
Wrapping and reasoning on relational databases

with Cross

Pierre-Antoine Champin(1), Geert-Jan Houben(2), Philippe Thiran(3)

(1) LIRIS, Université Claude Bernard Lyon 1,
pchampin@liris.cnrs.fr,

(2) Vrije Universiteit Brussel,
Geert-Jan.Houben@vub.ac.be,

(3) Facultés Universitaires Notre-Dame de la Paix, Namur,
pthiran@fundp.ac.be

Abstract

One of the challenges of the Semantic Web is to integrate the huge
amount of information already available on the standard Web, usually
stored in relational databases. In this paper, we propose a formalization of
a logic model of relational databases, and a transformation of that model
into OWL, a Semantic Web language. This transformation is implemented
in Cross, as an open-source prototype. We prove a relation between the
notion of legal database state and the consistency of the corresponding
OWL knowledge base. We then show how that transformation can prove
useful to enhance databases, and integrate them in the Semantic Web.

1 Introduction

One of the challenges of the Semantic Web (SW) vision is to integrate, in a
machine-consumable form, the huge amount of information already available on
the standard Web. The long-term goal is to allow software agents to aggregate
information from heterogenous sources in order to handle complex user queries.
However, a great amount of the information available on the web is stored in
relational databases (RDBs). From that perspective, the Semantic Web can
benefit from the abundant literature on reverse engineering [11] and data inte-
gration [12] in the field of RDBs. On the other hand, SW technologies shed a
new light on those classical problems, and provide new tools and methodologies,
but also new challenges to the field.

Enhancing RDBs with semantically rich languages is indeed not a new idea:
description logics (DLs), that happen to be one of the foundations of SW tech-
nologies, have already been considered as a unifying formalism for conceptual
data models [4, 13]. However, the proposed approaches were not deployed on

1

pchampin@liris.cnrs.fr
Geert-Jan.Houben@vub.ac.be
pthiran@fundp.ac.be

Figure 1: An example RDB schema. PK represent primary keys. Arrows rep-
resent foreign keys.

large-scale legacy databases, notably because conceptual models of RDBs are
not always available in practice. On the other hand, there have been some ef-
forts to bridge the gap between RDBs and SW languages, but paradoxically,
they have been neglecting the reasoning issue, either focusing on the syntactical
level [2] or undecidable formalisms [7].

Our goal is to draw experience from all those works to provide a sound
and practical approach to integrating RDBs in the SW. That approach will
make it possible 1/ to use SW technologies and tools for the benefit of database
engineering and re-engineering, and 2/ to smoothly integrate legacy RDBs in the
Semantic Web, possibly to perform data integration with other RDBs, native
RDF data sources, or even Web Services.

In this paper, we formally define an abstraction of RDBs, focusing on their
logical model, and show how this fits into OWL, an SW language based on
description logics. More precisely, we prove a relation between the notion of
legal database state and the consistency of the corresponding OWL knowledge
base. We then present Cross, an open-source implementation of our approach,
which introduces the notion of semantic values.

1.1 Running example

Along the paper, we will use as a running example the database schema de-
scribed in figure 1, which is a subset of the information system of an imaginary
university. That schema describes students, the courses they attend, and their
scholarship if any. It also represents the prerequisites between courses, and
which courses involve practical work (practical courses).

1.2 Structure of the paper

In section 2 we motivate our work by a number of use cases. We then give a
formal description of OWL in section 3. Section 4 describes our formalization
of RDBs logical model, that we call the ODBC model. In section 5, we define a

2

correspondence between both models and prove the equivalence between ODBC
weak legality and OWL consistency. We present in section 6 Cross, a working
implementation of our approach. Finally we conclude and discuss some further
work.

2 Motivations

OWL [8] is a knowledge representation language based on description logics and
is a recomendation of the W3C. It has a well-defined formal semantics, that we
will recap in section 3. Its high expressive power allows complex inferences to be
performed on OWL knowledge bases, hence the relevance of mapping relational
databases to OWL. More precisely, we consider three interesting directions for
such reasoning: schema reasoning and enriching, querying the data, and ensur-
ing interoperability.

Schema reasoning and enriching. As suggested by [4], converting models
into description logics brings the power of DL inference to those models, as well
as additional expressiveness. The first interest of our approach w.r.t. RDBs
is indeed to allow to reason about relational schemas, and discover implicit
relations between their tables or columns.

But beyond reasoning about the schemas, mapping relational schemas to
OWL allows to express additional constraints about them. Such constraints
sometimes fit in the relational model but were omitted at design time; one
can add for example in our running example axioms stating that all students
must have a name. Sometimes, on the other hand, the constraints do not fit
in the relational model (e.g. like cardinality constraints): we can state for
example that no more than 30 students can attend a given course. We are
aware that most RDB management systems (RDBMSs) allow to express that
kind of constraint (e.g. using the CHECK or TRIGGER keywords from SQL), but
this type of constraint is expressed in an imperative form, which makes it suited
for consistency checking but unfortunately not reasoning.

Querying the data. What we just said about the schema is, in theory, also
true for the data: OWL inference engines do provide so-called A-box reasoning
services, and even elaborate query languages like SPARQL [14]. In practice,
however, this is only possible with knowledge bases of a modest size, far below
the size of the average corporate database. The main reason is that current
inference engines must load the whole knowledge base in memory in order to
reason with it. Research is being pursued on the field of distributed reasoning [6]
in order to overcome this limitation, but is still at a preliminary stage.

However, we believe that an OWL mapping of the sole schema of an RDB
can be used to reason about queries in order to optimize them. We will develop
on this point in section 6.3.

3

Interoperability. Ontologies are widely recognized as a mean to achieve in-
teroperability between heterogeneous sources of data [18]. By translating re-
lational schemas into OWL ontology, we make a number of recent work on
ontology aligning [9] applicable to legacy relational databases.

3 OWL semantics and inferences

We recap in this section the formal semantics of OWL [8], a recommendation
of the W3C to express ontologies on the SW, and present the inference services
that it enables1. Although OWL is usually represented in XML, we favor in
this paper a more compact notation which common in the DL literature [1].

Class constructors Syntax Semantics

Predefined classes > ∆I

⊥ ∅
Set operators C tD CI ∪DI

C uD CI ∩DI

¬C ∆I \ CI

Quantifiers ∃P.C {x | ∃(x, y) ∈ P I , y ∈ CI}
∀P.C {x | ∀(x, y) ∈ P I , y ∈ CI}

Cardinality restriction (≤ nP) {x | #{y | (x, y) ∈ P I} ≤ n}
(≥ nP) {x | #{y | (x, y) ∈ P I} ≥ n}
(= nP) {x | #{y | (x, y) ∈ P I} = n}

Property constructors Syntax Semantics

Property inverse P− {(x, y) | (y, x) ∈ P I}

Table 1: OWL constructors syntax and semantics. C and D denote concept
expressions; P denotes a property symbol; n denotes a natural integer; #s
denotes the cardinality of set s.

In OWL, a domain of interest is modeled as a set of individuals, classes de-
noting sets of individuals, and properties denoting binary relationships between
individuals. OWL provides a number of constructors allowing to define complex
classes and properties from a set of atomic classes and properties (see table 1).
Features of the domain of interest are represented in an OWL knowledge base,
defined hereafter.

Definition 3.1 An OWL knowledge base O is defined by 〈LO, TO,AO〉, where:

1 Actually, OWL has three dialects (called species): Lite, DL and Full. Only the first two
of them are description logics. OWL-Full, on the other hand has an expressiveness beyond
the one of DLs, but no decidable inference algorithm. In the following, mentions to OWL will
only refer to its first two species. Note also that we omit on purpose some features of OWL
which are not relevant to this work.

4

• LO is a finite alphabet partitioned into a set CO of class symbols, a set
PO of property symbols and a set OO of individual symbols.

• TO is a set of axioms as described in table 2, equivalent to the T -box in
the DL literature.

• AO is a set of facts as described in table 2, equivalent to the A-box in the
DL literature.

�

Syntax Semantics

Class axioms C v D CI ⊆ DI

Property P v Q P I ⊆ QI

axioms transitive(P) ∀x, y, z ∈ ∆I , (x, y) ∈ P I ∧ (y, z) ∈ P I
=⇒ (x, z) ∈ P I

Facts i : C iI ∈ CI

〈i, j〉 : P (iI , jI) ∈ P I

i = j iI = jI

i 6= j iI 6= jI

all-different(S) ∀i 6= j ∈ S, iI 6= jI

Table 2: Syntax and semantics for OWL axioms and facts. C and D denote
concept expressions; P and Q denote property expressions; i and j denote indi-
vidual symbols; S denote a set of individual symbols.

The semantics of an OWL knowledge base is defined by means of an in-
terpretation I = (∆I , ·I), consisting of an interpretation domain ∆I and an
interpretation function ·I . The latter maps every individual symbol i to an
element iI ∈ ∆I , every class C to a subset CI ⊆ ∆I , every property P to a re-
lation P I ⊆ ∆I ×∆I , while respecting the semantics of constructors as defined
in table 1. An interpretation is said to satisfy a statement (axiom or fact) if it
verifies the semantics of that statement as defined in table 2. An interpretation
satisfying all the statements of a knowledge base O is said to be a model of that
knowledge base.

A knowledge base is said to be consistent if it has at least one model. An
axiom is said to be entailed by a knowledge base if every model of that knowledge
base satisfies that axiom. A class C is said to be satisfiable under a knowledge
base if that knowledge base does not entail C v ⊥, i.e. if there is at least one
model I such that CI is not empty. A class C is said to subsume another class
D under a knowledge base if that knowledge base entails D v C.

The problems of checking consistency, entailment, satisfiability and sub-
sumption, are provably decidable. Several inference engines are available for
OWL; we are using Pellet [16].

5

4 Formalizing the ODBC model

In this section, we formalize the schema and data instance of relational databases.
Although this kind of formalization is classical for conceptual data models such
as the Entity-Relationship model [4, 3], it has never been proposed, to the best
of our knowledge, for logical data models. This makes former propositions dif-
ficult to apply for legacy databases where the conceptual model is not directly
available, while logical models are. Of course, such models vary amongst the
various RDBMS implementations. Nevertheless, they share a number of com-
mon notions, on which we chose to focus, and which makes it possible to port
an application from one system to another. Indeed, those notions are captured
by standard APIs for accessing arbitrary relational databases; this is why we
named our model after one of the most popular such API: ODBC. It is not how-
ever limited to that API; other standards such as JDBC provide basically the
same abstraction for relational databases, which demonstrates that the common
notions they both capture are widely accepted and robust.

In the following, tuple(S) denotes the set of all tuples on S (i.e. finite
sequences of elements of S) of any length (including 1); if t is a tuple, |t| is its
length, and we note e ∈ t if e is one of the elements of t.

Definition 4.1 An ODBC schema S is defined by 〈LS , fT
S , f

D
S , CN

S , f
C
S , f

ref
S 〉,

where:

• LS is a finite alphabet partitioned into a set TS of table symbols, a set CS
of column symbols, a set US of uniqueness constraint symbols, a set FS
of foreign key constraint symbols and a set DS of domain symbols; each
domain symbol D has an associated pre-defined basic domain DBD . We
do not assume the various basic domains to be pairwise disjoint, and we
suppose that, given two basic domains d1 and d2, the set-relation between
them is known (inclusion, disjointness, etc.).

• fT
S : CS ∪ US ∪ FS → TS . Intuitively, each column, uniqueness constraint

or foreign key constraint belongs to a unique table.

• fD
S : CS → DS . Intuitively, each column has an associated datatype.

• CN
S ⊆ CS is a subset of the column symbols. Intuitively, it denotes the

columns that are required to have a value (marked NOT NULL in SQL
schemas).

• fC
S : US ∪ FS → tuple(CS). Intuitively, each uniqueness constraint and

foreign key constraint K applies to an ordered tuple of columns. Those
columns must obviously all belong to the same table as K. Formally, it
must hold that ∀c ∈ fC

S (K), fT
S (c) = fT

S (K).

• fref
S : FS → US . Intuitively, each foreign key references columns with

a uniqueness constraint. It must hold, for every F in FS , that it ref-
erences a uniqueness constraint with the same number of columns, i.e.

6

|fC
S (fref

S (F))| = |fC
S (F)|. Note that we assume without loss of generality

that the order of the columns in the foreign key matches the order of the
columns in the referenced uniqueness constraint.

• For each table T ∈ TS , there is at least one uniqueness constraint symbol
U ∈ US such that fT

S (U) = T and ∀Ci ∈ fC
S (U), Ci ∈ CN

S . U is known as
the primary key of T .

�
About the last point of that definition , we are aware that not all RDBMSs
impose the existence of a primary key for every table. However, the use of
primary keys is usually considered as good practice and rarely omitted.

Definition 4.2 An ODBC database state B corresponding to a schema S is
defined by 〈∆B, ·B〉 where ∆B is a non-empty finite set assumed to be disjoint
from all basic domains (and sets of tuples over the basic domains), and ·B is a
function mapping:

• every domain D ∈ DS to the corresponding basic domain DBD ,

• every table symbol T ∈ TS to a subset TB of ∆B,

• every column symbol C ∈ CS to a relation CB ⊆ TBC × V where

– TC = fT
S (C) is the table to which C belongs,

– V =
⋃

D∈DS D
BD is the union of all the basic domains.

It is furthermore assumed, for every table T , that no two rows have the same
values for the columns composing the primary key of T .

�
Intuitively, ∆B can be regarded as the set of objects represented by the database;
those objects are typically represented by table rows in the database, but a single
object may be represented in several tables (i.e. an element r ∈ ∆B may belong
to several TB). This allows in particular to take into account inheritance, which
can be simulated by some patterns in relational schemas, or is even explicitly
managed by some RDBMSs. Columns model attributes of those objects, hence
they are represented as relations between the set of objects and the basic data
domains.

The last sentence of the definition, stating that primary key constraints must
be satisfied by any database state (rather than legal ones only) may seem mis-
placed. However, we need rows to be identified in some way, so we assume that
this particular constraint os necessarily enforced (which, we already mentioned,
is most often the case).

Note that function ·B is not defined over constraint symbols (uniqueness or
foreign key); indeed, those symbols do not represent elements of a database
state, but merely constraints that must hold between its elements. However,

7

for convenience, we extend the definition of ·B on constraint symbols: for each
K ∈ US ∪ FS , if T = fT

S (K) and fC
S (K) = 〈C1, . . . , Ck〉:

KB=̇{(r, 〈v1, . . . , vk〉) | r ∈ TB, (r, vi) ∈ CBi , i ∈ {1, . . . , k}}

Definition 4.3 A database state B is said to be legal for a schema S if it
satisfies the following conditions:

• For each C ∈ CS

– CB ⊆ fT
S (C)B × fD

S (C)B (range)

– ∀(r1, v1), (r2, v2) ∈ CB, r1 = r2 =⇒ v1 = v2 (functionality)

– ∀C ∈ CN
S ,∃r ∈ fT

S (C)B =⇒ ∃(r, v) ∈ CB (not null)

• For each U ∈ US , ∀(r1, t1), (r2, t2) ∈ UB, t1 = t2 =⇒ r1 = r2 (unique-
ness)

• For each F ∈ FS , ∀(r, t) ∈ FB, ∃(r′, t) ∈ fref
S (F)B (reference)

�
That definition of legality straightforwardly captures the constraints usually
enforced by RDBMSs according to the definition of relational schemas. However,
it does not have an exact correspondence in OWL (we will explain that in the
next section). In the following, we will therefore need a weaker notion of legality,
defined thereafter.

Definition 4.4 An database state B is said to be weakly legal for a schema
S if it satisfies all the conditions from definition 4.3, except for the reference
condition.

�

5 From the ODBC model to OWL

In this section, we propose a correspondence between the ODBC model and
the OWL model, and prove the equivalence between weak legality of an ODBC
database state and consistency of the corresponding OWL knowledge base.

Definition 5.1 Let S be an ODBC schema. The OWL knowledge base ψ(S) =
〈LO, TO,AO〉 is defined as follows.

The set CO of class symbols contains the following elements:

• the predefined symbols Row, and Data,

• for each table symbol T ∈ TS , a new class symbol ψ(T),

• for each domain symbol D ∈ DS , a new class symbol ψ(D).

8

The set PO of property symbols contains for each symbol S ∈ CS ∪ US ∪ FS , a
new property symbol ψ(S).

The set TO contains the following axioms:

• the predefined axioms:

Row v ¬Data (5.1.1)
> v Row t Data (5.1.2)

• for each table symbol T ∈ TS , the axiom:

ψ(T) v Row (5.1.3)

• for each domain symbol D ∈ DS , the axiom:

ψ(D) v Data (5.1.4)

• for each domain symbol D1, D2 ∈ DS with DBD
1 ⊆ DBD

2 , the axiom:

ψ(D1) v ψ(D2) (5.1.5)

• for each domain symbol D1, D2 ∈ DS with DBD
1 ∩DBD

2 = ∅, the axiom:

ψ(D1) v ¬ψ(D2) (5.1.6)

• for each symbol S ∈ CS ∪ US ∪ FS with T = fT
S (S), the axioms:

(≥ 1ψ(S)) v ψ(T) (5.1.7)
> v (≤ 1ψ(S)) (5.1.8)

• for each column symbol C ∈ CS with D = fD
S (C), the axiom:

> v ∀ψ(C).ψ(D) (5.1.9)

• for each column symbol C ∈ CN
S with T = fT

S (C), the axiom:

ψ(T) v ∃ψ(C).> (5.1.10)

• for each symbol K ∈ US ∪ FS , the axiom:

> v ∀ψ(K).Data (5.1.11)

• for each symbol K ∈ US ∪ FS with T = fT
S (K) such that all columns Ci

of K are in CN
S :

ψ(T) v ∃ψ(K).> (5.1.12)

9

• for each uniqueness constraint symbol U ∈ US , the axiom:

> v≤ 1ψ(U) (5.1.13)

The sets OO of individual symbols and AO of facts are empty.

�

Intuitively, the transformation ψ maps every table row to an individual
of class Row and every data value to an instance of class Data. Tables are
mapped to subclasses of Row, while domains are mapped to subclasses of Data.
2 Columns are mapped to functional properties between rows and values. The
constraints expressed in the schema are translated into corresponding OWL
axioms.

It is worth noting that, since axioms can not involve a set of properties, while
relational constraints (uniqueness and foreign key) may involve several columns,
ψ also creates a property for every constraint, whose values will be the tuple
of values associated to that constraint. In our running example, a row of table
Attends with values (sid : 1, cid : 2) will e.g. be mapped to an individual with
three properties: ψ(sid) with value 1, ψ(cid) with value 2, and ψ(attends fk)
with value (1, 2).

Definition 5.2 Let B be an ODBC database state corresponding to a schema
S. The OWL knowledge base ψ(B) = 〈LO, TO,AO〉 is defined as follows.

The sets CO of class symbols, PO of property symbols and TO of axioms are
defined according to ψ(S) (see definition 5.1).

The set OO of individual symbols contains the following elements:

• for each r ∈ ∆B, a new individual symbol ψ(r),

• for each v ∈
⋃

S∈CS∪US∪FS S
BD , a new individual symbol ψ(v),

The set AO contains the following facts:

• for V = {ψ(v) | (r, v) ∈
⋃

S∈CS∪US∪FS S
BD},

all-different(V) (5.2.1)

• for each T ∈ TS , for each r ∈ TB,

ψ(r) : ψ(T) (5.2.2)

• for each S ∈ CS ∪ US ∪ FS , for each (r, v) ∈ SB,

〈ψ(r), ψ(v)〉 : ψ(S) (5.2.3)

2 The reader familiar with OWL may be surprised that we represent data domains by OWL
classes rather than OWL datatypes. The reason is that literals in OWL have some limitation
with regards to reasoning, that individuals do not have; this issue is developed in more detail
in [5].

10

• for each S ∈ CS ∪ US ∪ FS , for each r ∈ fT
S (S)B such that @(r, v) ∈ SB:

ψ(r) : (≤ 0ψ(S)) (5.2.4)

• for each v ∈
⋃

C∈CS C
BD , for each D ∈ DS , if v ∈ DBD ,

ψ(v) : ψ(D) (5.2.5)

else:

ψ(v) : ¬ψ(D) (5.2.6)

�

Theorem 5.3 Let B be an ODBC database state corresponding to a schema
S. The corresponding OWL knowledge base ψ(B) has a model if and only if B
is weakly legal for S.

Proof The “if” direction is quite straightforward to prove: we construct an
interpretation I of ψ(B) and show that it is indeed a model. The interpretation
domain ∆I will contain a distinct element sI for each individual symbol s ∈ OO.
Futhermore, ·I is defined as follows:

• for each T ∈ TS , ψ(T)I = {ψ(r)I | ψ(r) : ψ(T) ∈ AO}

• RowI =
⋃

T∈TS ψ(T)I

• for each D ∈ DS , ψ(D)I = {ψ(v)I | ψ(v) : ψ(D) ∈ AO}

• DataI =
⋃

S∈CS∪US∪FS{ψ(v)I | 〈ψ(r), ψ(v)〉 : ψ(S) ∈ AO}

• for each S ∈ CS ∪ US ∪ FS , SI = {(ψ(r)I , ψ(v)I) | 〈ψ(r), ψ(v)〉 : ψ(K) ∈
AO}

From the definition of I, it is trivial that it satisfies all the facts from AO.
Axiom 5.1.1 follows from the fact that every element of Data corresponds to a
value (or tuple of values) from basic domains while every element of Row cor-
responds to an element of ∆B, disjoint by definition from all basic domains.
Axioms 5.1.2, 5.1.3, 5.1.4, 5.1.5 and 5.1.6 are verified by construction of I. The
domain axiom (5.1.7) follows from the definition of CB in an ODBC database
state. All other axioms follow straightforwardly from the construction of I and
ψ and from the fact that B is weakly legal: axioms 5.1.9 and 5.1.11 follow from
“range” condition, axiom 5.1.8 from the ‘functionality” condition, axioms 5.1.10
and 5.1.12 from the “not null” condition, and axiom 5.1.13 from the “unique-
ness” condition.

To prove the “only if” direction, we assume that ψ(B) has a model I, and
we show that B is bound to be weakly legal.

11

range Let C ∈ CS , D = fD
S (C). For any (r, v) ∈ CB, 〈ψ(r), ψ(v)〉 : ψ(C) ∈ AO;

from axiom 5.1.9, it follows that ψ(v)I ∈ ψ(D)I . Now assume that B
violates the “range condition”, i.e. that v 6∈ DB. Hence ψ(v) : ¬ψ(D) ∈
AO, which results to ψ(v)I 6∈ ψ(D)I ; there is a contradiction, so B must
satisfy the “range” condition.

functionality Let C ∈ CS . For any (r, v1), (r, v2) ∈ CB, AO contains the facts
〈ψ(r), ψ(v1)〉 : ψ(C) and 〈ψ(r), ψ(v2)〉 : ψ(C) ; from axiom 5.1.8, it follows
that ψ(v1)I = ψ(v2)I . Now assume that B violates the “functionality”
condition, i.e. that v1 6= v2. Hence, from fact 5.2.1, ψ(v1)I 6= ψ(v2)I ;
there is a contradiction, so B must satisfy the “functionality” condition.

not null Let C ∈ CN
S , T = fT

S (C). For any r ∈ TB, ψ(r) : ψ(T) ∈ AO, and
from axiom 5.1.10, #{i | (ψ(r)I , i) ∈ ψ(C)B} ≥ 1. Now assume that B
violates the “not null” condition, i.e. @(r, v) ∈ CB. Hence, from fact 5.2.4,
#{i | (ψ(r)I , i) ∈ ψ(C)B} ≤ 0; there is a contradiction, so B must satisfy
the “not null” condition.

uniqueness Let U ∈ US , T = fT
S (U). For any (r1, t), (r2, t) ∈ UB, 〈ψ(r1), ψ(t)〉 :

ψ(U), 〈ψ(r2), ψ(t)〉 : ψ(U) ∈ AO; from axiom 5.1.13, it follows that ψ(r1)I =
ψ(r2)I . Now assume that B violates the “uniqueness” condition, i.e.
that r1 6= r2. Let Upk be the primary key of T ; since any database
state must satisfy the primary key constraint, U 6= Upk and there exists
(r1, pk1), (r2, pk2) ∈ Upk with pk1 6= pk2. It follows that 〈ψ(r1), ψ(pk1)〉 :
ψ(U), 〈ψ(r2), ψ(pk2)〉 : ψ(U) ∈ AO, ψ(pk1)I 6= ψ(pk2)I , hence with ax-
iom 5.1.8, ψ(r1)I 6= ψ(r2)I . There is a contradiction, so B must satisfy
the “uniqueness” condition.

�

Limitation of the theorem. We now discuss and explain the reason of theo-
rem 5.3 applying only to weakly legal database states, rather than strongly legal
ones. We recall that a weakly legal state is not required to satisfy the “refer-
ence” constraint, i.e. that it may contain foreign keys pointing to non-existent
rows. One may notice that the translation ψ of an ODBC schema into an OWL
knowledge base contains no axiom about the foreign keys; it is tempting to be-
lieve that that limitation of the theorem would be alleviated by the addition of
the following axiom, for all F ∈ FS :

> v ∀ψ(F).(≥ 1ψ(fref
S (F))−)) (5.3.1)

which states that every foreign key property must point to the value of some
row for the corresponding uniqueness constraint. However, that axiom can be
validated by ψ(B) even if B does not satisfy the “reference” condition.

This is due to the fact that foreign key constraints in RDBMSs strongly
rely on the so called closed world assumption: any information absent from
the database is considered false. For example, in the schema given in figure 1,

12

assume a row in Scholarship with value 123 for hid, while no row in Student
has value 123 for sid. This is a violation of the foreign key constraint. On
the other hand, OWL reasoning is based on the open world assumption: any
information absent from the knowledge base is considered unknown, neither true
nor false. So in our example, the fact that AO does not contain an individual
with value 123 for ψ(sid) does not mean that such an individual does not exist,
and since nothing prevents its existence, there is a model I of ψ(B) containing
that individual, even if it has no corresponding row in B. The closed versus open
world issue is a well-known difference between database systems and knowledge
representation systems, and we will address it in more detail in the next section.

An inverse transformation. Another tempting idea is that, given an ODBC
schema S, any OWL knowledge base consistent with ψ(S) would correspond to
a weakly legal database state B. This happens to be wrong as well, for two
reasons. The first one is again related to the closed versus open world issue:
a consistent knowledge base may be underspecified with regard to the schema.
For example, a row may have no explicit value for a column C ∈ CN

S ; this is not
inconsistent as long as it is not stated either that the row does not have any
value for C3.

Another problem comes from the redundancy introduced by ψ in the knowl-
edge base: a uniqueness constraint U spanning two columns C1 and C2 is repre-
sented by a property of its own ψ(U), independent, in the OWL knowledge base,
of ψ(C1) and ψ(C2). It is therefore possible for an instance to have a tuple value
for ψ(U) different from its values for ψ(C1) and ψ(C2), which can of course not
be represented by a database state. Furthermore, this makes it possible for two
individuals to have different values for ψ(U) even if their values for ψ(C1) and
ψ(C2) are identical, making them artificially respect the uniqueness constraint.
For those two reasons, an inverse transformation ψ− can not exist in the general
case.

6 Cross: an implementation

In this section, we present Cross, an implementation of our approach presented
before. This implementation is an open-source software, available at http://
liris.cnrs.fr/∼pchampin/dev/cross. We first stress a number of differences
between the theoretical model and the actual implementation, and develop the
most saillant of them: semantic values. Additionally we show the benefits of
using Cross in the motivating use cases described in section 2.

6.1 Differences with the theoretical model

There are three differences between the theoretical model described above and
the actual implementation. In the following we describe those differences and

3 This is the raison d’être of fact 5.2.4; without it, the theorem would be false because
ψ(B) would be consistent even if B violated the “not null” condition.

13

http://liris.cnrs.fr/~pchampin/dev/cross
http://liris.cnrs.fr/~pchampin/dev/cross

explain why they do not affect the validity of theorem 5.3.
The first difference is an effort to reduce the redundancy in the OWL knowl-

edge base. In section 5, we remarked that transformation ψ creates redundant
information by associating to every uniqueness constraint a property which is
independent of the properties associated to the columns concerned by that con-
straint. This is useful for multi-column constraints, because the axioms 5.1.13
guaranteeing the uniqueness can only apply to a single property. On the other
hand, for constraints spanning a single column, there is no need for an additional
property: the property associated to the column can represent the uniqueness
constraint as well, and axiom 5.1.13 can be applied directly to the column prop-
erty. This is what the implementation does, and it does the same for properties
representing foreign keys. That difference makes definitions 5.1 and 5.2 and the
proof of theorem 5.3 a little more complex (they require to treat single-column
constraints differently from multi-columns constraints) but not significantly dif-
ferent.

The second difference is that, for the sake of completeness, the implemented
transformation includes an axiom similar to axiom 5.3.1, i.e. forcing foreign keys
to point to an existing value. We already explained in the discussion following
the proof (section 5) that this is not sufficient to strengthen the theorem. How-
ever it does not weaken it either, because that axiom adds no real constraint
to the knowledge box: it demands the existence of an individual that no other
axiom generated by our approach prevents from existing. So if the knowledge
base without that axiom has a model, then it also has a model with the ax-
iom. The axiom may nevertheless prove useful in the reasoning tasks described
in section 6.3, making explicit a constraint that is actually satisfied by legal
database states.

The third difference is about the representation of data. While the transfor-
mation presented in section 5 straightforwardly creates an individual per row
and an individual per data value, Cross introduces an intermediate layer of in-
dividuals, as illustrated on figure 2. While individuals of the rightmost layer
represent raw data values (in the figure: the number 1, the number 2), indi-
viduals of the new intermediate layer represent values in the context of a given
column. We call them semantic values, in the manner of [15]. Indeed, the num-
ber 1 must be treated differently when it represents, e.g., a length in meters or
a price in euro. In a sense, semantic values can be viewed as reifications of the
arcs from the straightforward transformation: they do not provide additional
information, but only express the same information in a more detailed fashion
(which will prove useful in section 6.3). As a consequence, theorem 5.3 still
holds for the transformation with semantic values.

6.2 Dealing with semantic values

As we saw, Cross creates for each column C two OWL object properties. The
first one, noted φs(C), links the individual representing the row (row individual)
to the semantic value, while the second one, noted φd(C), links the semantic
value to its data value. In the straightforward transformation, ψ(C) captures all

14

Figure 2: An extract of table Attends (up-left), the straightforward transfor-
mation (up-right), and the Cross transformation (down) with semantic values.

the semantics of the column, while that semantics is somewhat split into φs(C)
and φd(C). For example, consider column Scholarship.amount; values for that
column represent the yearly amount of money, in Euro, received by the holder
of the scholarship. In Cross, we can decide that the semantic value represents
the yearly amount of money, independently of the currency; hence φs(amount)
links a scholarship to the income it provides yearly, while φd(amount) links an
amount of money to its value in Euro (but another property could link the same
semantic value to its amount in US Dollars).

Note that our approach, though not incompatible, is different from the one
proposed by [15]. The latter is to attach attributes4 to columns and values in
order to make their semantics explicit. According to their model, all values
for Scholarship.amount would have the attributes (Periodicity = ‘yearly‘,
Currency = ‘Euro‘). Such elicitation requires of course a precise ontology of
column attributes, which is not at all trivial. On the other hand, our approach
assumes a priori that all columns have a distinct semantics (each column has
its own “semantic value space”), and relies on human intervention to state
differently, if deemed relevant. With the appropriate OWL axiom, one can
indeed state that two columns happen to have the same semantics (e.g. two
columns representing a yearly amount of money). We believe that this approach
is more robust (because it assumes difference by default) and scalable (because
it does not require an ontology of column attributes). Of course, should such
an ontology be available, it could be used to formally document properties
generated by Cross: using OWL annotations, it would be possible with an
appropriate vocabulary to state that φs(amount) links to a yearly income as a
semantic value, while φd(amount) links to a value in Euro as an integer. We

4 The authors call them properties; we use the term “attribute” to avoid confusion with
OWL properties.

15

see that the two approaches are actually complementary.
Given two columns C1 and C2, stating an equivalence between φs(C1) and

φs(C2) means that values for the two columns are commensurable, i.e. that they
have a common semantics (e.g. an amount of money), but that their values are
not necessarily comparable (e.g. in different currencies). On the other hand,
stating an equivalence between φd(C1) and φd(C2) means that the values are
comparable, but not necessarily that they have the same semantics (e.g. an
income and a price). Let us note that the boundary between φs and φd is not as
objective as it may seem. For example, we decided above that semantic values
for Scholarship.amount represent a yearly income, and that φd(amount) links
it to its value in Euro. But we could as well have decided that the semantic
value represents a periodic income, and that φd(amount) links it to its yearly
value in Euro. That would make semantic values of amount commensurable
with any other periodic income, whatever its periodicity.

6.3 Use cases

In this section, we come back to the motivating goals stated in section 2 and
show how Cross enables to achieve them.

Schema reasoning and enriching. The first interest of our approach is to
be able to express additional constraints on the ODBC schema and to reason
about them. OWL expressiveness goes beyond the one of SQL, for example, with
respect to relationships between classes: specialization, disjointness, or equiva-
lence can easily be expressed in OWL. While some patterns in an ODBC schema
can be used to simulate specialization (e.g. the primary key of PracticalCourse
being a foreign key to Course), those patterns can not always be interpreted
that way (see as a counterexample Scholarship and Student). Such specializa-
tion can be made explicit either directly (ψ(PracticalCourse) v ψ(Course))
or by using columns (φs(pid) v φs(cid)); the latter is preferable, because it also
allows to properly identify the instances of the class5.

Querying the data. While RDBMSs are usually capable of checking the le-
gality of a database state, the use of an OWL inference engine to check the
consistency of the corresponding knowledge base could in theory take into ac-
count additional constraints that are not known to the RDBMS. However, we
already stressed the fact that it is only feasible for databases of a limited size.

Cross may however prove useful, if not to query the data, to reason about
the queries themselves. It has been proved in [10] that some conjunctive queries
on an OWL knowledge base can be reduced to a class expression. For that kind
of queries, class satisfiability can be checked before executing, to ensure that the
query can actually hold results. Furthermore, class subsumption can be used

5 Provided also that φd(pid) v φd(cid), i.e. stating that PracticalCourse identifiers are
special cases of Course identifiers. Any practical course with pid = x will be recognized as
having cid = x as well. Since cid is functional, it will be identified as the course with cid = x.

16

to test query containment, hence to help optimize queries by reusing cached
results of containing queries [17]. The originality of using OWL reasoning for
this purpose is its ability to take into account additional constraints expressed
in OWL, that would otherwise have been buried in triggers, CHECK constraints,
or application code.

Interoperability. Interoperability has been a primary goal in the develop-
ment of Cross. We argued that semantic values and the splitting of columns
in two OWL properties allow fine grain comparison of column semantics (com-
mensurable, comparable). Hence we believe that they provide a high flexibility
for aligning the generated ontology with other ones. Considering an ontology
about students and scholarship where US Dollar would be used instead of Euro.
Without semantic values, we could only align classes representing scholarships,
but not their properties. With semantic values, we can nevertheless state that
the OWL property φs(amount) is equivalent to the corresponding property in
the other ontology: they indeed bear the same general meaning. On the other
hand, the fact that their numeric values can not be compared will be conveyed
by the fact that φd(amount) would not be aligned.

7 Conclusion and perspectives

In this paper, we have proposed the ODBC model, a formalization of relational
databases focusing on their logic model. We have then presented a transforma-
tion of that model into OWL, a DL-based language designed for the Semantic
Web. This transformation is implemented by the Cross open-source prototype,
which effectively introduces the interesting notion of semantic values. We proved
that the knowledge based produced by this transformation is consistent if and
only if the source database state is weakly legal (i.e. legal but regarding foreign
key constraints). Taking advantage of that result, we have shown how that
transformation can prove useful for the purpose of analysing legacy RDBs, en-
hancing existing RDBs with additional constraints, and integrating them in the
SW.

A first direction for further work would be to try and strengthen the theo-
rem, to have an equivalence of OWL consistency with full legality, i.e. taking
into account foreign keys. This could actually be done by using an expressive
feature of OWL (the oneOf constructor, not mentioned in this paper), but
would possibly make the reasoning intractable. Another solution would be to
propose, in a similar way to finite model reasoning [4], an algorithm of closed
world reasoning which would not be allowed to create individuals.

We also want to get more experimental results for the Cross implementation.
Preliminary results6 are encouraging: the transformation of the schema of real
database (127 tables, 869 columns, 132 unicity constraints, no foreign key) took
around 1.5s; the resulting ontology was loaded in Pellet in about 9s, while

6on an Intel Core 2, 2.33GHz, with 2GB of memory

17

reasoning took about 3s. Those results seem reasonable for a quite big schema.
We now plan to experiment on the use cases presented in section 6.3 with that
database and a sample of other real databases.

References

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

[2] Christian Bizer. D2R MAP - a database to RDF mapping language. In
12th International World Wide Web Conference (Posters), 2003.

[3] Alexander Borgida, Maurizio Lenzerini, and Riccardo Rosati. Description
logics for databases. In Baader et al. [1], pages 462–484.

[4] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-
based representation formalisms. J. Artif. Intell. Res. (JAIR), 11:199–240,
1999.

[5] Pierre-Antoine Champin. Representing data as resources in RDF and
OWL. In Marcelo Arenas and Jan Hidders, editors, ICDT Workshop
on Emerging Research Opportunities in Web Data Management (EROW
2007), CEUR Workshop Proceedings. http://ceur-ws.org/Vol-229/, Jan-
uary 2007.

[6] Berdardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Combining OWL
ontologies using ε-connections. Web Semantics: Science, Services and
Agents on the World Wide Web, 4(1):40–59, January 2006.

[7] Cristian Pérez de Laborda and Stefan Conrad. Relational.OWL - a data
and schema representation format based on owl. In Sven Hartmann and
Markus Stumptner, editors, Asia-Pacific Conference on Conceptual Mod-
elling, volume 43 of CRPIT, pages 89–96. Australian Computer Society,
2005.

[8] Mike Dean and Guus Schreiber. OWL web ontology language. W3C Rec-
ommendation, http://www.w3.org/TR/owl-ref/, 2004.

[9] Jrme Euzenat. An API for ontology alignment. In Proc. of ISWC 2004,
number 3298 in LNCS, pages 698–712. Springer, 2004.

[10] Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive
query answering for the description logic SHIQ. In IJCAI 2007, 2007.

[11] Jean-Luc Hainaut, Jean Henrard, Jean-Marc Hick, Didier Roland, and Vin-
cent Englebert. Database design recovery. In Panos Constantopoulos, John
Mylopoulos, and Yannis Vassiliou, editors, CAiSE, volume 1080 of LNCS,
pages 272–300. Springer, 1996.

18

http://www.w3.org/TR/owl-ref/

[12] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza:
data management infrastructure for semantic web applications. In WWW
’03: Proceedings of the 12th international conference on World Wide Web,
pages 556–567, New York, NY, USA, 2003. ACM Press.

[13] Alon Y. Levy and Marie-Christine Rousset. Combining horn rules and
description logics in CARIN. Artif. Intell., 104(1-2):165–209, 1998.

[14] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language
for RDF. W3C Working Draft, 2007. http://www.w3.org/TR/
rdf-sparql-query/.

[15] Edward Sciore, Michael Siegel, and Arnon Rosenthal. Using semantic val-
ues to facilitate interoperability among heterogeneous information systems.
ACM Trans. Database Syst., 19(2):254–290, 1994.

[16] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of Web
Semantics, 2006. (to appear).

[17] Heiner Stuckenschmidt. Similarity-based query caching. In Henning Chris-
tiansen, Mohand-Said Hacid, Troels Andreasen, and Henrik Legind Larsen,
editors, FQAS, volume 3055 of Lecture Notes in Computer Science, pages
295–306. Springer, 2004.

[18] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-
mann, and S. Hübner. Ontology-based integration of information — a
survey of existing approaches. In H. Stuckenschmidt, editor, IJCAI–01
Workshop: Ontologies and Information Sharing, pages 108–117, 2001.

19

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Running example
	Structure of the paper

	Motivations
	OWL semantics and inferences
	Formalizing the ODBC model
	From the ODBC model to OWL
	Cross: an implementation
	Differences with the theoretical model
	Dealing with semantic values
	Use cases

	Conclusion and perspectives

