
A Framework for Web Services-Based Query
Rewriting and Resolution in Loosely Coupled

Information Systems

Mahmoud Barhamgi, Pierre-Antoine Champin, and Djamal Benslimane

LIRIS Laboratory, Claude Bernard Lyon1 University
69622 Villeurbanne, France

{mahmoud.barhamgi,pierre-antoine.champin,djamal.benslimane

1 Introduction

In today’s loosely-coupled e-collaboration environments (e.g. eHealth, eGov...etc) the
access to an increasing number of data sources is made through Web services. Indeed,
this is motivated by the need to access and retrieve data items held by autonomous
heterogeneous parties involved in the same collaboration scenario irrespectively of
the employed proprietary systems. We call this kind of services as “Data-Providing
Services” as opposed to “Functionality-Providing services” since their invocation only
returns a piece of information without causing any change in the environment (e.g.
charging a credit card, ...etc). Data-Providing services are very common in eHealth
collaboration environments, in the same health site, for example, they are used to
encapsulate and integrate numerous proprietary data sources that otherwise cannot be
integrated, e.g. sensors, equipments equipped with proprietary interfaces...etc. Across
different sites, they are used to share patients records, or as a means to transfer
outsourced data. Another motivation behind the use of DP services in eHealth is the
necessity to constrain the way data is accessed, e.g as a result of privacy constraints
[10, 14] or maybe to enforce some access rights. Readers are referred to [5] for further
information on the use of services in eHealth.

These e-collaboration environments can be modeled as peer-to-peer environments
where every peer holds a collection of DP services, puts them at the disposal of its
partners and, in return, they provide it with their DP services. The collaboration
implies that some of the peer’s data items are outsourced or stored at its partners
and that it needs to make use of their DP services to retrieve these items when needed.

Obviously these services must be taken advantage of when answering queries, e.g. a
query issued at peer1 (see figure 1) asking some information about a patient admitted
at P1, both of P1’s local DP services and DP services offered by its partners (i.e. those
peers involved in the patient’s current treatment scenario, e.g. external laboratories,
hospitals...etc) must be exploited in the query answering process.

So far, Peer Data Management and Integration Systems [8, 3, 15, 11, 1, 16] were
only concerned with handling traditional data sources (as opposed to services). In
these systems, peers are supposed to directly hold and expose their data, either in a
syntactic form (XML), or recently in some semantic forms (OWL instances plus some
inferencing capabilities), then when they are interrogated, they apply queries squarely

2 Mahmoud Barhamgi, Pierre-Antoine Champin, and Djamal Benslimane

Fig. 1. Data sharing via DP Web services in a loosely coupled environment

to data instances in order to materialize answers. However, none of these systems pay
attention to the consequences raised by the adoption of DP services for data sharing.
With this form of data accessibility, it becomes impossible to materialize data in any
forms or structures before applying, in a subsequent step, queries to it, because data
portions are behind services probably offered by different bodies. The query resolu-
tion here necessitates to decompose the received query in terms of available services,
compose these services, and to coordinate their execution before getting the desired
results.

1.1 Our approach

In this paper we suggest a framework to provide better support for data sharing and
integration in eSystems that make an extensive use of Data-Providing services in their
routine collaboration scenarios due to previously seen reasons. In this framework indi-
vidual peers adopt the three-layer stack presented in figure 2. The lowest layer or the
Data-Providing Services layer holds (or makes reference to) services that contribute
data items pertaining to the peer in question. These services are either local or re-
mote ones (offered by the peer’s partners), and they can be picked up based on the
SOA[13] model. In the second layer or the views layer we model previously selected
services (in the first layer) as RDF parameterized views over the peer’s local ontology.
These views serve us for query resolution in the next layer. In the third layer or the
Data-Providing services composition and execution layer, we make use of previously
defined views to decide what are the services whose composition can satisfy a received
query (either a local query or a query received from the peer’s acquaintances).

Note that this is different from the traditional Web services composition [12] since
the latter is “task-driven” as composed services collaborate to achieve a more complex
task (or functionality), e.g. a full-package journey reservation service out of plane,
hotel and car booking services. In our work, the composition is “data-driven” where
composed services collaborate to achieve as much complete answer as possible.

The main contributions of this paper are: 1). Supplementing previously seen P2P
systems with the capability to handle Service-Accessed resources by proposing a new
approach for answering queries using DP services, this includes modeling services

3

Fig. 2. The Stack adopted by our peers for query resolution in eSystems adopting Data-
Providing services

Fig. 3. An example of OWL ontology modeling the peer’s local data items and the items
provided by its partners

as RDF parameterized views, and a service-based query rewriting algorithm that is
capable to compute the possible services compositions answering a given query. 2. A
P2P system (under development) that supports the needs encountered in eSystems
that make an extensive use of DP Web services. In this system, peers which still
expose their data in forms such as (OWL, RDFS instances) can still inter-operate
with the others since our queries are issued in SPARQL 1, a standard query language
suited for querying data in the Semantic Web.

The remainder of the paper is organized as follows. Section 2 describes a motivating
example that is used in the rest of the paper to clearly describes various concepts.
In section 3, we model both our queries and the DP services. Section 4 is devoted to
the query rewriting in terms of services. Section 5 discusses the possible treatments
applied on data flow between composed services in the execution time. In section 6
we view the implementation status of our approach. In section 7 we review related
works. Finally, in section 8 we conclude the paper and present our future works.

2 Running Example

Consider the case of the peer P1, it holds the ontology (defined with OWL) depicted
in figure 3, and it has some services at its disposal to retrieve the different data
1 http://www.w3.org/TR/rdf-sparql-query/

4 Mahmoud Barhamgi, Pierre-Antoine Champin, and Djamal Benslimane

items modeled by this ontology. In particular, it outsources test information about
its patients to two independent laboratories (i.e. where it usually sends its patients
to effectuate tests), they provide it with interfaces of two services WS1 and WS2 to
retrieve Test A ,Test B (specializations of Test) respectively. It also discloses part of its
own database to authorized users in its environment via the services; WS3: it returns
the medications list taken by a given patient. WS4: it returns patients (their names)
who have been administered a given medication. WS5: it returns patients with a given
disease. Now assume a practitioner carrying out some experimental research has issued
the following query on P1: “Q1: what are the tests performed by patients who have
been administered a medication termed as “Some Stuff”?. Obviously the resolution
of such a query necessitates the combination of several services, in particular WS1,
WS2 and WS4 (local and remote services). Notice that it does not suffice to rely on
the services’ inputs and outputs to decide whether they can answer the query or not,
rather the semantic relation between the service’s input and output must be taken in
consideration. In the next section, we capture this relation by modeling a service as
a RDF parameterized view. Queries are rewritten in terms of services by exploiting
these views.

3 Modeling issues

This section is devoted to model both our queries and Data-Providing Web services.
Based on this modeling we devise an algorithm to rewrite queries in terms of services.

3.1 Ontology and queries

OWL has become the de facto standard for modeling Web resources. OWL primitives
include classes, properties and literals (called as Datatypes). Properties break up in
two types; Object properties relating classes and Datatype properties relating classes
to literals.
Definition In our context an OWL ontology O is a 6-tuple (C, L, DP, OP, SC, SP,
X) representing a graph, where:

1. C is the classes set within O.
2. L is the Literals in O. C and L are the nodes in O.
3. DP is the datatype properties set linking a node from C to a node from L. OP is

the object properties set holding among nodes from C.
4. SC is a set of directed edges (c1, c2) from node c1 to node c2, where c1, c2 ∈ C.

Each edge in SC represents an isA relationship. These edges can be explicitly
given by the user or inferred by an OWL inference engine based on the definition
of the classes.

5. SP is set of edges representing the the subProperty relations between properties.
6. X is a set of axioms, that describe additional constraints on the ontology.

Materialized OWL instances have similar structure of the previous graph. Users
in our framework are allowed to issue queries on the OWL instances ’ graphs.

5

Given the previous definition, a query on the local ontology has the following form:

{ { ?c1 . Ψ . p1.2 . ?c2 . Ψ . p2.3 Ψ . pn−1.n . ?cn }, CL, OS }, where:

1. ?c1...?ci...?cn are variables of types defined by classes within C,
2. pi.j is the object property linking ?ci to ?cj. Both ?ci:1→n and pi.j constitute the

“backbone” of the query.
3. Ψ is a linking operator and it is used when one variable ?ci is linked to more

than one other variable such that each of these variables pose a condition on the
selection of ?ci. The semantics of this operator is that instances of ?ci must satisfy
all of the conditions specified by the Ψ ’s outgoing paths.

4. CL is the constraints set imposed on datatype properties of ?ci:1→n.
5. OS is the output set, it comprises output variables (and their projected datatype

properties).

We implement this form of queries with SPARQL query language. This form is
suitable when matching queries against the services as we shall see next. In the spirit
of this definition our query became:
Q1: {?T1(Test) . [Has−Test]−1 . ?P1(Patient) . [Take-Medication] . ?M1(Medication), Ct= {$M1(Name=“Some

Stuff”)}, Out= {?T1(Result)} }

3.2 Modeling Data-Providing Web services as Views

Web services are usually modeled with the de facto standard for service description
OWL-S. In particular, OWL-S’s Service Profile permits to model the service’s func-
tionality, inputs and outputs. On the other hand, Data Providing Services have no
explicit functionality, instead, the semantic relation holding between their inputs and
outputs must be captured. Therefore OWL-S may not be the best choice for describ-
ing them since it does not allow to capture this relation. We model Data-Providing
Services in our approach as RDF Parameterized Views (PVs) over OWL ontology
as they necessitate a particular set of inputs (the parameters values) for their in-
vocation and return a particular set of outputs. Initially a parameterized view is a
technique that has been used to describe content and access methods in the widely
used Global-as-View (GaV) integration architectures [7], and also recently to describe
privacy constraints in [14].

Each PV is a predicate WSi(ci):- 4-tuple <Backbone, Ct, In, Out> where,
WSi(ci) is called the view head and it comprises the name of corresponding service

and its returned results. The rest is called the view body and it has the following
contents:

1. Backbone it comprises both the variables set C (of classes types) linking the
input and the output of the service, and the object properties set OP relating the
different variables in C.

2. Ct is the constraints set imposed on the datatype properties of C without being
required inputs of the service.

3. In is the necessary literals for the service invocation.

6 Mahmoud Barhamgi, Pierre-Antoine Champin, and Djamal Benslimane

4. Out is the output literals.

According to this definition, the parameterized views for our example are presented in
figure 4. Concretely we establish these views with RDF triples as showed in figure 5.

Fig. 4. The defined Parameterized Views for the DP services in the running example

4 Web service-based query rewriting

In this section we first pay attention to the conditions under which a composition
is considered as valid, then we present the pretreatments we do over our views and
finally we present our rewriting algorithm.

For formal discussion assume a query Q(Qbackbone, CtQ, OSQ) and a set of ser-
vices, each has a PVi(Seri backbone, Cti, Ini, Outi). In order to satisfy Q, backbones
union of selected services has to cover the query’s backbone, the final output of the
composition (the sum of Outi of selected services) should satisfy OSQ, and the Q’s
constraints list CtQ is satisfied with the union of Cti. However some special cases
may occur while the query rewriting process; we review them briefly.

1. The union is larger than the query backbone with provision to all of the asked
outputs. Herein it should be verified whether the additional concepts in the union
have a corresponding input parameter necessary for the service invocation. In this
case the service cannot be invoked as a necessary input will not be available and
thus the composition is invalid.

2. OSQ is not satisfied with the sum of Outi as some literals do not appear in the
output of the composition. Herein if one of the missing outputs is mandated then
the composition of these services is invalid.

3. A constraint specified in the CtQ was dropped (e.g. patient gender must be male).
Herein if dropped constraints were mandated then these services will be rejected.
Otherwise these constraints can be enforced on data flow between services.

7

4. The composition of the selected services enforce an additional constraint that
was not specified in the query’s CtQ. Herein even though obtained results will be
specific, they are still relevant ones and thus the composition is valid.

5. There is a conflicting constraint between Q and one of the selected services (e.g.
the gender property has conflicting values male vs. female). The composition
herein is invalid.

6. The union of the services backbones does not cover the query backbone. In this
case these services must be rejected even if they return similar outputs to the
demanded ones e.g. two services with one returning the doctors’ names who have
prescribed a medication, and the second returning the test results which were
verified by a given doctor, although the composition here returns an output similar
to that of Q(running example) it has not the same semantics as Q.

All of these observations were dealt with in our Web services-based query rewriting
algorithm presented next.

Fig. 5. The Parameterized views defined for the running example’s services

4.1 Preprocessing the defined RDF Parameterized Views

Before the rewriting process, the parameterized views should be preprocessed. This
includes the following steps.

Step 1. Extending the obtained PVs to reflect OWL “explicit” subclassing
statements For those peers which have not the capability to apply some reasoning
while matching the query with available PVs, obviously a query making reference to
the concept “Test” cannot be answered with a PV if this makes reference to another
concept to define the same data item (e.g. the concept “TestA”, a specialization of
Test) although this PV (or service) returns relevant information. To remedy this,
there are two possible solutions. The first is to include in the algorithm the capability

8 Mahmoud Barhamgi, Pierre-Antoine Champin, and Djamal Benslimane

to verify whether a concept is a super/sub class of another (based on the ontology
definition) while matching both query and services backbones. This is expensive in
terms of the time necessary for the rewritings computation with large ontologies. The
other solution is to extend previously defined PVs with the constraints subClassOf,
subPropertyOf that are explicitly declared in the ontology. For example in (figure 6,
case A) a new triple was added to the PV of WS1 indicating that an instance of
“TestA” is also an instance of “Test”.

Fig. 6. An extended PV for WS1. A new triple was added (showed in bold)to reflect the
relation between Test and Test A

Step 2. Skolemizing triples Variables denoting classes in PVs need to be skolem-
ized [2], that is to replace each variable by a skolem function helpful to merge in-
stances stemming from different services, e.g. the variable ?Patient (of type Patient)
is replaced by the function SF1(Name), that is to say if two instances have the same
name then they are considered as being denoting the same entity and thus can be
merged. An example of a skolemized PV is shown in (figure 6, case B). The properties
of a skolem function for a particular class are chosen by the domain expert.

Query rewriting algorithm
Inputs:
-A query Q < Qbackbone, CtQ, OSQ >.
-The service List L, where each service Si∈ L has a PVi(Seri backbone, Cti, Ini, Outi).
1. Populate the list RSL (Relevant Services List) where Si ∈ RSL iff

(∃ ?ci ∈ Outi, ∧ ∃ ?cj ∈ OSQ) such that both ?ci and ?cj ∈ O : ci

1.1 for each Si ∈ L do
1.2 for each variable ?ci ∈ OSQ (: ci is its corresponding type class in O) do
1.3 if (ci appears in the Outi) then (Add Si to RSL)
1.4 else if(ci is a subclass to one or more of used classes in OSQ) then
1.5 Reject Si since it returns generic result.
1.6 else if ci is a superclass to one or more of used classes in OSQ then
1.7 Add Si to RSL
2 if RSL is not empty then
2.1 for each Si in RSL do
2.1.1 Verifying whether Si satisfies the Case 1 or not
2.1.1.1 Construct the types schema (sub graph of O) QTS used in Q;

9

2.1.1.2 Construct the types schema (sub graph of O) STS used in Si;
2.1.1.3 if ∃ci such that ci ∈ STS and ci /∈QTS then
2.1.1.4 if∃ ?v ∈ ci such that ?v poses a constraint in Cti ∪ Ini then
2.1.1.5 Reject the service and treat another one
2.1.2 Verifying whether Si’s backbone is covered by Q’s backbone

Take the backbones of Si and the Q
Let ?c1 be the common output variable between Si and Q
Let ?cin be a variable enclosing some literals necessary for
the service’s invocation
Let ?ci be a variable varying from ?c1 till ?cin in the service backbone

2.1.2.1 for (?ci=?c1 till ?ci=?cin) in Si’s backbone do
Let O : ci be the corresponding class type of ?ci

Let O : cj be the corresponding class type of ?cj , where
?cj is ?ci’s analogous variable in Q’s backbone

2.1.2.2 if (¬(ci ≡ cj) or ¬(ci subclass cj))then
2.1.2.3 Reject Si

2.1.3 Let CtS and CtQ are the constraints sets pertaining
to variables involved in compared backbones

2.1.3.1 if exist a conflicting constraint between CtS and CtQ then
2.1.3.2 Si is rejected
2.1.3.3 else if CtS > CtQ then
2.1.3.4 //Si returns more restricted results, the user has
2.1.3.5 the choice to whether or not accept specific results
2.1.3.6 else if CtS < CtQ then
2.1.3.7 Si returns more general results, the user

has the choice to whether or not accept general results.
2.1.4 if Si is not rejected yet then
2.1.4.1 Insert the service predicate in the query
2.1.4.2 Eliminate the service backbone from the query backbone
2.1.4.3 Eliminate the service output from the query output
2.1.4.4 Insert the service’s inputs in the Q’s outputs and mark

them as mandated ones
2.1.4.5 if Q:OS is not satisfied with the Q:Ct then
2.1.4.6 Repeat the algorithm on the new Query
3 else Q cannot be resolved
Output: The rewritings list.

The algorithm in operation The possible rewritings of our query are shown in
figure 7. Our algorithm starts with looking for services which provide at least one
of the sought outputs. It finds that two services do provide relevant results (WS1

and WS2) since these services return the results of “TestA” and “TestB” respectively
(subclasses of “Test” (subClassing constraints were added in the views definitions)).
Each of these services corresponds to an independent rewriting. The backbones of WS1

and WS2 match part of Q’s backbone, and their constraints lists satisfy the involved
constraints in the query’s Ct. Next, in each rewriting the algorithm eliminates the
service’s backbone from the query’s backbone and its provided output from the Q’s
output set. Then, it inserts the needed inputs for the service invocation as mandated
outputs in the new query Q’s OS (Output List). Obtained result after this iteration
is shown in figure 7. Then the same algorithm is applied again on the new yielded
query in each rewriting. This time, it turned out that WS4 satisfies the new query as
it provides the required outputs, its backbone matches exactly the query backbone,
and its inputs are satisfied with query constraints list.

10 Mahmoud Barhamgi, Pierre-Antoine Champin, and Djamal Benslimane

Fig. 7. The query rewriting process for the running example. There were two yielded rewrit-
ings for Q

5 The rewritings execution

The previous algorithm yields a certain number of query rewritings (set of DP services
compositions). Before executing these compositions, we apply an extra algorithm
(this was left out for space limitation) in order to superimpose these compositions
(if possible). The intent of this algorithm is to avoid the duplicate invocation of
the same service across several compositions, e.g. instead of invoking WS4 twice,
it suffices to invoke it one time and then to use its results to invoke both of WS1

and WS2 (see figure 8, case a). In our system the results of each service invocation
are materialized in the form of OWL instances (skolem functions are exploited in this
respect) before being used to invoke subsequent services or sent to the requester . This
helps in merging and aggregating results stemming from different services and enable
us to detect, if needed, data inconsistences (between services) based on some semantic
reasoners (e.g. two instances of patient with the same value of a functional property
(e.g. national ID) but with different names, probably misspelled, are detected).

We need to apply extra treatment and processing over data flow among combined
services. In general, three semantic operators can be applied. They are as follows.

– Semantic Union (WSi ∪ WSj): This operator is used to semantically combine
the outputs (OWL instances) of the services WSi, WSj . The outcome includes
the disjoint instances provided by WSi and WSj and the semantically equivalent
instances provided by both only once. For example suppose that there is a second
service (WS*) equivalent to WS4 (depicted with doted lines in figure 8, case b).
Here, obtained results of both WS* and WS4 must be combined with the union
operator before invoking the subsequent services.

– Semantic Intersection (WSi ∩ WSj): This operator can be used to return the
semantically equivalent instances provided by both WSi and WSi.

– Semantic Difference (WSi � WSj): It can be used to return the instances
provided by WSi excluding the equivalent instances provided by WSj .

11

Note that treatments on data flow are applied in the execution time of the com-
position. Returning back to our example, the execution of the compositions is done
as follows. First, WS4 is invoked with medication name. The returned patients’ infor-
mation is put automatically in the form of OWL instances. Then, for each obtained
instance of patient we invoke both WS1 and WS2 and the results are materialized as
OWL instances then sent to the requester.

Fig. 8. Data flow in Data driven Web services composition

6 implementation issues

We are focusing on integrating our framework for supporting DP services within a
P2P-based data management system that is being developed by our research team for
the purpose of integrating proprietary data resources in eHealth. In our system, each
peer maps its proper ontology to the neighboring ontologies (in a pair-wise manner)
via OWL mapping constructs. When a peer receives a query from neighboring peers
(or from the peer’s user) it tries to resolve it by composing its DP services. We have
implemented our algorithm using Jena Framework [6]. Currently we are conducting
some experimental tests on our algorithm to measure the impact of PVs number and
the ontology volume on the rewritings computation time.

7 Related works

The work presented in this article is closely related to research in several areas. We
review them briefly (for space concerns).

7.1 Data integration & interoperation in P2P systems

Previous works in this area like [15, 8, 11, 3, 1, 16, 4] have focused on integrating tra-
ditional data sources (as opposed to DP services) in the P2P environment. None of
which has dealt with Service-Accessed sources in the P2P sharing environment. Fur-
thermore, data sources are either integrated in a syntactic way, e.g. using mapping
tables[15], GaV/LaV-based mappings[8], or fully transformed into forms like (OWL
or RDFS) before applying, in a subsequent step, queries to data in these forms(like in
[16, 4]). However, both ways are not suitable to handle DP services. Our services are
described as RDF triples-based Views over the peer’s ontology and that, in principal,
enables for applying some reasoning when matching the query against the views since
these triples represent concepts and properties of the underlying ontology.

12 Mahmoud Barhamgi, Pierre-Antoine Champin, and Djamal Benslimane

7.2 Web services description & composition

Concerning the service description aspect, we have modeled DP services as RDF
triples-based parameterized views over the peer’s ontology. We would have used OWL-
S2 for describing DP services, but effectively OWL-S’s service profile does not permit
to represent the In/Out’s semantic relationship of a DP service w.r.t. the underlying
ontology.

Hull et al. attempt in [9] to deal with problem of Query/Service matching of
stateless services. However this work is more concerned with the matching decidability
issues, and they do not take into account the constraints that would be imposed on
services. In addition, their approach was not tested or implemented.

Concerning the composition aspect, as we previously pointed out, the key differ-
ence between the traditional Web services composition in research works like [17, 12]
and the composition in our work is that while composition in these approaches is
task-driven, it is data-driven in our work. That is to say, the ultimate objective of the
composition is to provide as much complete answer as possible to the user queries.
Also in our composition we need to superimpose obtained compositions and to ap-
ply extra treatments on data flow between services (data aggregation, redundancy
elimination...etc).

8 Future works

We have several research directions in mind.

1. To adapt the query rewriting algorithm so that it allows for handling privacy
constraints.

2. To take measures in order shorten the execution time of obtained composition.
3. To include data-mediating services in our algorithm (to convert data values if a

conversion is needed e.g. the conversion of a measurement unit).

References

1. Sonia Bergamaschi, Pablo R. Fillottrani, and Gionata Gelati. The sewasie multi-agent
system. In AP2PC, pages 120–131, 2004.

2. Huajun Chen, Zhaohui Wu, Heng Wang, and Yuxin Mao. Rdf/rdfs-based relational
database integration. In ICDE, page 94, 2006.

3. Isabel F. Cruz, Huiyong Xiao, and Feihong Hsu. Peer-to-peer semantic integration of
xml and rdf data sources. In AP2PC, pages 108–119, 2004.

4. Dimitre A. Dimitrov, Jeff Heflin, Abir Qasem, and Nanbor Wang. Information integra-
tion via an end-to-end distributed semantic web system. In International Semantic Web
Conference, pages 764–777, 2006.

5. A. Dogac, G. Laleci, S. Kirbas, Y. Kabak, S. Sinir, A. Yildiz, and Y. Gurcan. Artemis:
Deploying semantically enriched web services in the healthcare domain. Information
Systems Journal (Elsevier), 2006.

6. Jena Framwork. http://jena.sourceforge.net/.

2 http://www.daml.org/services/owl-s/

13

7. Alon Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294,
2001.

8. Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter Mork, Dan Suciu, and Igor
Tatarinov. The piazza peer data management system. IEEE Trans. Knowl. Data Eng.,
16(7):787–798, 2004.

9. Duncan Hull, Evgeny Zolin, Andrey Bovykin, Ian Horrocks, Ulrike Sattler, and Robert
Stevens. Deciding semantic matching of stateless services. In AAAI, 2006.

10. Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan, Yirong Xu,
and David J. DeWitt. Limiting disclosure in hippocratic databases. In VLDB, pages
108–119, 2004.

11. Alexander Löser, Wolf Siberski, Martin Wolpers, and Wolfgang Nejdl. Information in-
tegration in schema-based peer-to-peer networks. In CAiSE, pages 258–272, 2003.

12. Zakaria Maamar, Djamal Benslimane, Chirine Ghedira, and Michael Mrissa. Views in
composite web services. IEEE Internet Computing, 9(4):79–84, 2005.

13. Mike P. Papazoglou. Service-oriented computing: Concepts, characteristics and direc-
tions. In WISE, pages 3–12, 2003.

14. Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and Prasan Roy. Extending query
rewriting techniques for fine-grained access control. In SIGMOD Conference, pages 551–
562, 2004.

15. Patricia Rodŕıguez-Gianolli, Maddalena Garzetti, Lei Jiang, Anastasios Kementsietsidis,
Iluju Kiringa, Mehedi Masud, Renée J. Miller, and John Mylopoulos. Data sharing in
the hyperion peer database system. In VLDB, pages 1291–1294, 2005.

16. Eirini Spyropoulou and Theodore Dalamagas. Sdqnet: Semantic distributed querying in
loosely coupled data sources. In ADBIS, pages 55–70, 2006.

17. Dan Wu, Bijan Parsia, Evren Sirin, James A. Hendler, and Dana S. Nau. Automating
daml-s web services composition using shop2. In International Semantic Web Confer-
ence, pages 195–210, 2003.

