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Abstract

This article presents a novel method for computing dis-
tances between hosts in a computational Grid. Our method
allows to represent the cost to achieve any operation involv-
ing some services in a Grid environment. We demonstrate
why the current monitoring tools are not sufficient in grid
environments that lack high level tools to combine several
sources of monitoring while taking into account particular
constraints for some given applications. We show how this
method has been embedded in a Grid service, namely the
Network Distance Service (NDS). We illustrate the benefit
of our approach in terms of accuracy, using an algorithm
from graph theory on a grid planning scenario. We explain
some implementation issues and discuss how the proposed
NDS service can be useful to any grid service who needs
some accurate evaluation for a decision making process in-
volving such distances. 1

1 Introduction

Several Distance Vector protocols have been imple-
mented for routing of packet-switched networks in com-
puter communications, as in, for example, the Routing In-
formation Protocol for Internet traffic. Here, the concept of
distance is actually the number of hops from an end point
of the network to another. Since then, this concept has of-
ten be reused, not only for routing (RIV v2, IGRP, EIGRP,
OSPF,...) but also for very different purposes such as data
management, network topology discovering, resource bro-
kering, nodes clustering, etc. We do think that the popular-
ity of this concept comes from its similarity with our real
world. So it constitutes a precious help in the understand-
ing of the network and thus in the elaboration of decision
making process.
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There are many ways to represent an end-to-end distance
thanks to raw network metrics measurement. The number
of network hops is still used, but it appears to be quite ir-
relevant for monitoring the performances of high-level ap-
plications. The most used metric is the latency or ICMP
Round Trip Time (RTT) which advantages are its stability
and the easiness and inexpensiveness of its measurement.
Some works are based upon bandwidth or throughput which
is on one hand more expensive to measure but on the other
hand more relevant regarding to data transfer concerns. Few
other works are using less common raw network metrics
such as loss-rate or TCP initial connection time. But to the
best of our knowledge, only one of them is using all these
metrics together (see section 2).

Finally, some works are assuming that the distance they
use have some properties inherited from Euclidean Distance
such as symmetry, reflexivity and triangular inequality. We
note that these properties are not trivially satisfied due to
the potential asymmetry of routes. Moreover, according to
[17], these characteristics are related to mathematical met-
rics, whereas the distance between two points is defined by
“the length of the path connecting them” and is free from
any particular property.

From our point of view, raw network metrics are well
relevant to low-level tasks like packet routing which have
simple goals well identified. In grid environment, the tasks
are in fact grid services invokations. But these grid services
have much more complex and diverse goals and behaviors.
So should be the distances they used. Our purpose is to de-
fine a method to design made-to-measure distances for any
given transactions in grid environment. We call transaction
an interaction between hosts of a network. Generally, it cor-
responds to the invokation of a web service. But it may be
more basic tasks such as data retrieval or storage. Such dis-
tances are meant to be more relevant than raw metrics and
thus constitute a considerable help in the improvement of
the decision making process for the service using them.

The rest of this article is structured as follows. In section
2 we present different use of distances in networking. In



section 3 we present our solution. An example of applica-
tion in real environment is presented in section 4. Finally,
we discuss our proposal in section 5 and we conclude in
section 6.

2 State of the Art

In this section, first we study some works using end-to-
end distances to show their importance and how they are
provided by Distance Map Services. Second we present
some grid monitoring tools we use to support our system.

2.1 End-to-End Distances

A abundance of works are using end-to-end distance to
address a very large panel of problems.

For instance, Karlsson and al. present in [11] an eval-
uation framework for replica placement algorithms and a
rather complete survey on this topic with several algorithms
comparison. They define the distance as “a metric such
as network latency, number of network hops, or total link
cost”. Most of the listed algorithms use a notion of distance.
But this notion is always restricted to a representation by a
single raw network metric.

An use case of distance in grid environment is presented
in [14]. The authors present a method for automatic nodes
clustering. Distances are represented by the minimum RTT
and are used to map the hosts to a geometric space. An in-
teresting aspect is that some of the decisions are based on
the Euclidean distance. This shows that the notion of dis-
tance is much more complex than a simple score. Whereas
scores are often used only for comparing purposes and so
are quite simple, distances have often to satisfy more elab-
orated properties to be exploitable. We will see further that
this approach should be discussed.

Topology discovering is a very active research area.
More particularly the Distance Map Services aim to provide
a map of the physical network architecture. These maps are
graphs where the vertices are the hosts of the network and
the weights of the edges are computed thanks to a distance
function. The main goal of these works are to define scal-
able software architectures meant to provide an estimation
or a prediction of the distance between all the hosts of a
network while minimizing the number and cost of measure-
ments (which can be very expensive). Most of them base
their distance computation on network latency which is the
easiest and one of the most inexpensive to measure. For
instance: Francis and al. with IDMaps in [9], Eugene and
al. with the Global Network Positioning (GPN) in [13] and
Coates and al. in [6]. Few works are able to integrate other
network metrics. For instance [9] can integrate the band-
width “when possible”, but do not give any further details
on how this should be done.

We find out that very strong assumptions are often re-
lated to the notion of distances. For instance, some of these
systems (like [13]) assume that the generated topology is
an Euclidean space. This assumption is valid at small scale
with the Euclidean distance

disti,j =
√

(xj − xi)2 + (yj − yi)2

. But at world scale, the valid geometric space is the spher-
ical space to fit the shape of the earth. Thus the valid dis-
tance is the orthodromic distance based on latitude (La) and
longitude (Lo):

disti,j = 6366 × arccos[sin(Lai) × sin(Laj)
+ cos(Lai) × cos(Laj) × cos(Loj − Loi)]

which is more complex but also more accurate and rele-
vant to earth scale network topologies. The choice between
these two distances must be taken according to the appli-
cation and the topology of the network. The point is that
the notion of distance should be refined to fit each peculiar
case. Unfortunately, no work deals with the impacts of such
assumptions or presents a method helping in the decision
between all the solutions with regards to the application and
the network topology.

The work of Yan Chen and his colleagues is very in-
teresting to illustrate our approach. They are working on
overlay network distance monitoring for large scale net-
work. Their goal is to design tomography-based measure-
ment mechanisms integrated in a scalable architecture. In
[5] they consider RTT and TCP initial connection time. In
the next article [3], they add the loss-rate. Then in [4] they
use the latency, the loss-rate and a measurement method
that reflects CPU loads and both uplink and downlink band-
widths. First we note the increasing number of handled raw
network metrics. This confirms our intuition that we can not
base our distance upon one single independent metric, but
we need to combine several ones instead. Second, as one
single measurement reflects several metrics, this method is
restrictive for reflecting the behavior of any given transac-
tion. Finally, these works are using Euclidean space prop-
erties too.

The only work dealing with combination of several net-
work metrics is done by Ferrari and al. in [15]. They present
a service called the Network-based Optimization Service. It
shows how network metrics can be combined to form com-
plex compound metrics. According to the authors, this ser-
vice can be used in a variety of different use cases involv-
ing decision-making functions. It allows Resource Brokers
or Data Management to make use of network status to im-
prove their decisions accuracy. The main complex com-
pound metrics they use is called Closeness and is defined as
follow: Given two reference nodes Ni and Nj , let

• pli,j be the packet loss probability from Ni to Nj



• ri,j be the maximum average round trip time between
Ni and Nj

• thi,j be the average throughput of a TCP stream from
Ni to Nj

• T a user defined parameter

the Closeness Ci,j is defined by:




Ci,j = 0 if pli,j > T
Ci,j = 1 if pli,j = 0 or

Ni, Nj ∈ LAN or Ni = Nj

Ci,j = thi,j

thmax
α

ri,j
rmax otherwise

First, we note that using different cases might be prob-
lematic. For instance, this function is not continuous, which
might cause many issues depending on the use. Moreover,
this distance can not have different values inside one given
LAN, which might be restrictive in large scale LANs, like
clusters, hosting several instance of a same service. Second,
we note that this function does not take into account the na-
ture of the transaction, like the size of the transferred data
or the needed computing time. This might lead to accuracy
loss for the decision process using it. Finally, the authors
aim at defining the architecture of their solution, but give
no extended explanation about the method they used to de-
sign this function. Their main future work was to extend
the number and types of functions available in their service
rather than to define a method for this purpose. Unfortu-
nately, the authors do not seem to have work on this topic
further.

Another observation is related to the use of the metrics
that are not related to the network itself but rather to the
characteristics of the hosts. As a matter of fact, metrics
such as CPU or disk or memory are never considered in any
of these works although they are important in many cases.
Obviously, the CPU capacity and load have a major im-
pact on computing tasks performances. But also some other
tasks, such as database query optimisation, need advanced
monitoring information such as disk throughput or memory
capacity and load. Thus, advanced Distance Map Service
should be able to take these host metrics into account in the
distances they provide.

Finally, these distances are mainly useful in optimization
tasks. Two simple instances are: (1) the placement of ser-
vices according to network topology and clients location;
(2) the selection of the best service instance to respond to
a given client request. As a matter of fact, computing end-
to-end distances allows representing networks by relevant
graphs. Such graphs allow appling the graph algorithms to
solve the problems of the network itself. But to be relevant,
these graphs should not reflect a particular aspect of the net-
work only, but rather any aspect with regards to the tasks.
Moreover, this notion of optimization may have different

goals. For instance, the optimization of customer QoS will
not lead to the same decisions as the optimization of global
network load. Our method is meant to be adaptable to any
task and any objective. Moreover, our method can be ap-
plied as well to services as to simple data or objects or phys-
ical resources.

2.2 Network monitoring tools

The identification of relevant metrics for grid environ-
ment and measurement methods has been made by the Net-
work Measurements Working Group of the Global Grid Fo-
rum in [12]. Recent developments in grid infrastructure
have lead to effective tools providing the indexing of all the
hosts, data and services available in the network, such as
the Monitoring and Discovery Service of Globus [2] which
is based on the GMA.

The Grid Monitoring Architecture (GMA) responds to
the main constraint of grid context which is users and re-
sources dynamicity. The GMA-compliant grid resource
monitors differ by the kind of entities they manage. MDS
[2] and R-GMA [7] allow to monitor physical resources
like CPU power and storage when other monitors like
SCALEA-G [16] allows managing software resources too.
They differs also by some implementation considerations.
First, the stored information at the top level of the archi-
tecture: In MDS, only resource availability is mentioned.
Users interested by an available ressource must then request
more information from the local levels of monitoring. The
second difference is about the storage format and query lan-
guage. In R-GMA, storage is implemented like a virtual re-
lational database queried with an SQL-Like language, when
in SCALEA-G[16], information is stored in an XML format
and queried using Xquery language. MDS stores ressource
information in an LDAP-like directory.

Nevertheless, we decide to mainly use the Network
Weather Service [18] because it seems to be the most com-
plete monitoring tools. It is able to capture the condition
of both network and hosts. It can provide the raw mea-
surements of the classical metrics as well as forecasts based
on aggregations of the set of raw measurements. Though
NWS is enough for the application presented in this arti-
cle, our service is designed to be able to easily integrate any
information from any monitoring tools.

3 NDS: The Network Distance Service

Our proposal is a method to compute end-to-end dis-
tances made-to-measure for any given transaction in grid
environment. Typically, a transaction is a grid or web ser-
vice invokation. But it can be more basic tasks such as data
placement or database request submission. A transaction
involves at least one customer and one provider.



3.1 Model and notations

As the term node is ambiguous, from now on we will de-
note by hosts the real computers and by vertices their repre-
sentation in our graph.

We define a network as a graph G = (V, E) where

• V is a finite nonempty set of vertices representing the
hosts of the computer network.

• E is a finite set of edges. An edge is an ordered pair
of vertices in V . Each edge can be labelled with a
weight corresponding to the value of the distance from
the source to the destination of the edge.

The main problem we address is handling the large di-
versity of grid services: The nature of the considered trans-
action strongly influences the relevance of the different in-
volved parameters. For instance, the metrics about CPU are
very relevant for job submission, but not for data retrieval. It
also influences the choice of the measurement method. For
instance, the current observations are relevant for an imme-
diate action, but the forecasts are preferable for long-term
purposes. Moreover, the metrics relevance may vary ac-
cording to some inner characteristics of the transaction. For
instance, the latency is a relevant factor when dealing with
small size data, but the bandwidth is preferable for large
size data.

According to the GGF NM-WG in [12], a metric is a
quantity related to the performance and reliability of the In-
ternet. More precisely, a metric is a primary characteristic
of the Internet, or of the traffic on it. A metric is the char-
acteristic itself, not an observation of that characteristic. A
measurement is an observation of a metric. Measurements
may be either raw or derived. Raw measurements are some-
thing that can be measured directly, such as measuring la-
tency using ping. Derived measurements are measured in-
directly, and might be an aggregation or estimation based
on a set of low-level measurements. For convenience pur-
poses, we consider that a metric is a primary characteristic
measured with a particular method. For instance, the last
observation of the latency is one metric and the mean of
all the available observations of latency over the past day is
another metric.

We call either observation or measure the actual value
related to one particular metric. We note M the set of met-
rics handled by the NDS server.

We define four classes of metrics:

• MV is the set of metrics which domain is V . These are
network metrics such as latency or bandwidth.

• ME is the set of metrics which domain is E . These are
host metrics such as CPU or memory or disk capacity.

M = MV ∪ ME and MV ∩ ME = ∅

• MR is the set of metrics which observations range in
R

• MS is the set of metrics which observations range in S

Where S is the set of the strings on the ASCII alphabet and

M = MR ∪ MS and MR ∩ MS = ∅

Please note that MS must be define to handle qualitative
metrics such as the operating system or the machine archi-
tecture of the host. But those metrics are useful only in very
peculiar cases. Thus, we will not use them anymore in this
article.

The main useful metrics are:

• the bandwidth: BW ∈ MR

E in Megabits/second

• the latency: L ∈ MR

E in Milliseconds

• the CPU capacity: CPUc ∈ MR

V in MegaHertz

• the CPU availability: CPUa ∈ MR

V in percents

• the free memory space: RAM ∈ MR

V in Megabytes

These observations can be represented by matrices called
BW , L, CPUc, CPUa and RAM . we note mi,j the mea-
surement of the metric m from the host i to the host j. A
sample of these matrices is given in the table 1.

One can note that monitoring services can not provide
observations of network metrics from one host to itself.
These peculiar values must be configured by the user for
each particular metric. Here, we decide to have

∀i, BWi,i = ∞ and Li,i = 0

because we want to consider that the cost of local data trans-
fer is null (in term of network usage) with the formulae we
define in section 3.2.3.

3.2 NDS Step by Step

In this section, we explain the three steps of our method
which is meant to lead to distances made-to-measure for any
given grid transaction.

3.2.1 Step 1: Identification of Sources and Destinations

A vertex of our graph can be either source or destination or
both of one edge. The sources represent the customers of
the transaction and the destinations represent the providers.
One host can be both source and destination when, for in-
stance, one want to estimate whether it is better to submit
a task to a more powerful remote host or to locally run this
task and save the data transfer time.

We note these sets:



• S the set of sources (customers). S ⊂ V .

• D the set of destinations (providers). D ⊂ V .

Although the identification of sources and destinations
is not a very difficult task, it must be done carefully. As a
matter of fact, for a service placement instance, a bad iden-
tification of the customers might lead to false results. More-
over, in general cases, only a little part of the network might
be represented. An example of involvement of the whole
network is a global reorganization, which is a possible but
rather rare application.

3.2.2 Step 2: Identification of Transaction Properties

We call Transaction Property one parameter involved in the
computation of the distances which is not pure network met-
ric. It is just one named value without any particular con-
straint: < name, value >.

For a particular kind of transaction, we gather all its
properties in one Transaction Properties Set noted TPS.

TPS = {< name, value >, ..., < name, value >}

For instance, the TPS for a job submission should con-
tain the problem data size, the result data size and the num-
ber of CPU cycles needed:

TPS = {< prob, 105 >,< res, 4 >,< cyc, 1010 >}

3.2.3 Step 3: Identification of the Distance Function

The Distance Function is the real-valued function that gives
the final value of the distance between two nodes. We note
it:

df : S × D → R

It is a nonlinear combination of observations of metrics
in M and values of properties in TPS. This function is
the core of the distance computation. It must be relevant
to the aspects the user wants to assess. Generally, its re-
sult must tend to zero when the reflected performances tend
to the perfection, as distances generally represent costs and
algorithms generally tend to minimize it.

A grid transaction, like a service invokation, is composed
of three steps:

1. the customer sends a request to the provider with its
problem data.

2. the provider computes the response.

3. the provider returns the response data to the customer.

This is well adapted to a large diversity of computation
tasks, such as multimedia contents adaptation or data min-
ing or database request. According to the task, one step

can be ignored in the distance computation. For instance a
simple database “select” query does not involve important
request data and thus the step 1 might be irrelevant. On the
other hand for a basic data transfer, the step 2 and 3 should
be ignored.

The steps 1 and 3 correspond to data transfer across the
network while the step 2 corresponds to a computation by a
host (or a cluster hidden behind this host). One can note that
if the transaction is very simple, for instance a time service,
none of these three steps are important. As a matter of fact
in that case, our method is practically useless.

Now we will see how we can model simple compound
metrics representing the cost of a data transfer and the cost
of a computation.

First, we have to build a compound metric called DTC,
for Data Transfer Cost, involved in the steps 1 and 3. It
must reflect the time needed to transfer a piece of data from
one host to another according to its size x and the network
capacity and condition. This time can vary according to
many parameters, such as the protocol used, the MTU, the
client and server configuration... We will define a basic met-
ric here only based on the main parameters and on a raw
TCP/IP data transfer. According to [8], “the Raw Band-
width model using NWS forecasts can be used effectively
to rank alternative candidate schedules”. Then, we decide
to base our function on it:

∀(i, j) ∈ S × D,

DTCi,j(x) = x
BWi,j

But this model does not consider the influence of the
size of the data to place. Actually, we observe that if we
have to place small size data, like a counter for instance,
the key factor must be the latency. On the other hand, if
we have to place large size data, the key factor is the band-
width. Then, the size of the considered data does not in-
fluence only the distance itself, but also the relevance of
the different metrics. The integration of the latency in our
distance function is done according to the TCP/IP proto-
col: Opening and closing the connection needs 3 round
trips (respectively SY N → SY N/ACK → ACK and
FIN → FIN/ACK → FIN ). Then we obtain:

∀(i, j) ∈ S × D,

DTCi,j(x) = x
BWi,j

+ 3 × (Li,j + Lj,i)

Finally, the harmonization of the units of the different
metrics must be done in, for instance, bytes and seconds:

∀(i, j) ∈ S × D,

DTCi,j(x) = x
BWi,j×106×8−1

+ 3 × (Li,j + Lj,i) × 10−3



Second, we have to build a compound metric represent-
ing the Computation Task Cost of the step 2, noted CTC.
It must take into account the complexity of the computation
according to the request data size and the provider capacity
and load. Basically, we can represent this cost by:

∀i ∈ V,

CTCi(x) =
x

CPUci × CPUai

where x is the number of computation cycle needed by the
task. One more time, this representation is very basic and
must be refined to fit more accuracy needs as it depends on
number of parameters such as the host architecture, its OS,
buffers size, scheduler configuration, etc.

Moreover, this cost model implies that the behavior of
the task is deterministic and predictable. As a matter of
fact, a lot of algorithms, and more particularly approxima-
tion ones, are not so predictable. Nevertheless, our method
allows deciding the best behavior to model. As soon as one
have minimal information on the complexity of the algo-
rithm ran by the provider, one can decide to assess a mean
cost and to use it. On the other hand, one can have com-
plete information about the algorithm behavior. Although
these ones are complex and involve several parameters, it
is absolutely possible to include all of them in a user-made
compound metric.

For instance, if we want to take into account the amount
of memory space available in our cost:

∀i ∈ V,

CTCi(x, y) =
x

CPUci × CPUai

× (y ≤ RAMi) : 1?2

where y is the size of the memory space needed and (y ≤
RAMi) : 1?2 represents a 2×-malus if not enough memory
space is available.

Finally, we have to harmonize the units in cycles and
bytes and seconds:

∀i ∈ V,

CTCi(x, y) =
x

CPUci × CPUai × 106

+ (y ≤ (RAMi × 106)) : 1?2

Whatever, this model is enough for the task we show in
the next section. It is important to note that our purpose
is to show the feasability of such model and its usefulness
more than proposing ready-to-be-used cost functions. For
instance, databases have well identified and particular cost
functions that can be easily integrated in our service.

4 Implementation and Experimentation

In this section, we succinctly present the implementation
of the presented method and an example of it application in
a real grid environment.

4.1 Implementation

NDS is a web service developed with JAVA and The
Globus Toolkit 4. Its main function is to provide the value
of distance between the hosts in the given source and des-
tination sets and according to the given Transaction Prop-
erties Set and Distance Function. The evaluation of the df
is made by JEP [1] and thus the programming effort to ex-
press the df by the programmer using NDS is at the same
time easy and rather complete: JEP supports all the classical
functions, the characters strings and the Boolean tests.

We decide to access the monitoring tools by command
line execution. Thus, NDS is compatible with any monitor-
ing tool that is accessible from its execution host. Moreover
its configuration is designed to be easily extended with new
metrics. NDS can provide the list of the metrics it handles
for information purpose and to help the design of an appro-
priate df for one given purpose. Moreover while NDS have
a library of predefined compound metrics, it is designed to
allow its user to easily declare new ones, either in the library
or directly in the df he uses.

4.2 Example of application

We have evaluated our proposition on a representative
simple planning scenario of a storage service. We show
how our service can be used to take optimal planning and
operative decisions. The four classical problems we solve
are:

1. What is the optimal number of instances of the service?

2. What is their optimal placement?

3. What is the instance to optimally store a given data?

4. What is the instance to optimally serve a given request?

Our goal here is to optimize the cost of the invokations
by the customers of the service. We assume that each in-
stance stores the same set of data and that the size of these
data are 1 (or 100), 103 and 107, and that there is an equal
number of data for each size.

Our experimentations are made on a test grid deployed
over three remote sites (which are cities from France):
Lyon, Lille and Toulouse. This grid is composed of 4 hosts
called Toulouse, Lille, Lyon1, Lyon2.

Now we will see how we can apply our method.



4.2.1 Identification of sources and destinations

As all the host must be served by our service, the set of
sources is:

S = {Toulouse,Lille,Lyon1,Lyon2}
Moreover, we consider that the service can be supported

by Toulouse, Lille, Lyon1 only. Thus the set of des-
tinations is:

D = {Toulouse,Lille,Lyon1}

4.2.2 Identification of Transaction Properties

The main property of the transactions our storage service
will treat is the size of the stored data. We consider that we
have three types of data. Their respective sizes in Bytes are
1 (or 100), 103 and 107. Thus, the TPS we use are:

• TPS = {< data size, 100 >},

• TPS = {< data size, 103 >},

• TPS = {< data size, 107 >}.

4.2.3 Identification of the Distance Function

As we want to optimize the time needed to retrieve data by
customers, the cost to be optimized here is related to transfer
only. Thus the distance we use is:

df(i, j) = DTCi,j(data size)

4.2.4 Exploitation of the NDS results and validation

The real measurements of our test grid used in the distance
computation are given in the table 1. For instance, the first
line corresponds to the measurements from Toulouse to
Toulouse, Lille, Lyon1 and Lyon2 respectively. The
results of the distance computation by NDS are given in the
table 2. df0, df3 and df7 correspond to the three different
TPS. The three columns correspond to the three sources:
Toulouse, Lille, Lyon1 while the lines correspond to
the destinations.

Now we will see how this distance computation allows
to use a graph algorithm. NDS implements a trivial
algorithm to solve the k-centers problem. This problem can
be defined as:

Given a set S of points in a metric
space M endowed with a metric distance
function D, and given a desired number
k of resulting clusters, partition S
into non-overlapping clusters C1, . . . , Ck

and determine their ‘‘centers’’

µ = {µ1, . . . , µk} ⊂ M

so that maxjmaxx∈Cj
D(x, µj) (i.e. the

radius of the widest cluster) is
minimized.

In our scenario, S is actually V , D is df , k is the
number of instances of the service we want to place, while
µ1, . . . , µk are their optimal location. We show in [10]
how properties of the distance produced by NDS can be
validated to ensure that we have a “metric distance”.

The “score” and rank of the possible solutions of this
problem is given in the table 3.

The score is computed by:
∑
i∈V

mink
j=1 df(i, µj)

.
One can make some observations based on this table:

• The performances should be improved with more in-
stances of the service, unsurprisingly.

• If we want to limit to one single instance, Lyon1
seems to be the best location for the service.

• The scores with k = 2 is approximatively the half of
the scores with k = 1. But the score with k = 3
corresponds to a real improvement.

• The rankings for sizes 100 and 103 are the same,
whereas there are differences with 107.

This is explained by the MTU which is approxima-
tively 103 bytes over the Internet, which means that
sending 1 byte or 103 bytes have the same cost since
they use one single IP packet only.

• If we consider all the sizes together, only 107 have a
real impact.

This is normal because the cost of the transfer of very
small data is negligible face to the cost of a large data
transfer.

With regards to these results, one can decide to execute
an instance of the service on Toulouse, Lille and
Lyon1 since it is obviously the best solution to ensure
good performances for the customers.

The same method can be used to decide which the best
instance to store a given data. In order to check if the lo-
cation pointed out by NDS is truly the best, we have timed
the invokation of a real storage service. The data used have
size from 1 to 1010 bytes, but we only present representa-
tive results with the 3 sizes used before. We have timed 20
transfers at 1 hour interval for each case to obtain represen-
tative means. The results of these experiments are given in
the table 4.



Table 1. Matrices of the measurements of our scenario metrics

BW =




∞ 1.56 2.48 2.17
5.37 ∞ 3.17 3.14
3.36 3.27 ∞ 87.68
3.44 3.24 87.19 ∞


 L =




0 16.5 10.0 9.5
16.5 0 15.6 15.2
9.8 15.7 0 15.2
10.0 15.7 0.6 0




Table 2. Distances computed by NDS

df0 =




0.0000 0.0331 0.0200
0.0330 0.0000 0.0313
0.0195 0.0315 0.0000
0.0200 0.0315 0.0012


 df3 =




0.0000 0.0382 0.0232
0.0345 0.0000 0.0338
0.0219 0.0339 0.0000
0.0223 0.0339 0.0013


 df7 =




0.0000 51.348 32.343
14.936 0.0000 25.300
23.815 24.496 0.0000
23.283 24.723 0.9190




Table 3. k-centers results
data size 100 103 107 sum

µ score rank score rank score rank score rank

{1} 0.0725 6 0.0787 6 62.034 6 62.1852 6
{2} 0.0961 7 0.1060 7 100.57 7 100.769 7
{3} 0.0525 5 0.0583 5 58.562 5 59.1453 5
{1,2} 0.0395 4 0.0442 4 47.098 4 47.1817 4
{1,3} 0.0325 3 0.0351 3 15.855 2 15.9226 2
{2,3} 0.0212 2 0.0245 2 33.262 3 33.3077 3
{1,2,3} 0.0012 1 0.0013 1 0.9190 1 0.9215 1

Table 4. Summary of experiment results
data size 100 103 107

data location score rank score rank score rank

Toulouse

∑4
i=1 cf(i, 1) 0.0725 2 0.0787 2 62.034 3

Experimental Mean (s) 0.615 2 0.618 2 2170.6 3

Lille

∑4
i=1 cf(i, 2) 0.0946 3 0.1011 3 65.74 2

Experimental Mean (s) 0.803 3 0.765 3 1178.5 2

Lyon1

∑4
i=1 cf(i, 3) 0.0520 1 0.0569 1 49.22 1

Experimental Mean (s) 0.455 1 0.445 1 879.9 1



One can note that the NDS and experimental ranking are
exactly the same. Moreover, NDS recommends different
decisions according to the size of the data: small size
data are better located on Toulouse than on Lille,
whereas it is quite the contrary for large data. This is due
to the better uplink latencies from the Toulouse site
while Lille have a better uplink bandwidths. Please note
that this recommendation is confirmed by the real data
retrievals. This proves the accuracy of NDS results which
actually takes into account the network topology and the
task characteristics to propose very adapted decisions.

Finally, NDS can be used to select which is the best lo-
cation to retrieve a given data with very few efforts from the
programmer: The only things that need to be changed are
the sets of sources and destinations. For instance, to select
the best provider for Lyon2 which requests a data of 103

bytes replicated on the three storage services:

1. Identification of sources and destinations

S = {Lyon2}
D = {Toulouse,Lille,Lyon1}

2. Identification of Transaction Properties

TPS = {< data size, 103 >}

3. Identification of the Distance Function

df(i, j) = DTCi,j(data size)

Then, the minimum distance returned by NDS simply
indicates the best provider among the different possibilities.

One can think that this scenario is too restrictive to truly
prove NDS accuracy. Please note that our goal is to show
that NDS can be used for many purposes with few efforts
from its user while the results are computed with regards
to a lot of parameters. Moreover, the small size of our test
grid have the advantage of producing very readable results,
which is not the case with more hosts since the size of the
matrices explodes. Finally, as our test grid is very heteroge-
neous and connected through the Internet, the experiments
are more interesting than with a cluster-based architecture
with very homogeneous hosts connected by private links.

Another observation might be that the use case is very
peculiar due to the set of assumptions (requests pattern
equiprobability, data sizes fixed to 3 static values, etc.). Ac-
tually, these parameters do not influence the relevance of
the produced distance, but rather the feature of the used k-
centers algorithm. Whereas taking into account varied re-
quest probabilities for each host does not seems to be very
difficult, tackling with a wide range of continous data size

might be difficult. This implies to be able to compute a
primitive of the distance function and is an important part
of the future works.

Finally, some results might seem to be quite trivial, for
instance the fact that putting an instance of the service on
each node is the optimal solution. Actually this aspect can
not be well demonstrated on such a small size infrastructure.
But the derivation on the distance function on a large in-
frastructure can show what is the amount of instances which
represents real improvements: one of these amounts should
correspond to the number of clusters (or LANs). Detecting
this number is a quite difficult problem in grid environment
which are administered by several independent administra-
tions. Moreover NDS can determine the optimal host inside
these clusters at the same time.

5 Discussion

We found out that our distance computation is a more
complete approach than any previous work on this topic.
The presented method allows the computation of made-to-
measure distances for any transaction in grid environment.
The embedment of a k-centers algorithm allows solving the
most important problems of grid planning and operating.
Moreover this work is possible with few efforts from the
user and is reusable at every step of the service life cycle.

Nevertheless, our method is also much more complex
and so presents some disadvantages.

First, the identification of the Transaction Properties Set
and the Distance Function may be a long and difficult task,
particularly for complex transactions. In case of mistake,
the whole distances would be irrelevant and thus the deci-
sion taken upon them might be inaccurate. Nevertheless,
our method allows to use any information one have on the
transaction whatever the granularity is. We have presented
basic compound metrics that can be used for a majority of
services. But our method allows also using more precise
compound metrics in case one needs it.

As a matter of fact, NDS is not designed for the end users
of the system, but rather for administrators and developers
which needs easy and/or accurate responses to particular
well identified problems. In particular, NDS can be used
by other grid services. It represents an important way of
improvement in their decision making process, especially
when these decisions must be made according to the net-
work and hosts conditions. NDS can be used via a web
interface by administrator to monitor the current network
state and can help them to take decision for infrastructures
and applications deployment with more relevance than any
previous Distance Map Service.



6 Conclusion and Future works

We have presented a novel method designed to define
made-to-measure distances for any given transaction in grid
environment. The relevance of the provided distance is ob-
viously enhanced compared to the distance provided by the
preceding works, including the characterization of the pro-
duced distance to ensure graph algorithm working (as ex-
plained in [10]. We have implemented a web service called
NDS for Network Distance Service. It is able to compute
such distances between given sets of sources and destina-
tions. NDS provides an important help at every steps of
Service life-cycle and can optimally solve the most impor-
tant problems related to grid services planning and operat-
ing. We have shown its accuracy on a simple but represen-
tative grid planning scenario corresponding to the k-centers
problem.

At present time, NDS integrates the Network Weather
Service measurements, but it is designed to be able to easily
integrate any other monitoring tool. In the first instance, the
future works will be to build a library of general Transac-
tion Properties Sets, Compound metrics and Distance Func-
tions. Second, we will study how the produced distances
can be derived and integrated. This is an important step in
the decision taking process of placement of services since
the derivation might help to detect the optimal number of
instances and integration allows obtaining results for a wide
continous range of TPS values. Moreover, we do think that
NDS represents an opening of the computer network world
to the classical graph theory world which is very rich in
solutions for a wide variety of problem. That is an impor-
tant application opportunity for very numerous application
classes.
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