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New Mass-Spring System Integrating Elasticity Parameters
in 2D

Abstract Besides the finite element method, the mass-
spring discrete modeling is widely used in computer gra-
phics. This discrete model allows to perform very eas-
ily interactive deformations and to handle quite complex
interactions with only a few equations. Thus, it is per-
fectly adapted to generate visually correct animations.
However, a drawback of this simple formulation is the
relative difficulty to control efficiently physically realis-
tic behaviors. Indeed, none of the existing models has
succeeded to deal satisfyingly with this. Moreover, we
demonstrate that the mostly cited technique in the liter-
ature, proposed by Van Gelder, is far to be exact in most
real cases and its interest is limited to some specific non
realistic animations. Here, we propose a new general 2D
formulation that reconstructs the geometrical model as
an assembly of elementary ”bricks”. Each brick (or el-
ement) is then transformed into a mass-spring system,
in which edges are springs connecting masses placed on
the element vertices. The key point of our approach is
the determination of the stiffness constant of each spring
to reproduce the correct mechanical properties (Young’s
modulus, Poisson’s ratio and shear modulus) of the re-
constructed object. We validate our methodology with
the help of some numerical experimentation of mechan-
ics, like stretching, shearing and loading and then we
evaluate the accuracy limits of our approach.
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1 Introduction

In order to simulate accurately deformations occurring
in a volume, models based on continuous media mechan-
ics are used with finite elements resolution methods. The
models simulate accurately the mechanical behavior, but
require a rigorous description of the boundary condi-
tions, which is hardly compatible with any unpredictable
interactions. Moreover, the dimensions of the applied
strains and stresses must be well defined to choose either
a small - with Cauchy’s description - or a large deforma-
tion context - with St Venant Kirchoff’s description. In-
deed, the two contexts are accurate only on their domain
of deformation.

In the literature, discrete models (like mass-spring
systems) coming from computer-graphics animation are
generally proposed to deal with the real time applica-
tions and to allow unpredictable interactions and large or
small deformations. They are used in virtual reality envi-
ronments where many unpredicted collisions with small
or large deformations may occur. Medical or surgery sim-
ulators present another example of their possible appli-
cations. Nevertheless these models generally fail to rep-
resent accurately the behavior of real objects.

In this paper, we propose a new method that gathers
the advantages of both approaches. Section 2 presents
some previous work on mass-spring systems and partic-
ularly their parameterization. Section 3 describes Van
Gelder’s model, which incorporates spring parameters
calculated from the elasticity parameters. We prove that
this model cannot simulate correctly 2D deformations
and in section 4, we propose an alternative model. Sec-
tion 5 presents an evaluation through numerical exper-
iments. Then, some results of the extension of our ap-
proach to 3D, are given. Finally, concluding remarks and
perspectives are provided in section 6.
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2 Related Work

Mass-spring systems have largely been used in the ani-
mation context because of their simple implementation
and also because they can be applied to a large panel
of deformations. They consist in describing a surface or
a volume with a mesh in which the global mass is uni-
formly distributed over the mesh nodes. The elasticity
is represented by springs at every edge. Newtons laws
govern the dynamics of the model.

Mass-spring system have been used to model tex-
tiles [12,14,27], long animals such as snakes [18], or soft
organic tissues, such as muscles, face or abdomen, with
sometimes the possibility to simulate tissue cut [1,7,16,
17,20,21,26]. Moreover, these systems have been used to
describe a wide range of different elastic behaviors such
as anisotropy [4], heterogeneity [28], non linearity [5] and
also incompressibility [24,25].

An important problem of these models is to choose an
appropriate meshing that describes well the object and
that does not contain any privileged direction for the
strains propagation. Then, the springs elasticity must
be rigorously defined to achieve the desired behavior.
Despite this requirement, springs stiffness constants are
generally empirically set [19].

Solutions based on simulated annealing algorithms or
genetic algorithms [2,3,10,13] give access to spring stiff-
ness constants. Usually they consist in applying random
values to different springs constants and in comparing
the obtained model with some mechanical experiments
in which results are either well known analytically or
can be obtained by finite element methods. The stiff-
ness constant of the springs that induce the greatest er-
ror is corrected to minimize the discrepancies. However,
the efficiency of this process depends on the number of
springs and is based on numerous mechanical tests lead-
ing to quite expensive computation time. Moreover, the
process should be repeated after any mesh alteration.

Instead of a try-and-error process, a formal solution
to parameterize the springs should save computer re-
sources. In this context, two approaches were explored.
The Mass-Tensor approach [8,23] aims at simplifying fi-
nite element method theory by a discretization of the
constitutive equations on each element. But, despite its
interest, this approach requires pre-computations and
the storage of an extensive amount of information for
each mesh component (vertex, edge, face, element).

The second approach proposed by Van Gelder [29],
referenced in [4,6,9,15,21,22,30], introduces mechanical
parameters (Young’s modulus and Poisson’s ratio) in a
simple mass-spring system. This approach combines the
advantages of an accurate mechanical parameterization
with a hyper-elastic model, enabling either small or large
deformations. This model will be studied in the next sec-
tion.

3 Van Gelder Model

This section is concerned with the mechanical descrip-
tion of 2D system. In 1998, Van Gelder [29] proposed a
new formulation for triangular meshes, allowing to cal-
culate spring stiffness constant according to elastic pa-
rameters of the object to simulate. Thus, in this model,
the stiffness constant of a spring, with a rest length c,
representing the common edge of two neighboring trian-
gles of the mesh (T1 and T2) of surfaces |Ti| and with
edges ai, bi and c, i ∈ {1, 2}, is given by:

kc =
n∑

i=1

E

1 + ν

|Ti|
c2

+
E ν

1− ν2

a2
i + b2

i − c2

8 |Ti|
, (1)

with ν the Poisson’s ratio and E the 2D Young’s modulus
of the simulated material (see Fig. 1).

Fig. 1 Annotations used in the Van Gelder model.

Van Gelder’s published experimentations are restric-
ted to ν = 0 to avoid negative value of kc. To cope with
the reality, we used Van Gelder’s approach to simulate
materials with ν ≥ 0. Firstly, we simulated the well-
known traction test using a bar of dimensions l0 × h0.
For the sake of simplicity, experimentations were carried
out on a square object (l0 = h0) meshed by four symmet-
rical Van Gelder (VG) triangles (see Fig. 2). The input
Young’s modulus is noted EV G and input Poisson’s ra-
tio νV G. The spring stiffness constants were calculated
according to equation (1).

F

F

0

η

h
0

l
δ δ

Fig. 2 The bar of dimension l0 × h0 is elongated by a force
F, generating a stretch η and a compression of range 2δ at
equilibrium.

Note that due to symmetry, we can distinguish only
two kinds of spring stiffness constants: (i) ke for the edges
of the bar, (ii) kd for its semi-diagonals. At one end, the
bar is elongated by a force F, generating a stretch η
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and a thinning 2δ (Fig. 2). The other end is fixed in the
elongation direction but let free in the lateral direction.
With such boundary conditions, the elastic parameters
of the bar are defined by [11]:

ν =
2δ/l0
η/h0

, E =
F/l0
η/h0

. (2)

To be consistent, the Van Gelder’s model should give:

νV G = ν, EV G = E. (3)

Poisson’s ratio Young’s modulus (Pa.m)
νV G ν EV G E

0.0 0.5

0 0
1 0.75

100 75.00
1000 750.00

0.25 0.57

0 0
1 0.63

100 62.86
1000 628.57

0.5 0.66

0 0
1 0.56

100 55.56
1000 555.56

Table 1 Comparison tests between input Poisson’s ratio
νV G, input Young’s modulus EV G and theoretical values ν
and E.

However, the simulations results presented in Table 1
show that this is not the case. Even when Poisson’s ratio
is set to zero, we note an error of 25% on the Young’s
modulus, although the authors claimed that their model
was valid for this specific value, used for membranes.

To generalize this observation we proposed a demon-
stration in the framework of Lagrangian formulation.
Thereby we had to:

1. Define the potential energies of springs according to
their elongations (η and δ) and the potential energy
of the applied forces.

2. Define the Lagrangian as the sum of the different
static potential energies (note that kinetic energies
are null).

3. Deduce the values of the deformations (η and δ) by
the application of the Least Action Principle.

4. Calculate the actual value of the Young’s modulus
and the Poisson’s ratio of the bar.

For the sake of simplicity the calculations were re-
stricted to very small deformations to linear equations.
It reads:

E =
F/l0
η/h0

=
1
2

EV G(νV G − 3)
ν2

V G − νV G − 2
, ν =

2δ/l0
η/h0

=
1

2− νV G
.

Again the relations E = EV G and ν = νV G are not
satisfied. Moreover, we notice that the Young’s modulus
depends on the Poisson’s ratio, although the two charac-
teristics should be totally independent in linear, isotropic
and homogeneous materials [11]. Thereby, this model can
difficultly be used to control realistically the elastic pa-
rameters.

In the next section, we will present a new 2D model
that integrates more accuracy into the above-mentioned
elastic parameters of a mass-spring system.

4 Our 2D Model

In our mass-spring approach, each element of the mesh
can be characterized by a Young’s modulus and a Pois-
son’s ratio. At rest, the elements are identical rectangles
with dimensions l0×h0. To integrate the role of the Pois-
son’s ratio, we add two diagonal springs. Since we restrict
this study to homogeneous and isotropic materials, the
mechanical properties are the same for all the elements.
It also implies the same stiffness constant for both the
diagonal springs (kd) and an equal stiffness constant for
springs laying on two parallel edges (kl0 and kh0) (see
Fig. 3).

mm

m m

k d

k
h

0

h
0

l0

kl0

Fig. 3 2D element composition: rectangle composed of 4
masses m and 3 pairs of springs kl0 , kh0 and kd.

Our aim is to deduce spring stiffness constants from
mechanical characteristics. In addition to the Young’s
modulus and the Poisson’s ratio (eq. (2)), the model
should simulate correctly the reaction of the object to
shearing strains (correct shear modulus) (see Fig. 4).

Θ

F

F

Fig. 4 Experimentation to measure the 2D shear modulus: a
rectangular element is subject to 2 opposed forces, generating
a deviation θ.

In 2D, the shearing modulus is measured by applying
two opposed forces F resulting in shear stress F/l (with
l the length of the edge) on two opposite edges of a rect-
angular sample of the material. The material response
to shearing stress is a lateral deviation with an angle θ
(see Fig. 4). Shear modulus is defined as:

G =
tan (θ)× F

l
' θ × F

l
when θ → 0.

For linear elastic, isotropic and homogeneous materials,
this coefficient is linked to the Young’s modulus and the
Poisson’s ratio by E = 2G (1 + ν).
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To determinate the spring coefficients, we followed
the method employed to demonstrate the inconsistence
of Van Gelder ’s model, except that all the springs coef-
ficients are considered unknown:

1. For each experiment, we define the Lagrangian (sum
of potential energies).

2. We apply the principle of least action to get the New-
ton equations.

3. We apply the definition of the measured mechanical
characteristics to build a set of equations linking the
spring coefficients to the mechanical characteristics.

4. We solve the whole system.

Before solving the system and considering the shear
experiment, one notes that only the diagonal springs are
stressed. Thus, the Lagrangian equation defining this
characteristic depends only on kd. This means that the
diagonal springs are totally correlated to the shear mod-
ulus and that their stiffness constant can be calculated
independently of the two other coefficients with the fol-
lowing relation:

kd =
E

(
l20 + h2

0

)
4l0h0 (1 + ν)

.

Note that, for a square mesh element, we obtain:

kd =
E

2 (1 + ν)
= G.

Consequently, the number of unknowns are now 2: kl0

and kh0 . To solve the system, the number of unknowns
has to be equal to the number of equations (constraints).
Two equations result from each elongation experiment.
Thus we obtain four equations, if we include both lat-
eral and longitudinal directions. This over-constrained
system admits one solution for ν = 1/3. This is not sat-
isfactory because we wish to simulate the behavior of any
real material. One needs to add two degrees of freedom.

We note that the Poisson’s ratio defines the thinning
at a given elongation, i. e. it determines the forces or-
thogonal to the elongation direction. By modifying the
compression forces, we will be able to act on the Pois-
son’s ratio ν. Thus, we introduced for each direction a
new variable that defines this orthogonal force. The force
orthogonal to h0 (resp. l0) is noted F⊥h0(resp. F⊥l0) (see
Fig. 5). Note that this kind of correction is equivalent to
the reciprocity principle used in finite elements meth-
ods [11]. The addition of these 2 new variables leads to
a system of 4 equations with 4 unknowns.

The solution of the new system is:

ki =
E

(
j2 (3 ν + 2)− i2

)
4 l0 h0 (1 + ν)

, F⊥i =
j Fi (1− ν)

8i
,

with (i, j) ∈ {l0, h0}2 with i 6= j. In this definition, ki

must be positive implying the following constraint on the

angle noted α, between the diagonal and one of the edges
of the rectangle (see Fig. 5):

arctan
(
1/
√

3ν + 2
)

< α < arctan
(√

3ν + 2
)
.
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Fig. 5 (Left) Correction forces. (Right) The geometry of the
model is restricted according to the Poisson’s ratio: for ν =
0.3, the angle α must satisfy 30 < α < 60.

Because of symmetry, the 6 springs of each element
are only defined by three spring coefficients and the elon-
gation/compression correction forces.

To simulate the object, which is built with an assem-
bly of the elements defined above, we have first to com-
pute all the forces applied to each element. These forces
can be (i) internal, including forces due to springs and
correction forces, or (ii) external, like gravity or forces
due to the reaction to neighboring mesh elements. Note
that, to compute the correction forces applied on an edge,
we have to compute the elongation force, which is the
sum of all the external forces applied to the considering
edge projected on its orthogonal axis. Then, simulating
the deformation of a mesh element due to external con-
straints consists in:
1. Computing the forces applied to each element.
2. Calculating accelerations and velocities, according to

an integration scheme (explicit or implicit Euler, Ver-
let, etc.).

3. Displacing each node consequently.
The next section will describe numerical experimen-

tations to verify that the object has the same mechanical
characteristics as the elements composing it. Then, we
will evaluate the accuracy limits of our model.

5 Evaluation of the 2D Model

In the previous section, we proposed a model that pro-
vides the stiffness constants and the amplitude of the
thinning forces. This derivation was obtained in the lim-
its of very small deformations (Taylor expansion to first
order). We propose now to qualify the mechanical prop-
erties of the meshed systems even for important defor-
mations (up to 20%).
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Tensile stress limits
Performing elongation test allowed us to point out when
our model deviates from the expected behavior. In each
experiment, we applied quasi-static tensile stress steps
up to 20% of the beam length. Each experiment was
done for an imposed 2D Young’s modulus E, with val-
ues varying from 0.01 Pa.m to 1 Pa.m, and an imposed
Poisson’s ratio ν, varying from 0.1 to 0.5. These tests
have been realized on rectangular mesh elements with
different shape ratios. In each case, the mesh angle re-
striction, as defined in Fig. 5, has been respected. The
simulated output quantities are compared to the input
parameters.

First, let consider the case of a square element. We
observed that Young’s modulus (see Fig. 6) and Poisson’s
ratio (see Fig. 7 and 8) of our model tend to drift when
the deformation increases. Nevertheless, these values are
really satisfying. As illustrated in Fig. 6, error on Young’s
modulus exceeds 5% only for deformations higher than
11%.

Fig. 6 2D Young’s modulus errors for a square mesh element
in quasi-static tensile stress.

Fig. 7 Poisson’s ratio errors (absolute value) for a square
element in tensile stress.

Besides, we notice that this error increases conversely
with the imposed Poisson’s ratio: for a 10% deformation,
the error on Young’s modulus is 3.5% for ν = 0.3, 3.1%

for ν = 0.4, and 2.8% for ν = 0.5. For the Poisson’s ratio,
the error does not exceed 5% for ν ∈ [0.3; 0.5] and a de-
formation lower than 20% (see Fig. 8). In addition, if we
repeat these experiments with different Young’s moduli,
we find exactly identical curves whatever the imposed
value of E is. This is not surprising since the spring stiff-
ness constants and the thinning forces are proportional
to the input parameter E.

Fig. 8 Magnification for ν from 0.3 to 0.5.

We note beside that the profile of the ν error changes
at ν = 0.3. This is due to the fact that in this case, there
is no need for any corrective Lagrangian force. Indeed,
thinning is overestimated for ν < 0.3 and underestimated
for ν > 0.3.

If one reiterates these experiments for rectangular
elements defined such that the stiffness coefficients are
positive (see Fig. 5), we note that the Young’s modu-
lus error increases with the angle α between the edge
and the diagonal. In other words, when stretching along
the smallest side of a rectangle, the error is very small.
On the other hand, by reproducing the tensile test, on
the largest side, the error will be larger. However, in the
worst cases, errors are lower than 5% for ν ∈ [0.3; 0.5]
and deformations lower than 10%.

The same observations can be derived for Poisson’s
ratio for which the error is lower than 5% in the same
conditions.

One of the problems linked to deformations larger
than 10% is the variation of the angle α which can re-
sult in negative stiffness values (see Fig 5). Therefore, to
achieve deformation greater than 10% with better pre-
cision, square elements possessing an initial value of 45
degrees for α, give a more important safety margin to ob-
tain positive stiffness constants. To end we verified that
the error is the same whatever the number of elements
that compose the object is.

Limits in shearing
Now, we replace the tensile stress by a shear stress (as
illustrated in Fig. 4), and measure the errors for different
shear angles. Figure 9 presents the results for a square
mesh element.
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Fig. 9 Measured error on shearing in a square according to
angle and Poisson’s ratio.

We can remark that the relative error on G does not
depend on E, as expected. It increases with the imposed
ν but remains smaller than 5% for a shearing angle infe-
rior to 9◦. The worst case is for ν = 0.5.

The extension of the simulations to rectangular ele-
ment gives the same trends. When angle to the diagonal
is α = 30◦, the error is inferior to 0.1% for an 8◦ shearing.
However, if we apply the shearing in the other direction
with α = 60◦, the error attains 5%.

Finally, it remains to validate the shearing on a com-
position of mesh elements. For this, we built a 100× 300
mm beam by assembling elements characterized by E =
1 Pa.m and ν = 0.3. Then we stressed the assembly by
applying a force of 2000 N.

To evaluate the behavior of our model, we used as ref-
erence a linear elastic Finite Element Model (FEM). The
results of our simulations are superimposed to the FEM
reference (see Fig. 10). Within the theoretical framework
of our model, i. e. small deformations, the agreement is
very satisfactory.

Fig. 10 Shearing experience: superimposition of the results
of our wired model with the color gradation FEM reference
solution: (Left) 1×3 elements composition; (Right) 2×6 ele-
ments composition.

Limits in deflection
The deflection experience (construction or structural el-
ement bending under a load) is recommended to validate
mechanical models. It constitutes in particular a relevant
test to evaluate (a) the correct mass repartition, and (b)
the good behavior in case of large deformations (because
of large rotation displacement, especially close to the fix-
ation area).

This test consists in observing the gravity-induced
deformation of a beam anchored at one end to a sup-
port. At equilibrium, the top of the beam is under ten-
sion while the bottom is under compression, leaving the
middle relatively stress-free with shear stress above the
support. The length of the zero stress line will remain
unchanged (see Fig. 11).

Fig. 11 Cantilever submitted to gravity, expression of the
neutral axis deviation.

If the Poisson’s ratio is null, the deviation of the neu-
tral axis is given by (in 3D):

y (x) =
ρg

24 E3I

(
6 L2x2 − 4 L x3 + x4

)
, (4)

for the rectangular beam of inertia moment I = TH3/12,
with linear density ρ = M/L, and the 3D Young’s mod-
ulus E3 = E/T .

In 2D, we notice that results depend on the mesh
resolution (as for any other numerical methods), however
the fiber axis profile is similar to the equation (4).

Fig. 12 shows some results for a cantilever beam of
dimensions 300× 100 mm, with Young’s modulus equal
to 1 Pa.m, Poisson’s ratio to 0.3 and total mass to 0.5
Kg.

(a) 3×1 sampling (b) 6×2 sampling

(c) 12×4 sampling (d) 24×8 sampling
Fig. 12 Deflection experiment: the reference FEM solution
(in color gradation) with superimposition of various simula-
tions performed for different mesh resolutions).
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Experiment on non symmetric object
Now, we test our model on an object in which the con-
straints are not applied along a symmetrical axis. Fig. 13
presents this object fixed at its base. We apply a constant
force to the edges that are orthogonal to the base. Fig. 13
shows our results superimposed to the FEM solution.

(a) Experiment
description

(b) 2×2 sampling (c) 19×19 sam-
pling

Fig. 13 Experiment on a non symmetric object: superim-
position of results obtained with FEM method (in color gra-
dation) with our results performed for different mesh resolu-
tions.

Table 2 resumes mean errors and standard deviation
between the FEM gold standard and various displace-
ments. These results are obtained at different meshing
resolution of the above model. It is worth noticing that
our model behaves as expected: better mesh resolutions
lead to better results.

Resolution Mean Errors Standard Deviation
in displ. (mm) in displ. (mm)

1×1 236,63 62,47
2×2 83,78 14,08
3×3 47,54 6,35
4×4 29,17 3,52
5×5 23,57 2,39
9×9 17,41 1,04

19×19 14,36 0,39

Table 2 Comparison of displacement errors of our method
with the FEM reference.

Extension to 3D
In our recent works, the same 2D technique has been
used for the extension of our model to 3D. We obtained
very good preliminary results, comparable to 2D cases.
Our actual 3D model is based on cubic elementary meshes
including the inner diagonals. The stiffness parameters
are calculated with respect to the Young’s modulus, Pois-
son’s ratio, shearing modulus and also compressibility
modulus. For deformations less than 15%, the results are
quite conform to the reality, with an error less than 5%
for each mechanical characteristics. Several qualitative
verification of our results have been carried out by their
comparison with FEM reference solution (see Fig. 14).

(a) (b)

(c)

Fig. 14 Superimposition of results obtained with FEM me-
thod (in color) with our model (in wire mesh) of (a) a shearing
experiment, (b) a deflection experiment, (c) a test combining
shearing and elongation on an object with no symmetrical
shape.

6 Conclusion and Future Work

Looking for a method to obtain a fast and accurate model
that combines large and small deformations, we studied
the mass-spring system model developed by Van Gelder.
Even if this approach, allowing to calculate spring stiff-
ness constants according to mechanical parameters, see-
med very attractive, we proved that this model, devel-
oped for small deformations and applied to linear elas-
tic, isotropic and homogeneous material was not totally
correct. Then, we proposed a new model within a La-
grangian framework.

The object is first meshed with rectangular mass-
spring mesh elements, with two diagonals. We demon-
strated that for this kind of mesh elements, a simple
mass-spring system couldnt accurately simulate the ma-
terial behavior with any Poisson’s ratio. Consequently,
we proposed to add correction forces orthogonal to the
elongation forces in order to compensate the error on
Poisson’s ratio. By construction, our model is well char-
acterized by the Young’s modulus and Poisson’s ratio for
small deformations. Limits of our model have been given
by comparing our results with those obtained by a finite
element method as reference for preciseness.

We exhibited that our model can support larger de-
formations with square mesh elements. Indeed for any
value of Young’s modulus and Poisson’s ratio, it allows
to simulate within acceptable error margins stretching
up to 10% and shearing < 9◦.

Besides, we verified the correct behavior of an assem-
bly of mesh elements. This shows that contrary to FEMs,
we can expect to use a mass-spring system to simulate
either large or small deformations.
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We extended our model to 3D by using cubic mesh
elements. The obtained results have been very successful.

In the future, we are looking to apply the same tech-
nique to other geometries, for example to triangle or any
quadrangle in 2D, or parallelepiped in 3D, to increase
the possibilities and to offer more tools for simulating
complex shapes.

Moreover, it may be interesting to investigate how
and when to update the springs coefficients and correc-
tion forces to improve the results in case of large deforma-
tions. Another track to reduce errors is to adapt locally
the resolution of the mesh elements. For example, we can
modify the resolution in the vicinity of highly-deformed
zones, reducing large rotations of elements undergoing
heavy load.
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