
Continuations and behavior components engineering in
multi-agent systems

Denis Jouvin

LIRIS, université Claude Bernard Lyon 1
denis.jouvin@liris.cnrs.fr

Abstract. Continuations are a well established programming concept, allowing
to explicitly capture and resume the current program state. They are present in
several functional programming languages (such as Scheme), in concurrent
models such as Hewitt actor model or process calculi, and more recently in dy-
namic programming languages (such as Ruby, Smalltalk, Python, and even
Javascript or Java). They have been applied to automaton programming, coop-
erative threads, compilation techniques, and have lastly raised interest in web
application programming. This paper shows how this concept happens to be es-
pecially useful and elegant to program agent behaviors (or behavioral compo-
nents), while increasing code readability and ease of writing. The proposed ap-
proach especially facilitates modular interaction protocol implementation, one
of the main difficulties in conversational agents engineering.

Keywords. Continuations; conversational multi-agent systems; agent oriented
software engineering; behavioral component; continuation-based automatons

1. Introduction

Multi-agent systems (MAS for short) are a programming paradigm especially well
suited to model complex systems. In MAS, agents usually interact by means of an
elaborate, normalized interaction model. The interaction model used will condition
numerous prized MAS properties, such as agent autonomy, interoperability, robust-
ness, and self-organization, as mentioned in Luck et al. [7].

However, these elaborate interaction models are also a significant source of diffi-
culties in conversational MAS implementations, as shown in former research [6]. To
address these difficulties, various multi-agent platforms propose componential ap-
proaches. Agents are then provided with reusable behavioral components, that define
partially or completely their behavior with respect to a given conversation type.

In this paper we show how a well established programming concept, the continua-
tions, can significantly facilitate the writing of such behavioral components, while
bringing some flexibility and better performance in their implementation.

Section 2 introduces continuations, their applications and variants. Section 3 identi-
fies implementation issues in conversational MAS, and the classical solutions pro-
posed by multi-agent platforms. We present our continuation based approach in sec-
tion 4, followed in section 5 by the results of an example test, and then conclude on its
benefits, limitations, and integration into existing MAS platforms.

2 Denis Jouvin

2. Introduction to continuations

Continuation are a well established programming concept, described for example by
Strachey et al. [13] in the early seventies, which were originally present in functional
programming languages such as Scheme or ML, in the actor model of Hewitt [4], and
in various process calculi.

The principle consists in capturing the currently executing program state into a
variable or artifact that can be manipulated programmatically, called the continuation,
in order to be able to resume again the program from this state, by activating the con-
tinuation. More precisely, we designate by execution context the program state, in
reference to the execution context of a thread or process, and by continuation the
object or artifact allowing to activate (i.e. switch to) this execution context.

Some informal definitions of continuations are found in the literature, such as “the
rest of the program”, or “goto with parameters”, however none of them are really
satisfactory: the first implies a linear execution of the program, that should be unwind
beforehand, and the second does not express that local variables and call stack are
captured in a continuation.

Although there exist variants and restrictions of continuations, such as coroutines
and generators (see section 2.2); continuations remain the most general form, as
shown by Haynes et al. in [5] and Allison in [1].

Continuations are somehow related to threads, since they capture all, or part of, the
stack, including local variables, in addition to the “program counter”; however their
activation is done programmatically rather than by an operating system scheduler.

2.1. Implementations and examples

For illustrative purpose, we will borrow examples from various languages that sup-
port continuations natively, such as Scheme or Ruby, as well as a restricted form of
continuation, to start with: Python’s generators.

def simple_generator(max):
 i = 1
 yield "let's count.."
 while i < max:
 yield "Odd %d" % i
 i = i+1
 yield "Even %d" % i
 i = i+1
 yield "the end"

for s in simple_generator(4):
 print s

let's count..
Odd 1
Even 2
Odd 3
Even 4
The end

Fig. 1. Simple Python generator example: on the left the generator definition; on the right the
code to display the successive values returned by the generator, and the console output in italic.

As figure 1 suggests, a generator behaves the same way as an iterator, written how-
ever as a function that returns successive values, using the yield keyword, while
memorizing its current execution state between each call (see Mertz [8]).

Continuations and behavior components engineering in multi-agent systems 3

The advantage of generators is that the programmer does not have to explicitly man-
age the iterator state, using object attributes. Indeed, generators make it possible to
use the flow control structures of the language (if, loops, etc.) to manage transitions
between the states of the underlying automaton, as shown by Mertz in [9].

In object based languages, capturing the current execution context has the side ef-
fect of interrupting the control flow, to take it back to the caller of the “continuable”
function or object, as does yield in a generator. In a sense, the continuation is relative
to this callable object. In functional language however, and in Ruby, the continuation
is “global” to the program, and is created implicitly by a primitive that calls a target
function or lambda expression, and pass it the continuation as parameter.

callcc {|cont|
 for i in 0..4
 print "\n#{i}: "
 for j in i*5...(i+1)*5
 cont.call() if j == 17
 printf "%3d", j
 end
 end
}
print "\n"

0: 0 1 2 3 4
1: 5 6 7 8 9
2: 10 11 12 13 14
3: 15 16

Fig. 2. Continuation example in Ruby, with the console output on the right (in italic)

The callcc primitive (call with current continuation), in figure 2, calls the anony-
mous closure defined by the next bloc between brackets, and passes the continuation
as the parameter cont. The continuation activation, cont.call(), results in the pre-
mature exit of the two for loops, by taking the control flow just after this bloc.

Note that this program could be translated in Scheme very easily, by using the
Scheme primitive call-with-current-continuation. Other programming lan-
guages support continuation natively in their most complete implementations: we can
mention for example Smalltalk, Haskel, and Perl 6.

More recently, continuations have been added as libraries or extensions to common
object based imperative language like Javascript or Java. Since this type of extension
is related to flow control and low level stack manipulation, it requires either a modifi-
cation of the interpreter, class instrumentation and manipulation techniques, or source
code transformations, as shown by Pettyjohn et al. in [11]. Good examples are:
• Flowscript1, a modified version of the Rhino Javascript interpreter implementing

continuations, part of the apache Cocoon framework since version 2;
• The RIFE web application framework2, which allows limited continuations;
• And the Javaflow framework3, which implements continuations in Java, using a

dynamic class instrumentation technique, which we will use hereafter.

1 http://cocoon.apache.org/2.1/
2 http://rifers.org/
3 http://jakarta.apache.org/commons/sandbox/javaflow/

4 Denis Jouvin

public abstract class Generator<T>
 implements Runnable, Iterator<T>, Iterable<T> {

 private transient T result;
 private Continuation current = Continuation.startWith(this);

 public T next() {
 if(!hasNext())
 throw new NoSuchElementException();
 T retval = result;
 current = Continuation.continueWith(current);
 return retval;
 }

 protected void yield(T param) {
 result = param;
 Continuation.suspend();
 }

 public boolean hasNext() { return current != null; }
 public Iterator<T> iterator() { return this; }
 public void remove() { throw new UnsupportedOperationException(); }
}

Fig. 3. Basic implementation of Python style generators in Java, using Javaflow continuations

Figure 3 gives a simple implementation of Python style generator in Java, using
Javaflow. On the contrary to Ruby or Scheme, the continuation represents here the
execution state inside the Runnable object passed to the continuation capture routine,
and not the execution state in the calling function. In this example, it is necessary to
temporarily store the return values of the generator in the result attribute, since
Javaflow does not handle continuation parameters and return values like Ruby.

public class SimpleGenerator
 extends Generator<String> {

 private final int max;

 public SimpleGenerator(int max) {
 this.max = max;
 }

 public static void main(String... a) {
 for(String s:new SimpleGenerator(5))
 System.out.println(s);
 }

 public void run() {
 yield("let's count..");
 for(int i=1; i<max; i++)
 {
 yield("Odd " + i++);
 yield("Even "+ i);
 }
 yield("the end");
 }
}

Fig. 4. Simple generator example in Java, instrumented by Javaflow

Figure 4 takes back the example of figure 1, translated in Java, and using the gen-
erator class of figure 3. The console output is identical. To work properly, these
classes need to be instrumented by Javaflow at compile or class loading time.

Continuations and behavior components engineering in multi-agent systems 5

2.2. Variants and applications

The possibilities offered by continuations and closures are numerous: one can rewrite
existing or custom flow control structures, for example simulating a goto in Scheme.
However the most useful applications of continuation are:
• The implementation and composition of automatons (for example in syntactic

parsers and validators), that we will further develop in section 4.1;
• Coroutines and cooperative threads. Coroutines are functions that retain their exe-

cution state when calling another coroutine. On the contrary to generators, corouti-
nes never return after capturing its state, but explicitly call another coroutine that
will in turn be activated. Coroutines thus allow defining cooperative threads, with
explicit context switching. The main advantage is performance: cooperative
threads are lightweight and fast compared to real preemptive threads. This tech-
nique is not suited when preemption is necessary, but is well suited to non preemp-
tive concurrent models and event programming;

• Continuation based Web application programming, described by Tate et al. in [14],
which has recently focused a lot of attention. Historically introduced by the Web
application framework Seaside, this technique has been followed in other frame-
works like RIFE or Cocoon. The reason is simple: the interaction between a Web
server and a web browser usually takes the form of a stateful conversation, for
which it is necessary to store the state on the server. The routines controlling the
page flow can use continuations to store this state implicitly, relieving the pro-
grammer from this tedious and error prone task. Page flow is then described as a
simple instruction flow in a script. This principle being simple and elegant, it has
quickly been adopted by many Web application developers.

Remark. Such a behavior may be obtained using threads; however this is usually not
feasible in practice, since it would require one thread for each possible conversational
state during a session, which would result in too many threads, especially if the server
implements the web browser back button behavior.

3. Conversational agent engineering

We define here a conversational agent as an agent whose behavior requires memoriz-
ing the local context of the ongoing interactions, which we refer to as conversation.
This context may take various forms. In this work we focus on agents communicating
by asynchronous messages, organized into inter-related message sequences, the con-
versations, between several participants, in the context of a collective task.

3.1. Problem definition

Experience shows that, though bringing many useful properties to the system that they
compose, conversational agents are difficult to implement. In particular, we can iden-
tify the following difficulties related to conversation management:

6 Denis Jouvin

• Multi-party conversation parallelism. In a multi-party conversation, it is necessary
to combine several behaviors simultaneously, corresponding to the bilateral sub-
conversations with each participant separately, and possibly synchronize them;

• Internal parallelism. A bilateral conversation with a single participant can itself
comprise some form of parallelism: it may fork into several parallel or interlaced
branches of the conversation;

• Protocol error management. A great part of the complexity implied by conversa-
tion management comes from the asynchronous error management: protocol errors,
timeouts, etc. This aspect being transverse, it is difficult to modularize and reuse;

Remark. The programming languages used in MAS platform are not concurrent lan-
guages, and, thus, are not designed to handle elaborate parallel processing. Concurrent
languages, such as Erlang for example, could address some of these issues; however
they suffer from other limitations, and are unfortunately not popular enough to have
been chosen in existing MAS platforms.

It is interesting to observe that most MAS platforms propose componential ap-
proaches in order to promote reusing of behavioral components, which confirms the
importance of the difficulties identified above in MAS design and implementation.

The problem then becomes: how to define behavioral components in a modular
way, that is to say, decoupled and encapsulated in reusable components; and how to
combine and synchronize several behavioral components consistently in agents.

Considering for example FIPA interaction protocols, a FIPA compliant platform
will typically propose abstract behavioral components implementing partially these
protocols, and bound to the agent specific code using a platform specific composition
technique (callbacks, inheritance, or event model).

Behavior component libraries help the programmer to deal with delicate aspects of
conversation management, such as: timeouts, protocol error handling, following a
group of participants in parallel, etc. These libraries are well developed and largely
used in MAS platforms. Two strategies are possible to implement such components:
• Either a thread is assigned to each parallelizable branch of each behavioral compo-

nent. A waiting state is then implemented as a blocking method on this thread, and
the conversational state is defined by all the threads execution contexts. This op-
tion is not always feasible since, as we discussed it in the case of web applications,
it may involve too many threads: the number of available threads is limited by the
operating system, and too many threads may result in a performance loss due to an
excessive scheduling with respect to the actual processing;

• Or the conversational state of the behavioral component is stored explicitly. This
implies that the corresponding code be fragmented according to the transitions and
structure of the underlying automaton, so that it may be executed step by step, by
interrupting and resuming its execution at each state. Typically, distinct methods or
objects will represent the various transitions, themselves associated to objects rep-
resenting the states. This technique is the most widely used, because it gives more
control on the activation of the behavior components, and on the number of threads
allocated. The FIPA-OS platform, described by Poslad et al. in [12], uses a global
thread pool to activate the behavioral components of agents (called task in FIPA-
OS), whereas Jade, a MAS platform described by Bellifemine et al. [2], assigns by
default one thread per agent.

Continuations and behavior components engineering in multi-agent systems 7

3.2. Automaton behavioral components

In Jade, behavioral components are named behaviors, and are all inherited from the
abstract Behavior class. Figure 5 shows a simple 3 states behavior example, illustrat-
ing the explicit state management, and resulting code fragmentation, in the switch
statement. Although not obvious from first reading, this behavior is looping two times
on the three states before termination.

class my3StepBehaviour extends SimpleBehaviour {
 private final int FIRST = 1, SECOND = 2, THIRD = 3;
 private int state = FIRST, numberOfExecutions = 3;

 public void action() {
 switch (state) {
 case FIRST: {op1(); state = SECOND; break;}
 case SECOND:{op2(); state = THIRD; break;}
 case THIRD: {op3(); state = FIRST;
 numberOfExecutions--; break;}
 }
 }

 public boolean done(){
 return (!(numberOfExecutions>0));
 }

 private void op1(){ System.out.println("Step 1"); }
 private void op2(){ System.out.println("Step 2"); }
 private void op3(){ System.out.println("Step 3"); }
}

Fig. 5. Simple Jade behavior example: 3 states automaton, with the corresponding finite state
automaton diagram on the right.

In this example the SimpleBehavior class does not contribute much to the behavior;
however, other available behaviors, like ContractNetInitiator, or AchieveRE-
Initiator, define abstract implementations of common interaction protocols, bound
to the agent specific code by inheritance or callback. Some composite behaviors allow
various types of composition of children behavior, for example SequenceBehavior or
ParallelBehavior. Inter-thread synchronization is usually not necessary in Jade
since transitions are executed sequentially.

Comparable techniques can be found in other MAS platforms. Let us mention for
example the multi-plan automatons of the Bond platform, by Bölöni et al. [3]; the
finite state automatons of the Zeus platform, by Nwana et al. [10]; the FIPA-OS tasks,
by Poslad et al. [12]; or the automatons designed with SEdit in the MadKIT platform4.

The multi-plan automatons of Bond, in particular, handle the parallelism using a
simplified parallel sub-automatons composition model; whereas FIPA-OS tasks are
by default executed in parallel: they may launch other sub-tasks, but this requires
careful multithread synchronization.

4 http://www.madkit.org/

first

second

third

start

op3 final

[2 times]

op1

op2

op3

8 Denis Jouvin

4. Continuation-based approach

As we stated above, the need to manage parallelism and asynchrony without requiring
dedicated threads implicates that behavioral components be manipulated like automa-
tons, without blocking on threads. Besides, since existing MAS platforms comply
with this strategy, our approach should also comply with it to facilitate integration.

On the other hand, being able to write stateful behaviors as simple routines, lever-
aging native control flow structures of the hosting language, as with the first strategy
described in section 3.1, but without suffering from the usual inter-thread synchroni-
zation problems, would also make MAS programmers’ life easier.

With respect to these issues, continuations offer a particularly elegant solution that
combines the best of both worlds. Indeed, using continuations in MAS behavioral
components for conversation management allows to:
• Capture the conversation or conversation branch state implicitly in the continua-

tion, including call stack and local variables, so that the component may be used as
an automaton, without having to explicitly manipulate its state;

• Get rid of inter-thread synchronization problems, since this model is not preemp-
tive and transitions are executed sequentially.

4.1. Continuation-based automaton behavioral component

A continuation represents a program states, usually as an immutable object in object
based language, but is not itself an automaton: it requires an encapsulating automaton
object, similar to the generator implementation presented in section 2.1. Figure 6
shows a minimal automaton abstract base class, containing:
• a current attribute, storing a single current continuation for this automaton;
• the activate() method, the automaton step by step activation point, that updates

the current continuation with a new one, corresponding to the new captured state;
• a continuation capturing method, yield(), meant to be used in implementations of

the abstract run() method, or other methods called by run(), that interrupts the
normal control flow and jumps to the activate() method;

public abstract class Automaton implements Runnable {
 private Continuation current = Continuation.startSuspendedWith(this);

 protected void yield() { Continuation.suspend(); }

 public void activate() {
 if(current != null)
 current = Continuation.continueWith(current);
 }
}

Fig. 6. Simple continuation-based behavioral automaton abstract class, in Java, using Javaflow.
Each time activate() is executed, the automaton advances one step. Each step terminates
either by invoking yield(), or by the normal end of the run() method. In both cases this
gives back control to activate(), which updates the continuation and returns normally.

Continuations and behavior components engineering in multi-agent systems 9

In order to be usable in an actual agent implementation, however, these primitives are
not sufficient: a way to consume events, like messages or timeouts, in the run()
method, is necessary. In the case of a conversational agent platform, an agent is in
principle provided with a message queue. A behavior component message queue may
also be considered, associated to a message dispatch mechanism at the agent level.
Such dispatch will typically be based on message response or conversation identifica-
tion parameters, such as FIPA conversation-id message parameter.

4.2. Example and comparison

public class My3Step extends Automaton {
 public void run() {
 for(int i=0; i<3; i++) {
 System.out.println("Step 1"); yield();
 System.out.println("Step 2"); yield();
 System.out.println("Step 3"); yield();
 }
 }
}

Fig. 7. Continuation-based version of the 3 states automaton behavior of section 3.2, figure 5.

In comparison with the Jade component of figure 5, the version shown on figure 7 is
much easier to read: it does not contain any object attribute to store and manage state
information, nor does it require code fragmentation. The loop is materialized by a
normal java for statement, increasing readability and reducing error proneness.

4.3. Pseudo parallelism and synchronization primitives

In order to address the parallelism requirements mentioned in section 3.1, it is neces-
sary to introduce synchronization and pseudo-parallelism mechanisms in our automa-
ton abstract classes. We use the term “pseudo-parallelism” since transitions will in
fine always be executed sequentially. However, sub-automaton states corresponding
to parallel branch of the conversation need to be stored and updated separately.

The case of multi-bilateral conversations (i.e. conversations involving an initiator
and a group of participants), in particular, is quite common in protocols such negotia-
tions or auctions. This case requires interacting in parallel with n participants, possi-
bly synchronizing at key steps of the protocol, even if the various participants all play
the same role and are thus governed by the same rules in the protocol.

We introduce two primitives to handle this kind of parallelism:
• parallelize(), a primitive allowing to switch to parallel mode, duplicating the

current automaton in n sub-automatons, one per participant;
• and join(), the reverse primitive, usable only in parallel mode, that waits for all

sub-automatons to reach this point (note that this does not entail blocking on a
thread), before switching back to synchronous mode;

10 Denis Jouvin

5. Testing framework

In the context of this work we have realized a testing prototype and framework based
on Javaflow. Two abstract classes, BilateralRole and MultiBilateralRole (see
table 1) implement the primitives mentioned in section 4.1 and 4.3. 5

Table 1. Primitives provided by BilateralRole and MultiBilateralRole

Method signature Description and side effect
void activate() Automaton activation point
void yield() Continuation capture, interrupts control flow
Message receive()
Message receive(Message.Type... types)

Read the next event or message (possibly
typed). Calls yield() if no event is available

void parallelize() Switch to parallel mode, duplicate automaton
void join() Switch back to synchronous mode

5.1. Auction and handshake protocol example

public void run() {
 send("auction start", inform);
 bestOffer = min;
 do {
 send(bestOffer, cfp);
 nbAnswered = 0;
 parallelize();
 Message msg = receive(propose, inform, refuse);
 if(msg.getType() != propose)
 return;
 nbAnswered++;
 int offer = (Integer) msg.getContent();
 if(offer > bestOffer) {
 bestOffer = offer;
 winner = getRunningAgent();
 }
 join();
 for(Agent a:getInterlocutors())
 send(bestOffer, a == winner? accept: reject, a);
 } while(nbAnswered > 1);
}

Fig. 8. run() method of the behavior component EnglishAuctionInitiator.

In order to represent both forms of parallelism related to conversation management,
we have defined four behavioral components, corresponding respectively to: the ini-
tiator and participant roles of a simple multi-bilateral handshake protocol, consisting
in a linear sequence of inform message exchanges; and the initiator and participant
roles of an English auction protocol, comparable to FIPA-English-Auction.

5 By lack of space, the algorithm used to implement parallelize() and join() are not

detailed here. The corresponding Java code may be downloaded from the author’s web page.

Parallel section:
here the automaton is
duplicated in n sub-
automatons, managed by
n continuations, until all
of them reach join(),
which switches back to
synchronous mode

propose, inform, refuse, cfp,
accept and reject are values of the
enumerated type Message.Type

Continuations and behavior components engineering in multi-agent systems 11

In figure 8 the whole management of this auction protocol role is handled in a few
simple lines of code, which demonstrates the applicability and elegance of this ap-
proach. An equivalent behavior, implemented using classical explicit finite state
automaton, would require numerous states, conditions and switches, and would result
in a fragmented code, difficult to read and debug.

Note that the variables bestOffer, nbAnswered and winner are here attributes of
the EnglishAuctionInitiator class. These attributes are necessary here to commu-
nicate between sub-automatons in parallel mode, since Javaflow does not support
parameter passing (see the generator example in section 2.1).

The participant roles, quite symmetrical to the initiator roles, do not require of
course the use of parallelize() and join(), since they don’t comprise parallelism.

5.2. Performance

Fig. 9. Execution time, function of the number of participant agents. The upper curve corre-
sponds to the preemptive version, the lower curve the non preemptive version.

Similarly to cooperative thread with respect to preemptive threads, a non preemptive
activation of agents’ behavior components, using continuation, give better perform-
ances. To evaluate this gain, we have compared the execution time of two versions of
our prototype: a preemptive version with one thread per behavior component and per
agent, and a non preemptive one, using round-robin activation and continuations. In
this test the initiator and participant agents combine the handshake and auction behav-
iors. The results exhibit an average gain of 50% using Javaflow continuations.

6. Conclusion and future works

In this paper we have shown how to use continuations to facilitate conversational
agents’ behavioral components engineering. This approach allows an elegant, concise
and intuitive coding of agents behavior dynamics, in the form of automatons written
as “resumable” functions similar to coroutines or generators, while relieving the pro-

0 500 1000 1500 2000 2500 3000

Number of participant agents

preemptive
non preemptive

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

14

12 Denis Jouvin

grammer from the explicit management of the automaton state and transitions. This
approach also allows benefiting from the host language native flow control structure.

Its integration into existing platforms only depends on the support of continuations
in the host language, and is quite straightforward. It gives to the designer a great flexi-
bility in the mode of activation of agents and their behavior components.

In the general case, it allows to get rid of multithreading synchronization problems,
but can still be combined with multithreading if necessary.

The main perspective to this work is the integration to Jade platform, by defining a
ContinuationBehavior. If the adoption of continuations in the MAS community
follows its adoption in the Web application programming community, they will have
represent a promising new technology for agents, and become a common practice.

References

1. Allison, L.: Continuations Implement Generators and Streams. In The Computer Journal,
volume 33(5), 1990. Oxford Journals, 460-465

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant agent framework. In
proceedings of the International Conference and Exhibition on the Practical Application of
Intelligent Agents and Multi-Agent Technology (PAAM 1999), London. 97-108.

3. Bölöni, L., Marinescu, D.: A Multi-Plane State Machine Agent Model. Acts of the Interna-
tional Conference on Autonomous Agents (AA 2000). Barcelona, Spain. ACM.

4. Hewitt, C.: Viewing control structures as patterns of passing messages. In Artificial Intelli-
gence, volume 8(3), 1977. Elsevier. 323-364.

5. Haynes, C.T., Friedman, D. P., Wand, M.: Obtaining coroutines with continuations. In
Computer Languages, volume 11(3), 1986. 143-153.

6. Jouvin, D., Hassas, S.: Role Delegation as Multi-Agent Oriented Dynamic Composition. In
proceedings of the Intl. Workshop on Agent Technology and Software Engineering (AgeS
2002, collocated with NOD 2002), Erfurt, Germany.

7. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Comput-
ing, A Roadmap for Agent Based Computing. Agentlink II report, 2003.

8. Mertz, D., Charming Python: Iterators and simple generators. IBM technical report, 2001.
http://www-128.ibm.com/developerworks/library/l-pycon.html

9. Mertz, D., Charming Python: Generator-based state machines. IBM technical report, 2002
http://www-128.ibm.com/developerworks/library/l-pygen.html

10. Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: A Toolkit and Approach for Building
Distributed Multi-Agent Systems. In proceedings of the International Conference on
Autonomous Agents (AA 1999), Seattle, USA. ACM press.

11. Pettyjohn, G, Clements, J., Marshall, J., Krishnamurthi, S., Felleisen, M.: Continuations
from Generalized Stack Inspection. In proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP 2005), Tallinn, Estonia. ACM press.

12. Poslad, S., Buckle, P., Hadingham, R., The FIPA-OS Agent Platform Open Source for Open
Standards. In proc. of International Conference and Exhibition on the Practical Application
of Intelligent Agents and Multi-Agent Technology (PAAM 2000), Manchester, UK.

13. Strachey, C., Wadsworth, C.: Continuations: A mathematical semantics for handling full
jumps. In Programming Research Group Technical Monograph PRG-11, Oxford, 1974. Re-
edited in Higher-Order and Symbolic Computation, volume 13(1/2), 2000. 135-152.

14. Tate, B.: Crossing borders: Continuations, Web development, and Java programming, A
stateful model for programmers, a stateless experience for users. IBM technical report, 2006
http://www-128.ibm.com/developerworks/java/library/j-cb03216/

	1. Introduction
	2. Introduction to continuations
	2.1. Implementations and examples
	2.2. Variants and applications
	Remark. Such a behavior may be obtained using threads; however this is usually not feasible in practice, since it would require one thread for each possible conversational state during a session, which would result in too many threads, especially if the server implements the web browser back button behavior.

	3. Conversational agent engineering
	3.1. Problem definition
	Remark. The programming languages used in MAS platform are not concurrent languages, and, thus, are not designed to handle elaborate parallel processing. Concurrent languages, such as Erlang for example, could address some of these issues; however they suffer from other limitations, and are unfortunately not popular enough to have been chosen in existing MAS platforms.

	3.2. Automaton behavioral components

	4. Continuation-based approach
	4.1. Continuation-based automaton behavioral component
	4.2. Example and comparison
	4.3. Pseudo parallelism and synchronization primitives

	5. Testing framework
	5.1. Auction and handshake protocol example
	5.2. Performance

	6. Conclusion and future works
	References

