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Abstract. The merging of grid and pervasive computing raises new
challenges. Its main impact is a critical increase of the dynamicity, het-
erogeneity and unpredictability of the users, of the uses and even of the
network topology. Moreover, emergency scenarii are one of the target
applications of pervasive grids, with strong time constraints making the
performances a critical point. In such a context, the decisions about the
distribution become a key of the efficiency. However, existing grid middle-
wares have been designed for quite stable, homogeneous and predictable
architectures. Our proposal is a distribution decision-making support al-
lowing to make optimal decisions in an easy, usable and profitable way.
We present a use case of pervasive grid and demonstrate why existing
solutions are not adapted. We show how our method has been embed-
ded in a grid service, namely the Network Distance Service (NDS) and
illustrate its benefit on the main problems of distribution: replication,
placement and selection of data, task, services... We show experimen-
tation results and discuss how NDS can be useful to handle the new
constraints involved by the merging of grid and pervasive computing. 3

1 Introduction

One might wonder if the term “pervasive grid” is really relevant and if the under-
lying concept is really consistent. As V. Hinge et al. show in [1], grid computing
and pervasive computing have a lot of divergent characteristics against few con-
vergent ones: Grid computing is meant to support intensive computation and
storage on large scale highly powerful and stable infrastructure with light time
constraints whereas pervasive computing essentially concentrates on interoper-
ability of light mobile devices for real-time delivery of adapted contents thanks to
local interactions. Thus, the purpose of their merging is far from being obvious.

About the term “pervasive grid” itself, one can note that Foster, Kesselman
and Tuecke used the term “the Grid” in the earlier works. As “the Web”, “the
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Grid” denotes a resource available from anywhere, at any time, by any mean
and for any purpose. From this point of view, “the Grid” was in fact meant to
be pervasive from the beginning. As a matter of fact, “the Grid” was abandoned
for “grid computing” and this pervasive aspect have been put on one side. The
“pervasive grid” can be perceived as a revival of this first approach.

First of all, we have to define what the physical and logical architecture of a
pervasive grid should be.

1.1 A Pervasive Grid Architecture

As the Grid is designed to achieve very intensive computation and storage, it
is nowadays unrealistic to consider that mobile devices will take part of the
grid inner tasks due to their limited capabilities and autonomy. Currently, the
most relevant way to integrate mobile devices into grid architectures is to allow
mobile users to access grid resources. This can be allowed by extending the grid
access points with the capabilities of proxies techniques which are widely used
in pervasive computing. Thus, the mobile devices will be located at the edges of
the grid only as shown in figure 1.2.

This approach has two big advantages from the grid software architecture
point of view: (1) The current grid middlewares do not have to be implemented
on mobile devices (which seems to be impossible regarding their size and com-
plexity). Only grid clients have to be implemented on these devices. (2) The grid
middleware still can be used inside the grid and thus do not have to be fully
rethought.

The peculiar point we are interested in is: How will pervasive accesses impact
on the existing inner activities of the grid? And which of the grid management
mechanisms should be redesigned?

1.2 Pervasive Grid Use Cases

In this section, we identify two realistic use cases of pervasive grids.
The first use case concerns simple accesses to grid monitoring information

from mobile devices. This allows administrators and users to check the state of
their resources and jobs when they are out of office. This does not modify the
constraints of any of the two computing areas and the problem is limited to
interoperability and adaptation issues.

The second use case concerns the emergency situation described in [2]: “A
crisis management team responds to a chemical spill by using local weather
and soil models to estimate the spread of the spill, determining the impact
based on population location as well as geographic features such as rivers and
water supplies, creating a short-term mitigation plan (perhaps based on chemical
reaction models), and tasking emergency response personnel by planning and
coordinating evacuation, notifying hospitals, and so forth.”.

This use case has not been described in more details. However, it implies a lot
of interesting issues relevant in a pervasive grid context and should be detailled.



Fig. 1. A pervasive grid architecture for emergency use case

We can detail some of the interaction between the grid infrastructure and
the external pervasive infrastructure:

a. Sensors must be deployed over the chemical spill scene, probably organized
in had-oc network.

b. The local population must be located by their mobile phones and must be
alerted with SMS.

c. The emergency units must be coordinated by their PDA.
d. The hospitals must be alerted and must provide the mitigation plan through

the Internet.
e. A geological expertise center must provides geological maps and associated

services able to estimate the spread of the spill.
f. The weather center must provide measures and predictions.
g. Local sensors, like weather vanes, must be used to obtain local accurate mea-

surements.

This use case presents great interests and challenges:

– It is highly time-constrained while requiring very intensive computations.
– It involves safe, adapted and relevant content delivery to mobile devices.
– It involves on-demand integrations of scattered sensors devices.



Another use case of pervasive grid in emergency situation has been presented
by Pierson in [3].

Obviously, existing grid solutions can not handle such use cases from many
point of views. The peculiar aspect we are interested in is the distribution
decision-making. In this use case, the most crucial decision concern the data and
services provided by the geological center. Initially, it is either outside the grid
in the center, or inside the grid at an arbitrary location, probably not adapted
to the current situation. If these data and services are not optimally distributed
and used over the grid, the estimation of the spread of the spill might take too
much time, leading to irreparable environmental and sanitary consequences.

However, these decisions are very difficult to make because they depend on
many parameters, for instance:

– The topology and capability of the grid and the characteristics of the services:
Resource consuming services must be deployed on high-performance nodes,
key services must be replicated as much as possible...

– The location, number and characteristics of the different actors: If the sensors
are very numerous and produce very large sets of data, the services must be
deployed close to them; If the data produced by the services are very large,
the service must be deployed close to the consumers...

– The global size of the involved area: If the spill is very local, only one instance
of the services might be the optimal solution; If the area is at country-scale
the services might need to be replicated all over the network.

– The size of the used data: If the used maps concern a limited area, only one
instance can be sufficient; If the maps are very large and fine grained, they
might be not storable on a unique node, and thus must be distributed and
replicated.

This (not exhaustive) list shows that this distribution decisions are numerous,
crucial and very difficult.

1.3 Decision-Making Support In Pervasive Grid

Distribution decisions concerns all grid resources: data, databases, services, hosts...
The three main problems are:

– Replication: How many instances of each resource is needed?
– Placement: Where these instances must be put?
– Selection: Which instance must be select when the resource is requested?

As the configuration can vary from a situation to another, the decision-
making process can not be done beforehand by the developers and adminis-
trators, but rather at run time to suit actual specific constraints. Moreover, as
number of highly heterogeneous devices must be instantaneously integrated, the
grid infrastructure can be suddenly thrown of balance: parts of the architecture
might need to be reorganized as fast and optimally as possible to suit the new
grid configuration.



To tackle with this kind of situations, QoS management solutions are manda-
tory. But, even with a powerful QoS management, if the distribution decisions
are not optimal then the inner activities of the grid are not optimized. Conse-
quently, the time constraints might not be satisfied.

Moreover, in a pervasive grid, the number of services will dramatically in-
crease. In this context, the optimization of the whole service oriented architecture
will rely on the optimization of each service. Each of them will have to face high
dynamicity and heterogeneity. Consequently the decision-making support will be
need at each level of the architecture and must be adaptable to several contexts.

To achieve optimality, decision-making processes in a pervasive grid must
take into account several aspects:

– The infrastructure topology and condition: communication, computation
and storage capabilities...

– The characteristics of the task: communication, computation and storage
needs...

– The objectives to be achieved: End-user response delay, load balancing, lim-
itation of financial costs...

Moreover, decision-making supports have some constraints:

– Profitability: The ratio profit/cost must be satisfactory.
– Usability: It must be exploitable by the other services with the less effort

possible.
– Adaptability: It must be able to face any need in any situation.
– Accuracy: Obviously.

As a matter of fact, existing grid middleware are designed to deal with quite
static and stable resources with no real-time constraints. Consequently, they lack
of support for distribution decision-making to handle the dynamicity, adapta-
tivity, reactivity (and even proactivity) required by pervasive grid use cases.

In this paper, we propose a decision-making support service designed to han-
dle all the presented issues.

The rest of this article is organized as follows. First in section 2, we present
the existing decision-making supports provided by grid environments and their
limitations. Second, we describe our proposal in section 3 and analyse some
experimentations in section 4. Finally, we discuss our proposal in section and
conclude our article with perspectives in section .

2 Related Work

Decision-making in existing grid environment is mainly supported by the moni-
toring systems.



2.1 Monitoring Systems

The identification of relevant metrics for grid environment and measurement
methods has been made by the Network Measurements Working Group of the
Global Grid Forum in [4]. Recent developments in grid infrastructure have lead to
effective tools providing the indexing of all the hosts, data and services available
in the network, such as the Monitoring and Discovery Service of Globus [5] which
is based on the GMA.

The Grid Monitoring Architecture (GMA) responds to the main constraint
of grid context which is users and resources dynamicity. The GMA-compliant
grid resource monitors differ by the kind of entities they manage. MDS [5] and
R-GMA [6] allow to monitor physical resources like CPU power and storage
when other monitors like SCALEA-G [7] allows managing software resources
too. They differ also by some implementation considerations. First, the stored
information at the top level of the architecture: In MDS, only resource avail-
ability is mentioned. Users interested by an available resource must then request
more information from the local levels of monitoring. The second difference is
about the storage format and query language. In R-GMA, storage is imple-
mented like a virtual relational database queried with an SQL-Like language,
when in SCALEA-G[7], information is stored in an XML format and queried
using Xquery language. MDS stores resource information in an LDAP-like di-
rectory.

Another approach is adopted by the Network Weather Service [8]. It is able
to capture the condition of both network and hosts. It can provide the raw
measurements of the classical metrics as well as forecasts based on aggregations
of the set of raw measurements. NWS is not a service: Its integration into the
grid service oriented architecture is limited as well as its usability.

Nevertheless, those monitoring system are designed to produce and deliver
measurements efficiently. They are too low-level to be really usable by any service
as a support for decision-making: Developers have to deal with raw metrics such
as latencies or CPU availabilities which are far from their real and immediate
concerns. Using these metrics separately is inadequate to take adapted complex
and accurate decisions, taking into account all the aspects presented before. This
implies a considerable effort from the developers and thus presents expertise
issues. From our point of view, raw network metrics are well relevant to low-
level tasks like packet routing that have simple goals well identified. In grid
environment, the tasks are in fact services invocations. But these services have
complex and diverse goals and behaviours.

Moreover, in most cases, several monitoring system must be used to obtain a
full view upon the network. For instance MDS and NWS must be used together
to have a complete monitoring of both hosts and communications. Unfortunately,
each of these systems is very expensive in term of resource consumption.

To conclude, monitoring systems are not usable enough and too expensive to
be fully profitable.



2.2 Network Distances

An alternative to monitoring system providing several raw metric measurements,
is the concept of distance. Distances are a wonderful tools to support decision-
making: they are simple and refer of real life concept. Thus they are widely
usable by anyone in intuitive ways, facilitation decision-makings.

Several Distance Vector protocols have been implemented for routing of
packet-switched networks in computer communications, as in, for example, the
Routing Information Protocol for Internet traffic. Here, the concept of distance is
actually the number of hops from an end point of the network to another. Since
then, this concept has often be reused, not only for routing (RIV v2, IGRP,
EIGRP, OSPF,...) but also for very different purposes such as data manage-
ment, network topology discovering, resource brokering, nodes clustering, etc.
We do think that the popularity of this concept comes from its similarity with
our real world. So it constitutes a precious help in the understanding of the
network and thus in the elaboration of decision making process.

A good illustration of distance usefulness for decision-making is presented by
Karlsson et al. in [9]. It proposes an evaluation framework for replica placement
algorithms and a rather complete survey on this topic with several algorithms
comparison. They define the distance as “a metric such as network latency,
number of network hops, or total link cost”. Most of the listed algorithms use
a notion of distance. But this notion is always restricted to a representation
by a single raw network metric. An use case of distance in grid environment is
presented in [10]. The authors present a method for automatic nodes clustering.
Distances are represented by the minimum RTT and are used to map the hosts
to a geometric space.

The main topic using distance concerns Distance Map Services. They aim at
providing a map of the physical network architecture. These maps are graphs
where the vertices are the hosts of the network and the weights of the edges
are computed thanks to a distance function. The main goal of these works are
to define scalable software architectures meant to provide an estimation or a
prediction of the distance between all the hosts of a network while minimizing
the number and cost of measurements (which can be very expensive). Most of
them base their distance computation on network latency which is the easiest
and one of the most inexpensive to measure. For instance: Francis et al. with
IDMaps in [11], Eugene et al. with the Global Network Positioning (GPN) in
[12] and Coates et al. in [13]. Few works are able to integrate other network
metrics. For instance IDMaps can integrate the bandwidth “when possible”, but
do not give any further details on how this should be done.

An observation is related to the use of the metrics that are not related to
the network itself but rather to the characteristics of the hosts. As a matter
of fact, metrics such as CPU or disk or memory are never considered in any
of these works although they are important in many cases. Obviously, CPU
capabilities and loads have a major impact on computing tasks performances.
Moreover, some other tasks, such as database query optimisation, need advanced
monitoring information such as disk throughput or memory capacity and load.



Advanced Distance Map Service should be able to take these host metrics into
account in the distances they provide.

To conclude, Distance Map Services focus on measurement accuracy and de-
livery effectiveness and are based on a single metric, most of the time the latency.
Unfortunately, they are not enough adaptable to fully support any decision-
making process and thus to be fully profitable.

To sum up, both raw monitoring systems and Distance Map Services are in-
adequate to fully support decision-making processes as needed in a pervasive grid
environment. Our proposal is a new service able to provide fully adaptable dis-
tances in an easily usable way, well integrated into service oriented architectures
and thus ensuring the most profitability possible.

3 NDS: The Network Distance Service

Our purpose is to define a method to design made-to-measure network distances
for any given task to support any distribution decision-making in pervasive grid
environment. We call task an interaction between hosts of a network. Generally,
it corresponds to the invocation of one service. But it may be more basic tasks
such as data retrieval or storage. Such distances are meant to be more usable
than raw metrics and more relevant than the distance provided by Distance Map
Services.

The computation of our distances is based on the measurement of different
raw metrics that can be provided by any monitoring systems. This computation
has been embedded in a Web Service developed with Globus Toolkit 4: the
Network Distance Service.

3.1 Metric Model

According to the GGF NM-WG in [4], a metric is a quantity related to the
performance and reliability of the Internet. More precisely, a metric is a primary
characteristic of the Internet, or of the traffic on it. A metric is the characteristic
itself, not an observation of that characteristic. A measurement is an observation
of a metric. Measurements may be either raw or derived. Raw measurements are
something that can be measured directly, such as measuring latency using ping.
Derived measurements are measured indirectly, and might be an aggregation or
estimation based on a set of low-level measurements. For convenience purposes,
we consider that a metric is a primary characteristic measured with a particular
method. For instance, the last observation of the latency is one metric and the
mean of all the available observations of latency over the past day is another
metric.

We call either observation or measure the actual value related to one partic-
ular metric. We note M the set of metrics handled by the NDS server.

The metrics we use in this article are:

– the bandwidth: BW



– the latency: L
– the CPU capacity: CPUc
– the CPU availability: CPUa

The observation of the network metric m from the host i to the host j is
noted mi,j . The observation of the host metric m for the host i is noted mi.

One can note that monitoring services can not provide observations of net-
work metrics from one host to itself. These peculiar values must be configured
by the user: Here, we decide to have

∀i, BWi,i = ∞ and Li,i = 0

because we want to consider that the cost of local data transfer is null (in term
of network usage) with the compound metrics we define in section .

Integration into NDS: NDS must be able to use the measures provided by any
monitoring tools, while being easily usable. Thus monitoring tools are accessed
through command lines execution. Then, no wrapper has to be developed and
the integration of a new metric, or even a new tool, is done through a simple
JNDI configuration file. The only requirement is that the monitoring tools must
by queryable from the execution host of NDS. A metric is described by:

– Its name
– Its description
– The description of its parameters
– The command line executed to retrieve its measurement
– The type of the measurement
– The value if mi,j for network metrics

Here is the declaration of the TCP latency measured by NWS:

<parameter>

<name>

metrics

</name>

<value>

NWSlatencyTcp

The amount of time required to transmit a TCP message

Parameters: %P1, %P2 = IP or name of targets, use %Src and %Dest

nws_extract latencyTcp -n1 -h0 -fMeasure -N NWSnameServerIP %P1 %P2

double

0

</value>

</parameter>

3.2 Compound Metric Model

As a matter of fact, service invocations are generally composed of three steps:



1. The client sends a request to the service with its problem data.
2. The service computes the response.
3. The service returns the response data to the customer.

Actually, this is well adapted to a large diversity of computation tasks, such as
multimedia contents adaptation or data mining or database request. The steps 1
and 3 correspond to data transfer across the network while the step 2 corresponds
to a computation by a host (or a cluster hidden behind this host).

According to the task, one step can be ignored in the distance computation.
For instance a simple database “select” query does not involve important request
data and thus the step 1 might be irrelevant. On the other hand for a basic data
transfer, the step 2 and 3 should be ignored. One can note that if the task is
very simple, for instance a time service, none of these three steps are important.
As a matter of fact in that case, our method is practically useless.

Now we will see how we can model simple compound metrics representing
the cost of a data transfer, the cost of a computation and the cost of any service
invocation.

DTC: First, we have to build a compound metric called DTC, for Data Transfer
Cost. It is involved in the steps 1 and 3 and must reflect the cost to transfer a
piece of data from one host to another according to its size x and the network
capacity and condition. This time can vary according to many parameters, such
as the protocol used, the MTU, the client and server configuration... We will
define a basic metric here only based on the main parameters and on a raw
TCP/IP data transfer. According to [14], “the Raw Bandwidth model using
NWS forecasts can be used effectively to rank alternative candidate schedules”.
Then, we decide to base our function on it:

∀(i, j) ∈ V × V, DTCi,j(x) =
x

BWi,j

Actually, we observe that the size of the data does not influence only the
distance itself, but also the relevance of the different metrics: Latency is the key
factor about small size data, whereas Bandwidth is the key factor about large
ones. The integration of the latency in our distance function is done according to
the TCP/IP protocol: Opening and closing the connection needs 3 round trips
(respectively SY N → SY N/ACK → ACK and FIN → FIN/ACK → FIN).
Then we obtain:

∀(i, j) ∈ V × V, DTCi,j(x) = 3× (Li,j + Lj,i) +
x

BWi,j

CTC: Second, we have to build a compound metric representing the Computa-
tion Task Cost, noted CTC. It is involved in step 2 and must take into account
the complexity of the computation and the computing capacity of the target
host. Basically, we can represent this cost by:



∀i ∈ V, CTCi(x) =
x

CPUci × CPUai

where x is the number of computation cycle needed by the task. One more
time, this representation is very basic and must be refined to fit more accuracy
needs as it depends on several host characteristics such as architecture, OS, bus
frequencies, buffers size, scheduler configuration, etc.

SIC: To be the more close possible to the concerns of the developers and ad-
ministrators, we have built another compound metric representing one Service
Invocation Cost, noted SIC. It is defined by:

∀(i, j) ∈ V × V, SICi,j(x, y, z) = DTCi,j(x) + CTCj(y) + DTCj,i(z)

where x is the size of the query to the service, y is the number of computation
cycle needed by the task, and z is size of the response.

The relevance of this cost is far from being obvious. Indeed, it assumes that
CTC and DTC are comparable (from the same magnitude)... But this assump-
tion has no insurance. Nevertheless, we will see that even without this insurance,
our solution presents accurate results.

Integration into NDS: The important aspect is that any new compound
metric can be integrated in our service in the same way as raw metrics. It can
use both raw metrics and other compound metrics. Here is the declaration of
DTC:

<parameter>

<name>

compoundMetric

</name>

<value>

NWSDTC

Data Transfer Cost based on NWS measurements

Parameters: %P1, %P2: src and dest; %P3: size of the data

3*( NWSlatencyTcp(%P1,%P2) + NWSlatencyTcp(%P2,%P1) )

+ %P3/NWSbandwidthTcp(%P1,%P2)

3

double

</value>

</parameter>

3.3 NDS Queries

The NDS queries are composed of three parts:



Sources and Destinations: The set of hosts involved in the decision. The
sources represent the clients and the destinations represent the resources.

Task Properties Set: The set of parameters involved in the computation of
the distances that are not pure metrics. It is just a set of named values:

TPS = {< name[= value] >, ..., < name[= value] >}

Distance Function: The real-valued function that gives the final value of the
distance between two nodes. We note it:

df : V × V → R

It is a nonlinear combination of observations of metrics and values in TPS.
This function is the core of the distance computation. It must be relevant to the
aspects the user wants to assess. Generally, its result must tend to zero when the
reflected performances tend to the perfection, as distances generally represent
costs and algorithms generally tend to minimize it.

Example of query for the selection of a matrix multiplication service
.

One service of the host alice.dummy.fr must select between two available
services ran on the hosts bob.dummy.fr and carol.dummy.fr.

– The source is {alice.dummy.fr}, the destinations are {bob.dummy.fr, carol.dummy.fr}.
– The properties of this task are n, m and p where n×m and m× p are the

size of the multiplied matrices. For instance, the TPS should be:

TPS = {< n = 1000 >, < m = 500 >, < p = 2000 >}

– Then, according to the matrix multiplication algorithm and the size of the
result matrix, the distance function should be:

df(i, j) = SICi,j(n×m + m× p, n×m× p, n× p)

The corresponding client side code in JAVA is:

// Declaration of the invocation message

CSrcDestTaskPropertiesDistanceFunction ftsidcf

= new CSrcDestTaskPropertiesDistanceFunction();

// Declaration of sources and destinations

String sF1[]={"alice.dummy.fr"};

String sT1[]={"bob.dummy.fr, carol.dummy.fr"};

CSrcDestSet fts = new CSrcDestSet(sF1, sT1);

ftsidcf.setSrcDestSet(fts);



// Declaration of TPS

CNamedValue ids[] = new CNamedValue[3];

ids[0] = new CNamedValue("n", 1000);

ids[1] = new CNamedValue("m", 500);

ids[2] = new CNamedValue("p", 2000);

ftsidcf.setTaskProperties(new CTaskProperties(ids));

//Declaration of df

ftsidcf.setDistanceFunction("SIC(n*m+m*p, n*m*p, n*p)");

// Retrieving of the distances

CDistance ftd[] = ndsPT.getDistances(ftsidcf).getDistance();

int bestDest;

if ( ftd[0].getValue() < ftd[1].getValue() ) bestDest=0;

else bestDest=1;

System.out.println(ftd[i].getSrc()+" is closer to "+ ftd[i].getDist());

Please note that this code is above all verbose due to WSDL specification and
that it will be no more complex with a very complex distance: The declaration of
TPS and df values are rather simple actually and the rest can be simply pasted.

4 Experimentation

These experimentations illustrate how NDS can be used as an actual decision-
making support for any given service, leading to optimal decisions in the three
problems presented before: Replication, Placement and Selection.

4.1 Context

Our experimentations are made on the Grid5000 [15] with 19 nodes from 7
sites distributed all over France: Lyon (3+3 nodes), Rennes (2 nodes), Orsay (2
nodes), Sophia-Antipolis (2+2 nodes), Toulouse (2 nodes), Nancy (2 nodes)
and Lille (1 nodes). The sites Lyon and Sophia-Antipolis have nodes from
two different clusters, with slightly different capacities.

V = { node-36.lille,
node-2.lyon, node-31.lyon, node-37.lyon,
sagittaire-13.lyon, sagittaire-18.lyon, sagittaire-44.lyon,
grillon-20.nancy, grillon-39.nancy,
gdx0039.orsay, gdx0077.orsay,
paravent74.rennes, paravent99.rennes,
helios51.sophia, helios52.sophia,
node-56.sophia, node-85.sophia,
node-25.toulouse, node-6.toulouse }

Our experimentation are based on SIC values, which is the compound met-
ric closest to services concerns. SIC takes three parameters. As we want to



remain as general as possible, these parameters have been set to all the possible
combinations of the values in {1000, 100000, 10000000}.

For instance SIC(1000, 100000, 10000000) represents the cost of the invo-
cation of one service taking 1000 bytes of input, having 100000 cycles of compu-
tation and having 10 Mbytes of output, just like a simple DB select query: the
query itself is short, its treatment is not very CPU expensive, but the returned
data is very large.

Thus, all services behaviours have been tested (few IO but a lot of compu-
tation, a lot of input but few output, etc). This allows to analyse the accuracy
of our solution without being limited to one specific case.

The objective of the decisions is to optimize the response time. The replica-
tion and placement are optimized assuming that the distribution of the requests
over the hosts is uniform and that the services can be placed on any of them.

4.2 Validation

The validation of the decisions proposed by NDS is done by a comparison the
real times needed to achieve the corresponding operations. We have implemented
a Fake Service to obtain these times. It is placed on each hosts and takes three
parameters corresponding the parameters of SIC: x, y and z. The Fake Client
sends x random bytes to the Fake Service; Then this one makes y divisions of
double typed variables; Finally, z random bytes are returned to the client. The
time needed to achieve this operation represents the time needed to achieve a
real operation with a real service having the same kind of behaviour. The time
needed to complete the whole operation is designed by Experiment Invocation
Time.

As we use 19 nodes, the matrices we use (L, BWS, cf , ...) are too large to
be presented here (and to be comfortably readable). Consequently, the results
are presented within figures.

4.3 K-centers problem

Actually, the problem of placement is a classical graph problem, namely the “k-
centers problem”. This problem can be defined as:

Given a set V of points in a metric space endowed with a metric distance
function df , and given a desired number k of resulting clusters, partition S into
non-overlapping clusters C1, . . . , Ck and determine their “centers”

µ = {µ1, . . . , µk} ⊂ V so that score =
∑
i∈V

mink
j=1 df(i, µj) is minimized.

In our scenario, k is the number of instances of the service we want to place,
while µ1, . . . , µk are their optimal location. We show in [16] how properties of
the distance produced by NDS can be validated to ensure that we have a “metric
distance”.

NDS imbeds a trivial algorithm to solve the k-centers problem and computes
the “score” of each possible solution.



4.4 Replication

The first of our problems is to decide how many instances of the service is
optimal. This is achieved by comparing the best result of the k-servers algorithm
for each possible value of k. The figure 2 shows these results for two different
TPS:

(1) a CPU expensive configuration: x = 1000, y = 10000000, z = 1000
(2) a communication expensive configuration: x = 10000000, y = 1000, z =

10000000

Fig. 2. K-servers best scores according to k

One can make some observations on the figure 2:

– The results based on NDS’s SIC distances are very representative of the
real results in both cases.

– The optimal number of instances of communication expensive services is
7. More replicas do not lead to any improvement. This corresponds to the
number of sites.

– CPU expensive services (or rather communication cheap services) do not
need to be replicated.

Actually, the interesting aspect here is that one can decide to deploy, for instance,
only 4 services in the case (2) because it represents a sufficient improvement in
the given situation. Moreover, in any situation the improvement from k = 7 (the
number of sites) to k = 6 might not be enough important to justify another
deployment. This is due to the fact that Lille have only one host and thus does
not need one dedicated service.



4.5 Placement

The second of our problems is to decide where to place the different instances.
The table 1 shows the decisions indicated by NDS and the best experimental
decisions in the two cases presented before for k = 1 in the case (1) and k = 6
in the case (2). The accuracy is computed by the difference of the experimental
scores of the solution proposed by NDS and of the real best solution, normalized
to obtain a percentage.

Table 1. placement decision accuracy

case accuracy µi by NDS’s SIC Experimental µi

(1) 100.00% sagittaire-18.lyon sagittaire-18.lyon

(2) 99.68% node-25.toulouse,

node-56.sophia,
paravent99.rennes,
gdx0077.orsay,
grillon-39.nancy,
sagittaire-44.lyon

node-6.toulouse,
helios51.sophia,
paravent74.rennes,
gdx0077.orsay,
grillon-20.nancy,
node-31.lyon

One can make some observations based on the table 1:

– The decisions proposed by NDS are very accurate.
– The differences concerns hosts inside the same site. Consequently, they can

not be considered as real “mistakes”.
– The site excluded from the deployment is Lille, as expected.

More globally, this placement decision method has been tested for all the
possible combinations of TPS and all k ∈ [1, 19]. Our method achieves a global
mean accuracy of 94.26%. It ranges from 100.00% to 21%, which might seem
to be rather bad. Actually, all the worst accuracies concerns TPS involving the
lowest size 1000. More especially x = y = z = 1000 shows the very worst results.
In fact, the execution time of this kind of task is around 5ms: at this level,
even the timing is not accurate and results are in fact quite random. Actually,
distribution optimizations are not relevant at such a granularity.

4.6 Selection

The third of our problems is to decide which of the instances must be used
for a given invocation from a given client host. This problem can be solved by
sorting the SIC distances from the requesting host to the target instances: The
lowest distance points out the best one to invoke. The figures 3 and 4 show the
ranked SIC values and the corresponding experimental invocation times from
paravent74.rennes to all the hosts in both cases (1) and (2).

One can make some observations:



Fig. 3. Experimental Invokation Time and NDS’s SIC distances from
paravent74.rennes in case (1)

Fig. 4. Experimental Invokation Time and NDS’s SIC distances from
paravent74.rennes in case (2)



– The ranking given the SIC values corresponds very well to the real ranking.
More especially, the best server hosts are perfectly selected.

– With CPU expensive services (1), the results are very close. This is due to
the homogeneity of the hosts in term of computation capability. In spite
of this, the ranking based on SIC are very well representative of the real
performances.

– Moreover in this case (1), the hosts from Nancy are under-rated by NDS: This
might be due to CTC which considers CPU frequencies only, whereas other
characteristics are influencing, like cache size or bus frequency. Although
CTC is sufficient in the general case, another more detailed compound metric
can be declared if necessary, as soon as the raw metrics are available.

– With communication expensive services, the results are more varied and the
ranking near to the perfection.

– The ranking is not the same in the two case (1) and (2). For instance, the
hosts from Orsay are better ranked in the case (2) than in the case (1):
This is because the hosts from Orsay are less powerfull but better connected
than the hosts from Lyon. This is perfectly detected by our method whereas
this kind of situation is hardly undetectable by either intuitive means or the
existing decision supports.

5 Discussion

First of all, one can make some observations about the compound metrics: Ac-
tually, even if their accuracy has been shown, they are quite simple. For instance
CTC implies that the behaviour of the task is deterministic and predictable. As a
matter of fact, a lot of algorithms, and more particularly approximation ones, are
not so predictable. Nevertheless, our method allows deciding the best behaviour
to model. As soon as one has minimal information on the complexity of the used
algorithm, one can decide to assess a mean (or maximum or minimum) cost and
to model it. On the other hand, one can have complete information about the
algorithm behaviour, but this one is complex and involves several parameters.
In this case, it is absolutely possible and easy to model it into an NDS’s dis-
tance, even with non-functional parameters like financial aspects. In our future
work, we will investigate whether it is possible to use Web Service Distributed
Management to define the distance function to use and whether these distance
functions can be built automatically.

Second, one can make some observations about our experimentations: They
may seem to be very peculiar due to the set of assumptions (uniform requests
pattern, sizes fixed to 3 static values). Actually, these parameters do not influence
the relevance of the produced distance, but rather the feature of the used k-
centers algorithm. Whereas taking into account varied request probabilities for
each host does not seems to be very difficult, tackling with a wide range of
continuous sizes might be difficult. This implies to be able to compute a primitive
of the distance function and is an important part of the future works.



Moreover, Grid 5000 is quite homogeneous both in term of computing and
communication capacities. Actually, decision-making are easier in very heteroge-
neous infrastructures because the different decisions lead to very different perfor-
mances. The more the infrastructure is homogeneous, the more the performances
are close, making the distribution decisions very difficult to be optimal and in-
creasing the risk of mistakes. Indeed, as our decision-making support can lead
to optimal decisions in homogeneous environment, there is no doubt that it will
lead to optimal decisions in heterogeneous environment.

Third, another observation is about the cost of using our service: As it uses
the measurements from monitoring systems like MDS and NWS, it might be
considered as expensive to use as them. Actually, the invocation of NDS itself is
not expensive, especially compared to the cost of the underlying monitoring sys-
tems. Nevertheless, NDS is much more usable than classical monitoring systems,
particularly the ones like NWS which are not integrated to the grid. Moreover,
NDS is much closer to the concerns of the administrators and developers. Thus
it is more in position to be used by all the other services at each level of ser-
vice oriented architectures. As a matter of fact, one of the advantages of NDS
is that it enhances the profitability of the used monitoring systems. Moreover,
this usability has been reinforced by the development of a JAVA GUI: While
developers can invoke NDS through the classical WS API as shown is section
3.3, the administrators can use the GUI to make the replication and placement
decisions.

Finally, we have only tested one-to-one task. Obviously, our method can be
used to optimize complex task involving several hosts like, for instance, content
adaptation chains. But although the distances we produce are comparable and
rankable, it is possible that the sum of several distances along a path leads to
an accuracy loss.

6 Conclusion and Future Work

We have presented a novel distribution decision-making support service called
the Network Distance Service. This service has been designed to allow the inner
activities of grids to fit the requirement of pervasive computing: heterogeneity,
dynamicity and unpredictability. The importance of these requirements has been
presented on an emergency use case involving critical time-constrained and in-
tensive computations. Existing solutions do not fit onto this kind of context.
NDS enhances monitoring tools by providing distances adapted to a large range
of applications. It is meant to be profitable, usable, adaptable and accurate. The
embedment of a k-centers algorithm allows easily solving the main problems of
distribution: Replication, Placement and Selection. The accuracy and benefits of
our approach have been proved with some experimentation showing a concrete
use in a real grid environment.

The future works are threefold. First we will investigate how we can compute
the primitives of the distance functions in order to get independent from the
values of TPS. Second, we will investigate the accuracy of our solution in many-



to-many interactions. Finally, we will investigate how the compound metrics can
be embedded into Web Service Distributed Management and how the distance
functions can be built automatically.
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