepts. These

assumptions, referred to as context, are related to cultural, geographical,

and temporal situations of Web services, e.g., when, where, and how they

are designed, deployed, and executed.

In most cases, when several participants intend to agree on a shared

domain ontology, they already have different contexts. Especially in an open

world like the Internet, we have seen that it is very difficult to reach a common

agreement on a shared representation of a domain knowledge when adopting a

18

top-down approach only. This is mainly due to the different, already-existing

contexts of the participants. As a consequence, we set several objectives to

facilitate both ontology design and the reconciliation of Web services:

• focus the role of domain ontologies on describing knowledge that can

be agreed on with a top-down approach;

• adopt a bottom-up approach to reconcile the contexts of Web services,

as they already exist before adhering to a domain ontology;

• and, give providers the responsibility of describing the structural and

organizational aspects of their local contexts, and of providing the con-

nections to other providers’ contexts when they adhere to a domain

ontology.

In order to meet these objectives, we define the notion of context ontolo-

gies, which are intended to make context explicit for each concept in a domain

ontology. The difficulties raised when agreeing on a shared representation of

a domain knowledge remain, but they are now identified and isolated, due to

explicit and separate description of context heterogeneities. Thus, context

heterogeneities can be handled, because contexts of participants are explic-

itly described in context ontologies. Rich description languages like OWL

allow specifying such relations between ontology concepts. The separation

between context and domain ontologies is illustrated in Fig. 2, in order to

clarify the terminology used for context description.

19

Domain
Ontology

Context
Ontology

Concepts

Modifiers

Ontology elements (OWL axioms)

Relations between elements (OWL relations)

Figure 2: Context vs. domain ontologies

As context ontologies provide shared vocabularies to specify structural

and semantic representations of context, there is a need to extensionally spec-

ify the values that modifiers take. We recall that modifiers are either static

or dynamic. Consequently, we develop two different solutions to instantiate

modifiers. We insert a description of static modifiers into WSDL in a way to

remain compliant with the Web services protocol-stack [19]. Descriptions of

static modifiers provide the means to calculate dynamic modifiers at runtime,

using appropriate inference rules.

The use of context ontologies and WSDL annotations helps providers

make explicit the context of data. It provides a scalable solution to integrate

context into the Web services protocol-stack. Moreover, it enables semantic

mediation of data during the execution of a composition. In the following, we

give an overview of our solution, detailed in previous work [20], for annotating

descriptions of composed Web services.

20

4.3 Extending WSDL with Context

Using the model of Section 4.1 requires enriching the description of Web ser-

vices with context, by annotating WSDL message parts, so they can be now

considered as semantic objects. In WSDL descriptions, <message> elements

describe data exchanged for an operation. Each message consists of one or

more <part> elements. We also refer to <part> elements as “parameters” in

the rest of this paper. Each parameter has <name> and <type> attributes,

and allows additional attributes. Our annotation takes advantage of the ex-

tension proposed in the WSDL specification [4], so that annotated WSDL

operates seamlessly with classical and annotation-aware clients. To keep the

paper self-contained, we overview a simplified structure of the annotated

WSDL meta-model in Fig. 3.

Message

+name

Part

+name

+element

+type

+part

0..*

Extensible Element

+ context

 0..*
ContextAttribute

+context: QName []

Figure 3: Partial representation of the extended WSDL meta-model

<part> elements are annotated with a context attribute that describes

the names and values of static modifiers using a list of qualified names. The

first qualified name of the list specifies the domain ontology concept of the

value (c). Additional elements refer to instances of static modifiers described

in a context ontology. Listing 1 illustrates the proposed extension with Car-

21

Rental Web service of Section 3.1. The annotation shows the values taken

by static modifiers in this Web service.

Relying on this annotation, a value v and its data type t described in

WSDL are enhanced with the concept c and the necessary modifiers to de-

fine the context C, thus forming a semantic object < c, v, t, C >. To complete

the context C, rules help infer the values of dynamic modifiers at runtime.

This offers several advantages: rules are easily modifiable, making this solu-

tion adaptable to changes in the underlying semantics. In addition, often-

changing values of modifiers could not be statically stored, so using rules

simplifies the annotation to WSDL. Furthermore, rules separate application

logic from the rest of the system, so updating rules does not require rewriting

application code. In the following, we detail our context mediation architec-

ture that integrates mediators into composition as Web services, and show its

internal functioning, which relies on rule-based mechanisms. Our mediation

architecture aims at reconciling Web services at the semantic level.

¨ ¥
<?xml version="1.0" encoding="UTF -8"?>
<wsd l : d e f i n i t i o n s . . .> . . .

<wsdl :message name="CarRentalTicket">
<wsd l :pa r t name="inputPrice" type="xsd:double"

c t x t : c on t e x t="dom1:Price ctxt1:France

ctxt1:VATIncluded ctxt1:ScaleFactorOne"/>
</wsdl :message> . . .

</ w s d l : d e f i n i t i o n s>§ ¦
Listing 1: Car Rental Annotation Snippet

22

5 A Context-based Mediation Architecture

In this section, we present a context-based mediation architecture that takes

advantage of the features offered with the aforementioned context model.

Firstly, we discuss the advantages of service-based integration of mediators

into the composition. Secondly, we give an overview of the proposed architec-

ture with a WS-BPEL business process based on the example of Section 3.1,

before detailing the generation of contextualized business processes that in-

clude mediator Web services.

5.1 Advantages of Service-based Mediation

The solution proposed in this paper follows a service-based approach to im-

plement mediators, referred to in the following as mediator Web services.

Service-based mediation presents several advantages. First, the standard-

ized access to Web services through their WSDL descriptions allows better

independence from composition languages and engines. Second, managing

the mediation concerns in a service-oriented way is more scalable, because

it does not require extending any language, neither modifying existing com-

position architectures, but rather reusing existing deployed software com-

ponents. Third, the loosely coupled aspect of a service-based architecture

allows keeping mediation concerns independent from original functionalities

of Web services.

However, the main issue is the need to adapt input and output data

23

Flight Reservation
Web Service

Car Rental
Web Service

Addition
Web Service

Receive
<invoke>

<assign>
date, time

<invoke>

<assign>
price

<invoke>

Reply

flight ticket

car rental ticket

total price
Data flow with potential
semantic heterogeneity

Figure 4: View of the original business process

of mediator Web services to the data representation expected by the Web

services they communicate with. We answer this limitation in the following

and propose a solution that can be applied as a pre-deployment step, during

the deployment of a composition.

5.2 Overview of the Mediation Process

For consistency purposes, we continue using the example of Section 3.1 in

order to illustrate the mediation process. The BPEL process depicted in

Fig. 4 implements the composition logic of the workflow shown in Fig. 1. It

has been previously demonstrated that several heterogeneities hamper the

correct execution of this workflow. We assume that the WSDL files used in

this paper are correctly annotated with context information [20], and that the

corresponding domain and context ontologies are available. Our mediation

approach is a three-step process, as shown in Fig. 5.

Contextualization step. A contextualization algorithm (Section 5.3)

analyzes the BPEL process (i.e., Fig. 4) to locate explicit and implicit data

24

flows. Relevant data flows for possible context heterogeneities are symbolized

with stars. In our running example, the data flows of interest are: a) where

the price variables are sent to the addition Web service, and b) where the

date and time variables are sent to the Car-Rental Web service.

Automatic mediator Web services generation step. Here a me-

diator Web service is automatically generated and deployed for each data

flow where the contextualization algorithm detected possible context hetero-

geneities. The generation of mediator Web services is handled by our Web

Service Code Generator (WS-CG), to be described in Section 6.1. Each gen-

erated mediator Web service implements an operation, named mediateX2Y,

where X and Y are replaced with the names of the input and output messages

of operations specified in the WSDL files related to the mediator Web service.

Inputs to the mediation operation are the values, which have to be trans-

formed into the representation specified in context annotations. Outputs of

the operation are the transformed values that have the expected meaning for

the target operation in the composition. Details on the runtime generation

and deployment of mediator Web services are given in Section 6.1.

Updating original composition process step. Invocations to the

generated mediator Web services from step 2 are inserted into the origi-

nal BPEL code according to Algorithm 1. The new BPEL code uses the

endpoints of dynamically generated mediator Web services combined with

required <invoke> elements. A general template for mediator Web service

invocation is depicted in Listing 2. After replacing all implicit and explicit

25

Flight Reservation
Web Service

Car Rental
Web Service

Addition
Web Service

Receive
<invoke>

<assign>
date, time

<invoke>

<assign>
price

<invoke>

Reply

flight ticket

car rental ticket

total price

Data flow with potential
semantic heterogeneity

Flight Reservation
Web Service

Car Rental
Web Service

Addition
Web Service

Receive
<invoke>

<assign>
date, time

<invoke>

<assign>
price

<invoke>

Reply

flight ticket

car rental ticket

total price

Mediator Web service

Web Service
Generator & Deployer

Step 1
Detect data

heterogeneities

Step 2
Generate mediator

Web services

Step 3
Insert mediator

Web services into
the BPEL code

and execute

Figure 5: Generation of the mediator Web service

data flows, the contextualized BPEL process is ready to be executed by any

usual BPEL execution engine. During the execution of the contextualized

BPEL process, mediator Web services are invoked to handle semantic het-

erogeneities of data. The different steps performed by mediator Web services

are summarized in Section 6.2.

5.3 Dynamic Generation of Contextualized Processes

WS-BPEL does not always make the data flows in a composition explicit,

since it is meant to be “programming at large”. Data flows in WS-BPEL

are encapsulated in <variable> elements. We distinguish between implicitly

shared data between partners or explicitly shared data copied using <assign>

elements. Our approach consists in locating implicit and explicit data flows

and replacing them with invocations to mediator Web services.

26

First, let us consider explicit data flows described with <assign> ele-

ments. Such elements contain one or more <copy> elements, themselves

containing a <from> element and a <to> element, that respectively describe

where data comes from and where it goes. Mediation is concerned with ele-

ments that are assigned from a variable to another variable only. We assume

that the semantics of data entered manually by the composition designer

(expressions or literal values) matches the semantic requirements of the busi-

ness process. To integrate mediator Web services into WS-BPEL, we replace

selected <assign> statements with an invocation to a generated mediator

Web service, with the sequence depicted in Listing 2.

¨ ¥
<sequence>

<a s s i gn>
<copy>

<from va r i ab l e="source_ncname" part="ncname"/>
<to va r i ab l e="mediation_input_ncname" part="ncname"/>

</copy>
</ a s s i gn>
< !−− Cal l to the mediator Web s e r v i c e here−−>
<invoke name="mediation" partnerLink="mediator"

portType="cm:ContextMediator" opera t i on="mediate"

i nputVar iab l e="mediation_input_ncname"

outputVar iab le="mediation_output_ncname"/>
<a s s i gn>

<copy>
<from va r i ab l e="mediation_output_ncname" part="ncname"/>
<to va r i ab l e="destination_ncname" part="ncname"/>

</copy>
</ a s s i gn>

<sequence>§ ¦
Listing 2: Mediator Invocation in BPEL

<sequence> element allows consecutive execution of the contained ele-

ments by firstly, building the input message for the mediator invocation by

using <assign> activity. Secondly, the mediator is invoked using <invoke>

element followed by <assign> activity to extract the mediated data from

27

the output message to the destination variable. By replacing the original

<assign> element with the BPEL code presented in Listing 2, the mediator

Web service is inserted into the BPEL composition to intercept and adapt

the data flow. The generation of the mediator Web services from the WSDL

descriptions of the source and target Web services, is described in detail in

Section 6.1.

Algorithm 1 BPEL Contextualization Algorithm
1: for all assign ∈ findElements(“assign”) do
2: in← getFromElement(assign)
3: out← getToElement(assign)
4: if in ∈ “variable” ∧ out ∈ “variable” then
5: newAssign← createMediationSeq(in, out)
6: replace(assign, newAssign)
7: end if
8: end for
9: for all seq ∈ findElements(“sequence”) do

10: for all (a, b) ∈ (getInvokeChildren(seq)2) do
11: if getOutputV ar(a) = getInputV ar(b) ∧ isBefore(a, b) then
12: mediationCode← createMediationSeq(getOutputV ar(a), getInputV ar(b))
13: insertBefore(b,mediationCode)
14: end if
15: end for
16: end for
17: for all flow ∈ findElements(“flow”) do
18: for all (a, b) ∈ (getInvokeChildren(flow)2) do
19: if getOutputV ar(a) = getInputV ar(b) then
20: if a.hasChild(“source”) ∧ b.hasChild(“target”) then
21: src← a.getChild(“source”)
22: target← b.getChild(“target”)
23: if getLinkName(src) = getLinkName(target) then
24: mediationCode← createMediationSeq(getOutputV ar(a), getInputV ar(b))
25: mediationCode.getChild(“sequence”).append(b)
26: replace(b,mediationCode)
27: end if
28: end if
29: end if
30: end for
31: end for

28

To handle implicit data flows, we need to locate shared variables, i.e.,

variables that are first used as output of <invoke> element, and then di-

rectly used as input of another consecutively executed <invoke> element. In

BPEL this situation happens in the following cases: (1) <sequence> element

contains several <invoke> child elements, and (2) <flow> element contains

several <invoke> child elements that are bound together through <link>

element. Algorithm 1 shows the detection in BPEL of explicit and implicit

data flows described previously, and the modifications performed to insert

the mediation code described in Listing 2.

The first part of the algorithm (lines 1 to 8) detects explicit data flows

described with <assign> elements. findElements function is used to locate

all the assign elements. Then, <from> and <to> child elements are extracted

from each <assign> element (lines 2-3) and if both are variables (line 4)

they are used by createMediationSeq function to create the mediation code

(line 5) that replaces the former <assign> element (line 6).

Lines 9 to 16 show the detection of consecutive <invoke> elements

in a sequence. Function getInvokeChildren(sequence) gets the <invoke>

child elements that belong to the same sequence. getInputV ar(invoke)

and getOutputV ar(invoke) functions extract the information contained in

the attributes called inputVariable and outputVariable of the selected

<invoke> element. Function isBefore(a, b) verifies that element a is exe-

cuted before element b in the BPEL code. So, if two <invoke> elements of a

sequence (line 9-10) have matching output and input variables and are in the

29

right execution order (line 11), the mediation code (line 12) is inserted just

before the second <invoke> operation with insertBefore function (line 13),

so that mediation is only performed if necessary. It should be noted that

other elements such as <switch> may change the execution of the workflow.

Lines 17 to 31 show the detection of related <invoke> elements in

a flow. The algorithm identifies <invoke> elements that have identical

inputV ariable and outputV ariable attributes, which possibly characterizes

an implicit data flow (lines 17-19). These elements have to be related to

each other by containing a <source> and <target> children that have the

same linkName attribute (lines 20-23). In this case, the generated mediation

code (line 24) includes the second <invoke> element (line 25) that is added

with append function. So, it replaces the original <invoke> element with a

sequence including both the mediation code and the original invocation.

The algorithm described above is essential to generate the contextualized

BPEL, which weaves the mediation concern into the original business process,

by including calls to mediator Web services generated on-the-fly.

6 Implementation Work

A prototype has been developed as a proof-of-concept of the feasibility of

this architecture under the JavaTM environment. It includes several compo-

nents. A graphical user interface enables providers to annotate WSDL files

with context. A model-driven Web service generator deploys mediator Web

30

XML
Importer

Internal Object Model
(IOM)

Platform Specific Model
(PSM)

Java
Exporter

Velocity
template

Model
Java
Code

Figure 6: Model-driven Web service generator

services in Axis2 runtime. A mediator Web service has been implemented,

which reads in context annotation from WSDL files and converts data from

a source context to a target context. The contextualization algorithm for

WS-BPEL processes has also been implemented.

6.1 Model-Driven Web Service Generation

During the contextualization process of the original BPEL process, one or

several mediator Web services need to be generated. Therefore, we imple-

mented a flexible and lightweight model-driven code generator based on a

platform independent object model (IOM). Based on the IOM, we imple-

mented a platform specific model (PSM) for the Java platform.

The main elements of the code generator are shown in Fig. 6. A model de-

scription specified in XML acts as an input to the code generator. The input

file is parsed by an XMLImporter component, which builds the IOM corre-

sponding to the XML description of the model. The IOM is then transformed

31

into a PSM oriented Java. JavaExporter component operates directly on

the PSM and iterates through every class, interface, etc. to generate the Java

code. The actual code generation is supported by the Apache Velocity tem-

plate engine [8]. Based on this model-driven code generator, we implemented

a special Axis2CodeGenerator component for generating a Web service for

the new Axis2 [7] runtime, which executes the following steps:

1. Dynamic code generation and compilation: the aforementioned code gen-

erator is used to dynamically generate and compile a Java class, which

will be deployed as Web service. All libraries for compiling the code are

dynamically added to the classpath.

2. Deployment descriptor generation: Axis2 requires a special deployment

descriptor called services.xml, which specifies the main class imple-

menting the service logic. Additionally, each operation of the class which

should be exposed as Web service operation has to be specified. Axis2

implements purely document-style Web services by leveraging a top-down

(or “WSDL-first”) approach. Due to the fact that we generate the im-

plementation of the Web service directly, we use a bottom-up approach,

which is typically used for RPC-style Web services. Therefore, we use a

special message handler, called RPCMessageReceiver, which is specified in

the deployment descriptor. It is responsible for converting the document-

style nature of a Web service as required by Axis2 to the RPC structure

we use internally (by exposing a Java class as Web service).

32

3. Code packaging and deployment: the compiled code together with the

deployment descriptor and the required libraries are packaged together

into an .aar file (Axis2 archive). The new deployment model of Axis2

allows a very simple deployment step. The archive file created in the

previous step is simply copied to the Axis2 deployment directory (specified

via properties in our system). The deployment itself is then handled by

the Axis2 runtime.

On the basis of the Axis2CodeGenerator, we developed a component

named MediationServiceBuilder that currently builds the mediator Web

service based on the WSDL files and the operation names it gets as an input.

These input data define the services and the data types for which a mediator

has to be generated. Based on these input data it dynamically builds a

model for the Web service, consisting of a Java class and one operation. The

implementation of the mediator operation is presented in detail in the next

section.

One important aspect about the life cycle of the mediator Web ser-

vice is the fact that it automatically gets undeployed if the correspond-

ing BPEL process is undeployed. At a technical level this is achieved by

registering a deployment listener to the BPEL engine to receive notifica-

tions about the deployment or undeployment of various processes. If the

MediationServiceBuilder receives such a notification it has to determine

the corresponding mediator Web service and undeploy it from the Axis2

runtime.

33

6.2 Operation of Mediator Web Services

In this section, we detail the internal operation of mediator Web services.

The latter are inserted into composition processes between original Web ser-

vices that may have context heterogeneities. We discuss the mediation steps

performed by mediator Web services with the example of this paper. We con-

sider the data flow from Car-Rental Web service to Addition Web service,

passing through the mediator Web service. This one takes as input “price”

message part sent by Car-Rental Web service, and then performs the steps

described in Fig. 7 before sending the result of the computation in a “price”

message part, to Addition Web service.

Composition process

Car Rental
Web Service

"price"
double

Addition
Web Service

Output Input

Context Context1 2

"price"
double

Domain
ontologies

Context
ontologies

Rules
Repository

Mediator
Web service

Web Service interface

Context reader
from WSDL

Mediation core
component

Rule-based
engine

1

2 3

4

Figure 7: Detailed View of the Mediator Web service

In step one, WSDL files of Car Rental and Addition Web services are

fetched by the mediator Web service. Then, these files are parsed in or-

der to extract the required elements. In particular, we are interested in the

34

annotations of the messages parts that the mediator receives and sends, in

our running example, output and input price message parts of Car-Rental

and Addition Web services respectively. Extracted annotations refer to the

domain concept and the semantic properties necessary to a correct data in-

terpretation. An example of such an annotation of Car-Rental Web service

was depicted in Listing 1.

In step two, the mediator Web service identifies the exchanged concepts

in domain ontologies. The annotation is a list of attributes, and the first

annotated attribute always refers to the domain concept. Here, the annotated

message part refers to price concept of the domain ontology identified with

the namespace dom1 in the WSDL file. The mediator Web service checks

that the concepts of both Car Rental and Addition Web services match, i.e.,

that they verify a subsumption or equivalence relation. This is a simple

approach to semantic matching but additional capacities can be integrated

into the mediator. For a good survey on semantic integration techniques, see

Noy’s work [21].

In step three, an in-memory tree is built from the context ontology to

represent the context related to price concept. The annotated context at-

tributes corresponding to the price concept are identified and their values

are added to the tree. Annotated context attributes refer to OWL indi-

viduals (instances), so they describe not only modifiers, but also the values

they take in the context of the Web service. In Listing 1, ctxt1:France at-

tribute is an instance of country concept in the context ontology. Moreover

35

ctxt1:ScaleFactorOne attribute is an instance of scaleFactor concept in the

context ontology. We assume that Web services providers correctly add this

information to the context ontology before annotating WSDL files.

In step four, the mediator Web service communicates with a rule engine

to perform several tasks. The first task consists in inferring the values of

dynamic modifiers that are part of the context, using rules stored in the

knowledge base. For example, being given (country = France) as a fact, the

rule engine infers (currency = euro) by querying the knowledge base. Then,

currency modifier is being affected the value euro.

The second task consists in converting the received data into the required

context representation. From the previous steps, we obtained two in-memory

context representation trees that have valued or not-valued elements. Next,

the mediator compares each element of the context and queries the rule

engine to see if the values are convertible. If a value is missing, the mediator

queries the knowledge base for a rule that specifies a default value. If no

such rule exists, the conversion is canceled and an error is thrown. The

knowledge base also contains conversion rules that allow dynamic conversion

between context values. For instance, price in our example is converted into

the required currency by calling a remote component that provides up-to-

date currency conversion rate. Such conversion needs to be dynamic, so that

it can answer the requirements of the temporal perspective of context.

36

6.3 Test Case and Evaluation

A test experiment has been conducted on the basis of the example developed

in this paper. Our current composition example is hosted by an Apache

Tomcat container, our mediator Web service implementation uses Jena 2

API and Drools rule engine to access and manipulate OWL ontologies and

perform data conversion4. The prototype includes illustrative domain and

context ontologies for describing the required concepts and contexts5.

The implementation performs at-runtime context mediation, enabling

meaningful execution of composition. In the example of this paper, not only

price concepts match, but data is transformed at-runtime, to comply with

the different scale factors, heterogeneous date formats (that allow getting up-

to-date conversion rates between currencies), and different VAT rates (that

also are not always included in the price), described in the context ontology.

As future work, we envision further practical tests and performance eval-

uation. However such experiments require additional domain and context

ontologies that must be validated by domain experts, as well as additional

sets of conversion rules and functions. Therefore, and for the purpose of this

paper, we limited our experiments to the test-case developed previously, as

a proof-of-concept of the feasibility of our architecture. Ongoing work also

concerns the integration of the contextualization algorithm with WS-BPEL

implementations such as ActiveBPELTM or Apache OdeTM.

4http://tomcat.apache.org/, http://jena.sourceforge.net/ and http://www.drools.org/.
5Available at http://www710.univ-lyon1.fr/∼mmrissa/

37

7 Conclusion

In this paper, we presented a context-based approach for semantic Web ser-

vices composition. The approach revolves around the following aspects: an-

notating WSDL descriptions so that Web services are now described with

contextual details, deploying a context-based mediation architecture so that

implicit assumptions on data flow are made explicit, and automatically gen-

erating and invoking Web services mediators so that data heterogeneities

between Web services are handled during the composition.

Future work aims at looking into the following issues. First, unexpected

changes in some Web services’ non-functional properties could lead to sub-

stitute some Web services with others offering the same functionality. The

challenge is to make this substitution automatic, dynamic, and transparent.

Second, Web services discovery and selection steps could ease semantic medi-

ation during the composition step. The challenge is to ensure that semantic

mediation is taken into account during discovery and selection stages.

References

[1] S. Arroyo and M. Stollberg. WSMO Primer. WSMO Deliver-
able D3.1, DERI Working Draft. Technical report, WSMO, 2004.
http://www.wsmo.org/2004/d3/d3.1/.

[2] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple object access protocol (SOAP)
1.1. Technical report, The World Wide Web Consortium (W3C), 2000.

[3] L. Cabral and J. Domingue. Mediation of semantic web services in
irs-iii. In 1st Int’l Workshop on Mediation in Semantic Web Services

38

(MEDIATE 2005) at the 3rd Int’l Conf. on Service Oriented Computing
(ICSOC 2005), Amsterdam, The Netherlands., December 12th 2005.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) 1.1, W3C Note. Technical re-
port, The World Wide Web Consortium (W3C), March 2001.

[5] F. Curbera, Y. Goland, and J. K. et al. Business Process Execution
Language for Web Services (BPEL4WS) Version 1.1, May 2003.

[6] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.
Technical report, Vrije Universiteit Amsterdam, 2002.

[7] A. S. Foundation. Axis2. http://ws.apache.org/axis2/ (last ac-
cessed: May, 29 2006).

[8] A. S. Foundation. Velocity – Java-based template engine. http://

jakarta.apache.org/velocity/ (last accessed: May, 29 2006).
[9] S. W. Group. Semantic Annotations for WSDL, W3C Working Draft.

Technical report, The World Wide Web Consortium (W3C), Sept. 2006.
[10] T. Gruber. What is an ontology? http://www-

ksl.stanford.edu/kst/what-is-an-ontology.html, 2000.
[11] Joachim Peer. Semantic Service Markup with SESMA. In Web Service

Semantics Workshop (WSS’05) at the Fourteenth International World
Wide Web Conference (WWW’05), 2005.

[12] V. Kashyap and A. P. Sheth. Semantic and schematic similarities be-
tween database objects: A context-based approach. VLDB J., 5(4):276–
304, 1996.

[13] M. Klein, B. König-Ries, and M. Müssig. What is needed for semantic
service descriptions - a proposal for suitable language constructs. Inter-
national Journal on Web and Grid Services (IJWGS), 1(3/4):328–364,
2005.

[14] Z. Maamar, D. Benslimane, and N. C. Narendra. What can context do
for web services? Commun. ACM, 49(12):98–103, 2006.

[15] D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. V.
McDermott, D. L. McGuinness, B. Parsia, T. R. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. P. Sycara. Bringing Semantics to
Web Services: The OWL-S Approach. In J. Cardoso and A. P. Sheth,
editors, SWSWPC, volume 3387 of Lecture Notes in Computer Science,
pages 26–42. Springer, 2004.

[16] B. Medjahed and A. Bouguettaya. A dynamic foundational architecture
for semantic web services. Distributed and Parallel Databases, 17(2):179–
206, 2005.

39

[17] J. Miller, K. Verma, P. Rajasekaran, A. Sheth, R. Aggarwal, and
K. Sivashanmugam. WSDL-S: Adding Semantics to WSDL - White
Paper. Technical report, Large Scale Distributed Information Systems,
2004. http://lsdis.cs.uga.edu/library/download/wsdl-s.pdf.

[18] A. Mocan, E. Cimpian, M. Zaremba, and C. Bussler. Mediation in Web
Service Modeling Execution Environment (WSMX). In Information In-
tegration on the Web (IIWeb2004), Toronto, Canada, 2004.

[19] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar. A context model
for semantic mediation in web services composition. In D. W. Embley,
A. Olivé, and S. Ram, editors, ER, volume 4215 of Lecture Notes in
Computer Science, pages 12–25. Springer, 2006.

[20] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar. Towards
Context-based Mediation for Semantic Web Services Composition. In
Proceedings of the 18th Int’l Conf. on Software Engineering and Knowl-
edge Engineering (SEKE’2006), San Francisco, California, July 2006.

[21] N. F. Noy. Semantic integration: a survey of ontology-based approaches.
SIGMOD Rec., 33(4):65–70, 2004.

[22] N. F. Noy and C. D. Hafner. The state of the art in ontology design:
A survey and comparative review. In AI Magazine, volume 18, pages
53–74, Fall 1997.

[23] N. F. Noy and D. Mcguinness. Ontology development 101: A guide to
creating your first ontology. Stanford KSL Technical Report KSL-01-05,
2000.

[24] G. Schreiber and M. Dean. Owl web ontology language reference.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/, February 2004.

[25] B. Spencer and S. Liu. Inferring data transformation rules to integrate
semantic web services. In S. A. McIlraith, D. Plexousakis, and F. van
Harmelen, editors, Int’l Semantic Web Conference, volume 3298 of Lec-
ture Notes in Computer Science, pages 456–470. Springer, 2004.

[26] UDDI. Universal Description, Discovery, and Integration of Business
for the Web, Oct. 2001. URL: http://www.uddi.org.

[27] W3C. XML Schema Part 2: Datatypes Second Edition. Technical
report, W3C, October 2004. http://www.w3.org/TR/xmlschema-2/.

[28] G. Wiederhold. Mediators in the architecture of future information sys-
tems. IEEE Computer, 25(3):38–49, 1992.

[29] A. B. Williams, A. Padmanabhan, and M. B. Blake. Experimentation
with local consensus ontologies with implications for automated service
composition. IEEE Trans. Knowl. Data Eng., 17(7):969–981, 2005.

40

