
Context-Sensitive Security Framework for Pervasive Environments

Charles-Eric Pigeot, Yann Gripay, Marian Scuturici

LIRIS, INSA de Lyon∗

Villeurbanne, France

Charles-Eric.Pigeot,Yann.Gripay,Marian.Scuturici@insa-lyon.fr

Jean-Marc Pierson

IRIT, Université Paul Sabatier

Toulouse, France

pierson@irit.fr

Abstract

Pervasive systems enable us to have an overview of what

digital environments will look like in the future. Opportu-

nities given by pervasive systems, both in terms of applica-

tions and services to the user are manifold and very promis-

ing. From the user point of view, privacy and security of her

personal data is a real issue, which must be addressed to

make pervasive systems accepted. A wide adoption of per-

vasive systems can not be possible without an integrated

approach to security. We propose a model of security and

privacy for pervasive environments, integrated with an ar-

chitecture, namely PerSE, in which privacy is a main con-

cern and is at the core of the conception.

1. Introduction

Security and privacy in pervasive environments are two

key factors to make the technologies of these environments

accepted by most of the users. The omnipresence of de-

vices surrounding a user should bring her useful services,

depending on her needs, in a reactive way (after the user

has expressed her needs), or in a proactive way (anticipat-

ing her needs). We believe that those two characteristics

are essential to pervasive environments, as well as invisi-

bility (a user should not be aware of interactions between

devices) and non-intrusiveness (in her personal life).

However, each user might want to control precisely how

she interacts with her environment, i.e. which services or

data she wants to share and in which context. To this end,

she should have the possibility to define different context-

aware access authorizations on her data: for example, a user

may want to give access to her data only if she remains in

a specific room of a building, and only to users who are lo-

cated in her visually accessible neighbourhood. This exam-

ple is simple and may be extended to much more complex

conditions, but this kind of scenario is very likely to oc-

∗This research is supported by the Scientific Council of INSA Lyon

cur with the development of pervasive systems. A security

and privacy system for pervasive environments should then

enable a user to answer these three questions: Which re-

sources (data, services) I want to share? With who I want to

share these resources? And in which context (we’ll see later

how we define the context) I want to share these resources?

Therefore, security should be integrated between the dif-

ferent devices of a pervasive environment, but also into the

devices themselves to control the access to data and ser-

vices locally hosted. Moreover, the integration of security

should not affect performances, especially on mobile de-

vices where resources are limited.

As we’ll see in the next section, some works propose ac-

cess control for pervasive environments, but most of them

do not take the user context into account in a satisfying way,

though it should be central in pervasive environments, and

do not address some pervasive-related issues. Moreover,

some studies have shown that the perception of privacy in

pervasive environments varies greatly upon users and that

one of their main concern is the context in which they re-

main. Thus, there is a real need for proposing a user-centric

privacy solution for pervasive environments.

We propose a security model and infrastructure for per-

vasive environments, based on two levels of security, using

context-aware policies. Our solution may be seen as a step

toward the non-intrusiveness of the environment in the per-

sonal life. This article is organized as follows. Section 2

discusses related work. In Section 3, we present our the-

oretical framework on which we have designed our solu-

tion. Section 4 presents our infrastructure, the rule-based,

context-aware policies, and summarizes the process. In

Section 5, we study a use case and its resolution with our

solution. Section 6 presents implementation and evaluation

aspects of our work, and Section 7 discusses the contribu-

tions, and future work and improvements.

2. Related Work

Discretionary Access Control (DAC) and Mandatory Ac-

cess Control (MAC) were amongst the first access control

solutions. However the most used security model is now

Role Base Access Control (RBAC) [7], [18]. In RBAC,

roles are assigned to users, and the roles have permissions

on objects. RBAC is particularly well adapted to organi-

zations like hospitals, enterprises, etc. with a very precise

and predefined structure because it enables administrators

to define and specify security policies that maps exactly

the structure of the organization. Moreover, the concept of

associating permissions to roles instead of permissions to

users resulted in reducing administration costs. The authors

of RBAC defined 4 models [7], [18]: RBAC0, the basic

model with users, roles and permissions, RBAC1, which

defines role hierarchies, RBAC2, which defines constraints

on roles, users, permissions, and RBAC3, which gathers

RBAC1 and RBAC2.

Although these four models have proven their effi-

ciency and simplified greatly the security management for

structured organizations, RBAC do not address issues re-

lated to pervasive environments: dynamicity, lack of struc-

ture, distribution, and one of the most important, context-

awareness. For these reasons, other models have been pro-

posed: Bertino et al. present Temporal-RBAC [2] which

addresses temporal needs on RBAC with the introduc-

tion of time concepts and the support of periodic role en-

abling/disabling. This model was generalized by Joshi et

al. with GTRBAC [14] (Generalized Temporal RBAC) that

includes a set of language constructs for the specification of

various temporal constraints on roles (role activation, role

assignment, role permission, etc.).

Time management and dynamicity is an important fea-

ture for pervasive computing, but we believe that one of

the strongest requirement of a security and access control

system for pervasive architectures is the context-awareness.

It was introduced in access control by Covington et al.

([5], [6]) with environment roles in GRBAC (General-

ized RBAC), that allows context constraints on roles, i.e.

context-aware policies definition. However the use of the

context data is limited, and the formalization and defini-

tion of the context are not satisfying. Zhang and Parashar

present DRBAC [21], for Dynamic RBAC, which tackles

the dynamic access control needs for pervasive applications.

Context data are collected by a “Context Agent” for each

user, which triggers role transitions as context changes. But

this model does not address important issues about dynamic

and distributed access control. Hu and Weaver [10] present

a similar model to DRBAC for distributed Healthcare ap-

plications, and provide useful definitions and formalization

of the context. Our approach is quite similar, but we go

further in the definitions, formalization, and usability of the

context, which is the core of our approach.

Kumar et al. formally propose CS-RBAC [12], for Con-

text Sensitive RBAC, which enables RBAC to enforce secu-

rity policies dependent on the context of the attempted oper-

ations, the user and the object. However, the authors do not

provide any satisfying context model, and context is used

only as simple constraints. We believe that context can be

used much more efficiently to produce real context-aware

policies.

All these approaches tend to address problems related

to the needs for access control in pervasive environments,

but most of them don’t solve all problems. Other works

propose an integrated and secured architecture for pervasive

environments in which privacy is the main requirement.

Langheinrich [13] describes a secured pervasive archi-

tecture named pawS, in which privacy assistant carried by

users on their mobile devices negotiate the condition of data

use before calling services, but the description of user pri-

vacy policy becomes complex if the number of entities in-

creases. Hong and Landay propose Confab [9], an infras-

tructure for privacy-sensitive pervasive applications, that

provides several customizable privacy mechanisms to de-

fine metadata on data to protect: number of use, time to live,

etc. This approach does not deal with access control and

context awareness. The Daidalos [4] approach is based on

virtual identities of users (containing a subset of user data),

that are changed and generated depending on the context:

when two entities (a user and a service for instance) want to

cooperate, they first need to agree on the data to exchange,

as in pawS [13]. However, privacy preferences are defined

in a static way.

Security policies should be described in a standard lan-

guage, easily understandable and executable. Therefore, we

chose XML to represent and implement our security poli-

cies. Numerous works have been realized in this domain,

and XML has become a standard in this field. There are

some XML-based policy language, such as XACML [20],

WS-Policy [19], and SAML [17]. SAML defines an XML

framework for exchanging authentication and authorization

information to secure Web services, and relies on third-

party authorities for provision of “assertions” containing

such information, but is not designed to provide support to

specify authorization policies. XACML is an XML frame-

work for specifying context-aware access control policies

for Web-based resources. WS-Policy is used to describe

security policies in terms of their characteristics and sup-

ported features (such as required “security tokens”, encryp-

tion algorithms, privacy rules, etc.). In fact, WS-Policy is

a meta-language which can be used to create various pol-

icy languages for different purposes, and can be used to

define an access control policy. Moreover, XACML and

WS-Policy tend to become standards in security policy def-

inition.

We needed a XML-based language to implement our

policies, but we chose to define a new, simple XML syn-

tax instead of using an existing language, mainly for sim-

plicity and lack of time reasons. WS-Policy was too com-

plex and too expressive for our needs, and XACML, which

is very close to our XML syntax and semantic, generates

much heavier XML files due to its expressiveness. Any-

way, translation of our rules to XACML rules is simple and

may be done in a future work for more interoperability.

3. Theoretical Framework and Definitions

In this Section, we present the definitions and the frame-

work for our model.

Pervasive Environment: A set of devices acting to-

gether in order to satisfy a user with minimal intrusion.

Base: A meta-service running on a pervasive device, en-

abling it to share its local resources. Each base is in charge

of communications with other bases, in order to run in a

smart and optimized way distributed services.

Resource: We define a resource as a data or a service. A

data can be a value, a file, etc. A service is hosted on a base.

A resource can belong to a user or to a base.

Entity: Generic term for either a base, a resource, or a

user, i.e. the three elements that can interact with each other

in our vision of a pervasive environment.

Group of entities: We define a group of entities as a

gathering of entities (bases, users, resources).

Context Domain: The set of all possible context states

of the pervasive environment.

Context SubDomain: A set of states included in the

context domain (ContextSubDomain ⊆ ContextDomain).

Rule support: The context subdomain in which the rule

is applicable.

Communication Rule: A communication rule is de-

fined as an action to realize on messages coming from a

sending entity or a group of entity, and sent to a recipient or

a group of recipient, in a certain context. A communication

rule can be represented by the tuple:

RC = (α, σ, δ, γ)

{

α : action to do on the message

σ : sender of the message

δ : recipient of the message

γ : support of the rule

Resource Access Rule: A resource access rule is de-

fined as a permission or a group of permissions given to an

entity or a group of entities on a resource or a group of re-

sources in a certain context. A resource access rule can be

represented by the tuple:

RA = (ǫ, π, ρ, γ)

{

ǫ : entity to which the permission is granted

π : permission granted

ρ : resource on which the permission is granted

γ : support of the rule

Communication Profile: We define a communication

profile as the set of communication rules with the same sup-

port, i.e. that are valid in the same context. If p is a commu-

nication profile, ri a communication rule and Sri
the rule

support of ri, then:

p = {r1, r2, . . . , rn} ⇔ Sr1
= Sr2

= . . . = Srn

Resource Access Profile: We define a resource access

profile as the set of resource access rules with the same sup-

port, i.e. that are valid in the same context. If p is a resource

access profile, ri a resource access rule and Sri
the rule sup-

port of ri, then:

p = {r1, r2, . . . , rn} ⇔ Sr1
= Sr2

= . . . = Srn

PC is the set of all the communication profiles and PA is

the set of all the resource access profiles.

Security Policy: We define a security policy as the set

of every communication profile and resource access profile

defined by a user to protect her base. The way we define the

policies can introduce conflicts between the rules. In order

to have a non-contradictory policy, we define relations of

priority.

Rule Priority: Let A be the set of all the possible actions

on a message. We define on this set a relation of priority,

noted >. Intuitively, if α1 has a higher priority than α2 and

if the two actions are applicable in the mean time, then the

action α1 will be applied.

Profile Priority: We define the function Priority Φ:

Φ :
PC −→ [0, 1]
pc 7→ k

The value of this function for a profile represents the pri-

ority of this profile, defined by the user. If Φ(p1) > Φ(p2),
then the rules in p1 will be chosen in priority compared to

the rules of p2 if a conflict occurs.

4. Privacy Architecture and Processes

4.1. Requirements for a secured pervasive
architecture

Based upon the model we described in the previous

section, we designed a security and privacy infrastruc-

ture for pervasive environments. This architecture, com-

posed of three modules, is integrated in an existing perva-

sive environment named PerSE [8] (for Pervasive Service

Environment) detailed in the next section.

The security infrastructure we propose is based on a two-

level filtering system: communication filtering and resource

access control. These two security levels use security poli-

cies, composed of security rules defined by the user, to de-

rive the access decision. In our infrastructure, two modules

are dedicated to this filtering, and the third module decides

which policy to use depending on the context. Indeed, we

believe that a strong requirement for a secured pervasive

environment is the context-awareness: a user might want to

change her privacy policy for different contexts, so in order

to limit interaction with users, the system should proactively

enforce the user-defined policy corresponding to the current

context situation.

Some works have tried to study the user perception

toward security and privacy threats in pervasive environ-

ments. Beckwith [1] concludes from his studies that users

have a very limited perception of potential threats and risks

of these technologies. For example, electronic badges are

not seen as a potential means to follow every movement of

a user, but only a means to get to certain places and to open

doors. Beckwith makes another important conclusion: the

definition of security and privacy differs greatly from one

user to another, and every user assesses privacy depend-

ing on different parameters and criterions. Moreover, the

studies of Dey et al. [15] (and some others studies [11],

[13]) clearly reveal that the quantity of personal information

given in response to a request depends both on the identity

of the request emitter and on user current context.

For these reasons, we decided to give to the user the op-

portunity to decide how the context is used in the security

policies, and in which context a security policy is valid,

that is to say which parameters she will use and which con-

straints she will put on these parameters. We will see in the

next sections how we defined a language to help the user to

describe a context.

4.2. PerSE

PerSE [8] represents our vision of a user-oriented perva-

sive environment, in which the user can access to resources

(services, data) hosted on various surrounding devices by

simply expressing an intention. Moreover, this platform is

proactive and non-intrusive, two main characteristics of per-

vasive environments.

As a part of the PerSE environment, each device has to

run a meta-service, the Base, enabling it to share its local

resources. The PerSE Base is in charge of communications

with other Bases, in order to run distributed services in a

smart and optimized way.

A PerSE environment consists of many independent

Bases, able to discover each other, and to send and receive

messages through different communication channels (LAN,

Wifi, Bluetooth) available on the devices.

In order to respond to user needs, a modeling of her in-

tention is necessary. The PsaQL language [3] enables the

user (or an application) to express her intention (called a

partial action) describing the services the user wants to use

and their possible location. The PerSE Base has then to

interpret this intention into a connected graph of services

meant to be executed (called a complete action).

The PerSE architecture (Figure 1) is composed of three

layers, corresponding to the three main functionalities of the

Base: Communication, Environment and Action. Between

and within these layers, we integrated our security infras-

tructure, composed of three modules.

Service Monitor

Action Processor

Action Resolver

Query Processor

Proactive Action
Trigger

Local Service
Monitor

Context Manager

Remote Service
Discoverer

Profile Manager

Local Service
Interface

Local Data Interface

Messenger

Base
Interface

R
e
so
u
rc
e
 A
cc
e
ss
 F
ilt
e
r

M
e
ss
a
g
e
 F
ilt
e
r

"Action" Layer "Environment" Layer "Communication" Layer

PerSE Messages Communication Intern call (method)Configuration

Figure 1. The PerSE Architecture

4.2.1 Communication Layer

The Communication layer is the lowest level layer and is in

charge of the communications of the PerSE Base with its

environment, that is to say other PerSE Bases.

The Local Data Interface and Local Service Interface

modules handle the physical access to the local data and

services of the Base. The Base Interface module is the local

access point for a user who wants to interact with the Base,

especially to start partial actions. The Messenger module

is in charge of the communications between the Bases, by

exchanging specific messages.

In this layer, the first security module, the Message Fil-

ter, acts as a filter on incoming and outgoing messages. In

the PerSE environment, the communications between the

different Bases rely on messages built with a specific struc-

ture (Figure 2). It is composed of two main parts: the header

and the data. The header is divided in four layers, each of

them containing information on the sender and receiver en-

tity: base, service of the base, user, etc.

BASE SOURCE BASE DESTINATION

SERVICE DESTINATIONSERVICE SOURCE

USER

COMMAND

DATA

Header

Data

Figure 2. PerSE Message Structure

By using this information stored in the message struc-

ture, the Message Filter can decide to stop the message or

to let it pass through. The decision is made by a communi-

cation policy enforcement, and this communication policy,

composed of communication rules, is defined by the user.

The Message Filter is both a Policy Decision Point (PDP)

and Policy Enforcement Point (PEP), since it renders autho-

rization decision and performs access control. We’ll see in

the next sections how the user can define such policies.

4.2.2 Environment Layer

The Environment Layer manages the local knowledge of

the Base on its environment. The Local Service Monitor

manages all the available local services. The Context Man-

ager handles both the access to the local context and the

distant access to other Bases context through context re-

quest. The Remote Service Discoverer regularly sends re-

quests to other PerSE Bases to maintain a local repository

of the available services hosted on distant Bases.

This layer manages and has access to local data and ser-

vices, so we decided to protect this access by a second filter,

the Resource Access Filter situated between the Environ-

ment Layer and the Action Layer. The Resource Access

Filter is an access controller: when a request from the Ac-

tion Layer occurs, the Resource Access Filter, by enforc-

ing a resource access policy defined by the user, decides

whether the request is legal or not. The Resource Access

Filter is a second PDP and PEP, since it makes decisions on

access control and enforce these decisions.

The last security component of the architecture is the

Profile Manager. Located between the two filters, it decides

which policy to use at the time of the request, depending

on the user context, and transmits this policy to the filters.

The context in which a policy is applicable is specified by

the user. The Profile Manager is the main module of the se-

curity architecture we designed, as it controls the two other

components. The two filters represent two different levels

of security, but it is possible to use only one of them. For

example, if the administrator decides that he doesn’t need

communication filtering, the Message Filter can be deacti-

vated. However, the Profile Manager as a Policy Admin-

istration Point (PAP) and Policy Decision Point (it decides

which policy to use) must be present and active in the archi-

tecture and thus can not be optional.

4.2.3 Action Layer

The Action Layer is intended to gather the request from

users or applications, and to execute actions to answer to

these requests. The Query Processor receives PerSE mes-

sages, containing requests, and answers to these requests by

obtaining the asked data in the Environment Layer. He also

receives partial actions, triggering a new action. The Proac-

tive Action Trigger watches over the context and maintains

a history of executed actions. It can also produce partial

actions proactively. The partial actions are transmitted to

the Action Resolver to be transformed, depending on the

context and the available services, in complete actions, ex-

ecutable by the Action Processor. The Service Monitor is

used to monitor the execution of local and distant services.

4.3. Rule-based Communication and Access
Control

User is the key actor of our security system. She can de-

fine security policies that will be applied on her Base. As we

saw in the previous section, two types of policies, enforced

at different levels in the architecture, can be defined, based

on two types of rules: Communication policies, composed

of communication rules, and resource access policies, com-

posed of resource access rules. To this end, we defined two

declarative languages to make easier the specification of the

rules for the user.

<communication_rule> ::= DO <action><communication_part>

<action> ::= allow | deny | drop

<communication_part> ::= ON <communication>

[USING <protocol>] <sender_part>

<communication> ::= incoming perse_messages | outgoing

perse_messages

<protocol> ::= ip | tcp | udp | icmp

<sender_part> ::= FROM <sender> [<destination_part>]

[<context_part>]

<sender> ::= all | <entity> | <group_of_entity>

<destination_part> ::= TO <destination>

<destination> ::= all | <entity> | <group_of_entity>

<group_of_entity> ::= ‘Group ’ <‘a’-‘z’,‘A’-‘Z’,‘0’-‘9’>

<entity> ::= <base> | <service> | <user>

<base > ::= ‘Ba-’ {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<service> ::= ‘Se-’ {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<user> ::= ‘Us-’ {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<context_part> ::= <inclusion> CONTEXTS <contexts>

<inclusion> ::= IN | NOT IN

<contexts> ::= <context_name> [‘,’ <contexts>]

<context_name> ::= {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}

Figure 3. Communication Rule grammar

The Communication Rules syntax is described by a BNF

grammar in Figure 3. Here are a few examples of Commu-

nication rules based on this grammar:

DO deny ON incoming perse_messages USING tcp FROM all

IN CONTEXT neighbourhood

DO allow ON incoming perse_messages FROM Us-12

IN CONTEXT temp_high

DO drop ON outgoing perse_messages FROM Us-12 TO Se-13

The first rule specifies that every incoming message us-

ing the protocol TCP should be blocked if the context de-

fined as “neighbourhood” is valid (see section 4.4 for con-

text definitions), whoever the user might be. The second

rule allows every incoming message from the user identified

as “Us-12” if the context defined as “temp high” is valid.

The action part of the rule describes which action to ex-

ecute on the incoming or outgoing message: allow (let pass

through), deny (stop the message and notify the sender of

this failure), and drop (delete the message without notifica-

tion). The communication part tells on what type of com-

munication the rule is valid: incoming message, outgoing

message, or others. Our architecture uses PerSE messages,

as described in the examples, but we can assume that evolu-

tions of the PerSE environment could introduce new types

of communications. An optional part of the rule is the pro-

tocol part specifying a certain type of network protocol.

After the protocol part are the two sender and receiver

parts of the rule. The receiver and sender can be either a

user, a service or a base, or a group of each of these en-

tities (groups are defined by the user as a set of entities).

Each entity has a unique identifier used to fill in the mes-

sage header fields (see Figure 2). For the moment, we trust

the incoming message, i.e. we consider that the data stored

in the fields are right and have not been modified during the

communication. We discuss at the end of the article the is-

sues related to this hypothesis. If the sender or receiver part

specify a group, then the system has to determine which

group the entity of the message belongs to before making

its decision.

The final part of the rule is the context part, which de-

scribes in which context(s) the rule is applicable or not ap-

plicable. We’ll see later in details how those contexts are

defined. If this part is absent, the rule is applicable what-

ever the context may be, and is then similar to a basic fire-

wall rule. If the context part is defined, the Message Filter

behaves like a context-aware firewall.

These rules are quite expressive, and they enable the ad-

ministrator to define a precise context-aware filtering policy

for the PerSE Base. Moreover, the language used to de-

scribe these rules is similar to a natural language, which

simplifies the expression of user preferences.

In the same way, we also defined a grammar to describe

Resource Access Rules (Figure 4), which are higher level

rules used to control access to local resources (data and ser-

vices). Resource Access Rules define permissions for enti-

ties or group of entities on a resource or a group of resources

in some contexts. When a request from a user comes at the

base, and after the Message Filter has decided whether the

message is allowed to go further, the Resource Access Fil-

ter, depending on the resource access rules, decides to pro-

vide the answer to the request or not.

resource_access_rule> ::= <subject> <permission_part>

<subject> ::= all | <entity> | <group_of_entity>

<permission_part> ::= <permission> DO <action_part>

<permission> ::= CAN

<action_part> ::= <group_of_action> ON <resource_part>

<group_of_action> ::= <action> AND <group_of_action>

<action> ::= everything | nothing | read | modify |

delete | execute | monitor | ...

<resource_part> ::= <resource> <context_part>

<resource> ::= all | {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<context_part> ::= <inclusion> CONTEXTS <contexts>

<inclusion> ::= IN | NOT IN

<contexts> ::= <context_name> [‘,’ <contexts>]

<context_name> ::= {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}

Figure 4. Resource Access Rule grammar

In the following examples , the first rule specifies that the

service identified as “Se-098” has the permission to modify

and delete the resource “img18.jpg” if the context defined

as “neighbourhood” is valid. This high level language is

easy to understand, even for a basic user.

Se-098 CAN DO write AND delete ON img18.jpg

IN CONTEXT neighbourhood

Ba-367 CAN DO execute AND monitor ON Se-13

IN CONTEXT low_battery

Se-665 CAN DO everything ON Se-13

IN CONTEXT people_in_room

4.4. Context and Profiles

A strong requirement that we have clearly identified be-

fore the conception of our model was the context aware-

ness. In a pervasive environment, a security policy defined

by a user should depend on the user’s context, and on con-

text information that seems important to her among the huge

quantity of contextual data that a pervasive environment can

gather.

Since all users don’t use context in the same way, we

choose to let the user herself define the context in which a

rule is applicable, so that among all defined rules, only a

subset will be applicable at the time of a request. We saw

that the last parameter of rule definitions is used to specify

the context of rules.

To define a context, we created a simple declarative lan-

guage (Figure 5), similar to the ones we defined for the

rules, but more powerful and expressive. This expressive-

ness enables the user to define precisely the context, using

every contextual parameter available she might want to use.

The need for such a language came when we had to chose

an interpretable language to express the context functions.

In Section 6, we explain why we chose perl to describe

a context function executable by the system to determine

automatically the context. However, if perl is a powerful

language, and quite simple for advanced users, it can be-

come very hard for a basic user who wants to describe a

context with her own words but is not used to languages

such as perl. We decided to define a simple language, simi-

lar to a natural language, to fill the gap between “low-level”

languages and contextual parameters, and “high-level” lan-

guages and parameters (temperature, location, etc. are high-

level expressions of contextual parameters), more under-

standable for a basic user.

A context has a name and a priority. The priority is a

number situated in the interval [0,1] and we’ll explain later

the role of this variable. A context definition uses many pa-

rameters, called contextual parameters, which correspond

to the type of information on the context. These parame-

ters are taken from the context of the caller base and the

local base. For instance, the contextual parameters used to

define a context may be the temperature, the lighting, the

<context>::= CONTEXT <name> WITH PRIORITY <priority>

USING <parameters > IS DEFINED BY <definition_part>

<name>::= {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<priority>::= 0.{<‘0’-‘9’>}
<parameters> ::= local_base | caller_base |

local_and_caller_base

<definition_part> ::= <context_condition>

[AND <context_condition>]

<context_condition> ::= <contextual_parameter> OF <base>

IS <relation>

<contextual_value>|<group_of_contextual_value>|

<contextual_parameter> OF <base>|<perl_expression>

<contextual_parameter> ::= temperature | lightning |

location | ... | trust

<base> ::= localbase | callerbase

<relation> ::= equal to | superior to | inferior to |

superior or equal to | inferior or equal to |

included in | ... | not in

<group_of_contextual_value> ::= contextual_value

[‘,’ <group_of_contextual_value>]

<contextual_value> ::= {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}

Figure 5. Context Definition grammar

location,. . . The user can specify a relation that links the pa-

rameter to the value: equal to, superior to, etc.

CONTEXT trusty

WITH PRIORITY 0.5

USING caller_and_local_base

IS DEFINED BY

trust OF callerbase IS superior or equal to 0.7 AND

location OF localbase IS equal to ‘room 203’

Figure 6. Example of Context Definition

In the example (Figure 6), a user defined a context named

“trusty”, and the context will be “trusty” when the location

of the local base is the room named “room 203”, and when

the trust mark (which we consider as a context parameter

we can calculate locally depending on the history of the in-

teractions with an entity) of the caller base is superior or

equal to 0.7. This is only an example among the numerous

contexts a user is able to define with this syntax.

As we saw, a rule is valid in a context, as specified with

the last parameter of rules which is the name of a user-

defined context. All rules applicable in the same context

are gathered in profiles related to this precise context: a pro-

file is a contextual security policy. A potential problem that

may occur is that at the time of a request, more than one

context are valid. At this moment, more than one security

policies are applicable for the request, and some conflicts

may occur between the rules of the policies. For this rea-

son, we have introduced the context priority: if two or more

contexts are applicable at the same time, the system will

choose the context, then the security policy, with the high-

est priority. The priority guarantees that only one policy is

enforced at a time. If two contexts have the same priority,

then the system will choose the one defined first.

If a conflict occurs between the rules in a security policy,

the conflict is resolved by the priority of action the user de-

fines. Indeed, some actions are more important than others,

and the user herself defines the importance of the actions:

for example, in a very secured environment, the user will

decide that the “deny” action on messages is more impor-

tant than the “allow” action. We forbid the definition of

two action with the same priority, to make easier and more

meaningful the decision made. Indeed, two actions with the

same priority would not be very coherent.

4.5. Summary

To make the understanding of our solution easier, we

propose an outline (Figure 7) that summarizes the process

of a request treatment by the security infrastructure.

When the request, encapsulated in a message, arrives on

a device (1) (a PerSE Base for example), the first filter, the

Message Filter, analyzes the request and asks to the Pro-

file Manager the profiles (the security policies) to enforce

(2). The Profile Manager asks its internal modules to gather

information about the current context, and determines in

which predefined context the bases are, by executing the

corresponding perl functions (3). It then gives the profiles

corresponding to the valid contexts to the Message Filter

(4). The Message Filter decides what to do on the incom-

ing message, by enforcing the given policies and applying

the conflict resolution (5) by comparing priorities of profiles

and rules.

* Data

Header

Request Message

1

* Data

Header

Profile Request

2

PROFILE MANAGER

RESOURCE ACCESS FILTER

MESSAGE FILTER

Request route

Communication between the modules

Resource

Profiles to use
Rules execution5

Rules execution10

4

6

Profile Request

7

Profile Determination

3

Profiles to use

9

8

Access to resource

11

* Data

Header

6 Bis

Message authorized

Message rejected

Request rejected

11 Bis

Figure 7. Request treatment process

If the message is not blocked (6 bis), then the message

is authorized to enter the base (6), and the Resource Access

Filter acts in the same way as the first filter: it asks the

Profile Manager to determine the security policies to use

(7), and the Profile Manager, with the contextual data it is

able to gather, executes the perl functions (8) and notifies

to the filter the profiles of rules to use (9). The Resource

Access Filter enforces the policies (10) and gives access to

the resource (if it is a resource request, or gives the services

list if it is a service listing request, or executes the service if

it is a service execution request) to the entity which sent the

request (11) or rejects the request (11 bis).

5. Use Case Study

In this section we study a use case very likely to occur

in pervasive environments: a user would like to protect her

resources and give access to some resources only if specific

conditions on the context are fulfilled.

The scenario is simple (Figure 8): a laptop E0, on which

a PerSE Base is installed, shares a video sequence with its

service ShareVideo. The base E0 is situated in the room 502

in a building. Other users, each with a PerSE Base named

E1,. . . ,E7, would like to watch the video on their device.

But the administrator of E0 wants to share his video only

with users equipped with a PDA and situated in the same

room, as he doesn’t trust the other rooms of the building.

To this end, he has established a restriction on the use of the

service: only users with a PDA and situated in the room 502

are authorized to execute it.

Room 501 Room 502

E1

E5

E3

E4

E2E0

E6

E7

Figure 8. Use Case Scenario

The administrator has defined two types of policies on

his base: communication policies, and resource access poli-

cies. Amongst all the communication rules defined, some

do concern users E1,. . . ,E7:

DO allow ON incoming perse_messages FROM Group1

TO ShareVideo

DO drop ON incoming perse_messages FROM Us-E6

TO ShareVideo

DO deny ON incoming perse_messages FROM Us-E7

TO ShareVideo

The group named “Group1” consists of E1, E2, E3, E4,

E5. The user has chosen not to take into account any con-

textual information in these rules.

However, in the resource access policies, some rules are

defined to give authorizations on ShareVideo to entities in a

precise context:

Group1 CAN execute AND monitor ON ShareVideo

IN CONTEXT neighbourhood_PDA

With the definition of these rules, the user has defined

the context “neighbourhood PDA”:

CONTEXT neighbourhood PDA

WITH PRIORITY 0.5

USING caller_and_local_base

IS DEFINED BY

location OF callerbase IS equal to ‘room 502’ AND

device OF callerbase IS equal to ‘PDA’

In the use case, when the requests from the different

users Ei arrive at the base E0, encapsulated in a message,

the Message Filter checks its rules, that are not context-

dependent in this use case. The Message Filter can then

enforce this policy without asking the Profile Manager. In

the communication rules defined by the user, the messages

from entities E6 and E7 are blocked. So the Message Filter

blocks every communication from those users. The other

users are allowed to submit their execution request to the

service (Figure 9).

Room 501 Room 502

E1

E5

E3

E4

E2E0

E6

E7

Room 501 Room 502

E1

E5

E3

E4

E2E0

E6

E7

User allowed to submit his request to ShareVideo

User not allowed to submit his request to ShareVideo

Communication Rules

Figure 9. First filtering: Communication

The Resource Access Filter then receives each execution

request from users Us-E1 to Us-E5. For each request, the

Resource Access Filter asks the Profile Manager to deter-

mine the profile(s) to use, that is to say to determine which

context(s) is valid. For users Us-E2, Us-E3, US-E4, situ-

ated in the Room 502 and equipped with a PDA, the con-

text “neighbourhood PDA” is true, so the rules of the cor-

responding profile are enforced, and users are given the au-

thorization to execute the service ShareVideo. On the con-

trary, for user Us-E1, the context “neighbourhood PDA” is

not true, so rules defined in this profile are not enforced.

Since no other rule can give the authorization to Us-E1, her

request is rejected (Figure 10).

Room 501 Room 502

E1

E5

E3

E4

E2E0

E6

E7

Resource Access

Rules

Room 501 Room 502

E1

E5

E3

E4

E2E0

E6

E7

User allowed to execute ShareVideo

Figure 10. Second filtering: Resource Access

This is a simple example of the definition and application

of a context-aware security policy, that enables a user to

give access to her resources using contextual data.

6. Implementation, Evaluation and Results

Resources in pervasive environments are limited, and our

two main priorities for this evaluation were efficiency in

terms of response time, and scalability of the rule-based pol-

icy definition and execution.

We implemented our infrastructure in C++. Our three

components (Message Filter, Resource Access Filter, and

Profile Manager) are composed of ten classes, and the com-

piled code occupies no more than 100 KB. A profile of rules

is a XML file, and its size depends on the number of rules

defined by the user. Typically, a 100-rules file is about 20

KB. In our tests, we will assume that a normal user will not

define more than 1000 communication and resource access

rules, divided into less than ten profiles. Each profile is di-

vided into two files, one for communication rules, the other

for resource access rules. We use other XML files too, to de-

scribe the profiles with metadata, but they each take about 4

KB only.

Context definitions are interpreted in perl language. We

chose perl because we wanted an interpretable language,

simple but efficient. A context definition is translated into

a perl function and executed by a perl interpreter situated

in the Profile Manager. The perl interpreter is a set of C

functions, integrated and freely available in every perl dis-

tribution. Among the other XML files we mentioned earlier,

one file is the description of the perl function, needed by the

system to gather the parameters used by the function, which

are context data. This description also contains the path of

the perl file, the return values, etc.

The experiments have been done on a Powerbook 1.5

GHz Power PC G4, with 512 MB RAM. The response time

(Figure 11) depends both on the number of rules and the

number of profiles to which the rules belong. Even with

1000 rules and one profile, the worst case, the response time

does not exceed 350 ms. For a nominal case, with 200 rules

and 3 or 5 profiles, the response time is less than 50 ms,

and even less with a 100 rules policy. The response time

depends also on the position in the XML file of the resource

access rule that grants the permission to the entity of the re-

quest. The response time will be lower if the rule is at the

beginning of the file, whereas the position of the commu-

nication rule that allows the message or not does not influ-

ence our performances because our algorithm runs through

all the communication rules.

This evaluation shows that the response time of our in-

frastructure enable the scalability of our system without a

great loss of performances. We didn’t optimize the algo-

rithms or the code during the implementation, so better re-

sults can be obtained by spending more time on prototype

development.

7. Contribution Summary, Discussion and Fu-

ture Works

In this Section, we discuss here the main contributions

and issues brought by our approach. Our solution enables a

Figure 11. Request response time evaluation

user to define precisely her privacy and security policy in a

pervasive environment.

The first main contribution is the infrastructure we pro-

pose, based on modular components, and which can be fully

integrated in a broader pervasive architecture. This infras-

tructure guarantees the security and the privacy at different

levels of the device: the first security level, the Message

Filter, acts as a firewall on incoming and outgoing commu-

nication; the second security level, the Resource Access Fil-

ter, controls the access to the different resources present on

the base. These two components are controlled by the Pro-

file Manager, that decides which policy the two filters must

enforce at the moment of a request.

Another main contribution is the context-aware security

policies we introduced. As we saw in the related work,

context-awareness in security and access-control for per-

vasive environment is complex to handle and rarely user-

centered. That’s why we introduce the languages and gram-

mar for users to define their rules in a natural way, including

their own perception of context. A user is then able to ex-

press a simple context-aware security policy.

A future work will integrate our security infrastructure

in a wide PerSE environment, with many bases interacting

and communicating with each other. Evaluations with more

bases will give a precise overview of performances in real

environments. This integration will lead to a fully work-

ing and secured pervasive environment, which will be con-

tinuously enhanced by the introduction of new services for

users.

One of the main issue in our evaluation is context data

gathering: we only assess the request response time, pro-

vided the Profile Manager has immediate access to all the

context data it needs. However, in a real pervasive environ-

ment, these data are not always available easily and cost-

lessly. Sometimes, a device has to ask another device (sen-

sor, server) to obtain a data, but we didn’t evaluate and take

this major aspect into account.

An issue we have to work on is the integration of en-

cryption/deciphering algorithms in the Message Filter to en-

able secured communications between bases. To this end,

we need to choose encryption algorithms and mechanisms

(public, private or hybrid cryptography, session keys, static

keys, etc.) that fit best to the constraints of pervasive envi-

ronments, as most of encryption algorithms are expensive

in term of resource.

As we saw in the presentation of communication rules,

we trust the incoming message, that is to say we consider

that the fields of the message which contains information

about the sender are true, i.e. we do not make any authenti-

cation before an interaction with an entity. This strong hy-

pothesis can not be made in a real environment, and it rep-

resents a real issue, as authentication in pervasive environ-

ment is difficult. We explore some ways to integrate authen-

tication before the communication is established, like those

works on authentication in pervasive environments [16],

with digital certificates and local certification authorities,

and trust propagation between these authorities.

8. Conclusion

We presented in this article a comprehensive framework

for security and privacy in a pervasive environment. We first

define a generic theoretical framework for context-aware

access control. Our approach is based on a two-level con-

trol to the personal device of a user. Indeed, access to the

device, then to its resources, are enforced using access rules

defined by the user herself. This possible fastidious task is

simplified thanks to declarative languages with which she

expresses intuitively her wills. The originality of our ap-

proach relies in these possibilities to define precisely and

easily security policies useful in a pervasive environment,

thanks to a strong theoretical background and a large ex-

pressiveness of the rules definition languages.

Our approach has been actually successfully integrated

in a pervasive environment, and evaluated both in terms of

memory and computing consumption, proving its competi-

tiveness and usability in a real environment.

References

[1] R. Beckwith. Designing for ubiquity: The perception of

privacy. IEEE Pervasive Computing, 2(2):40–46, 2003.

[2] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A tempo-

ral role-based access control model. ACM Trans. Inf. Syst.

Secur., 4(3):191–233, 2001.

[3] P. Bihler, V.-M. Scuturici, and L. Brunie. Expressing

and Interpreting User Intention in Pervasive Service En-

vironments. Journal of Digital Information Management,

4(2):102–106, 2006.

[4] J. Clarke, M. Neubauer, and C. Hauser. Security and Privacy

in a pervasive world - The Daidalos approach. Eurescom

Mess@ge magazine, 2:8, 2005.

[5] M. Covington, M. Moyer, and M. Ahamad. Generalized

role-based access control for securing future applications. In

Proceedings of the 23rd National Information Systems Secu-

rity Conference, 2000.
[6] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev,

M. Ahamad, and G. D. Abowd. Securing context-aware ap-

plications using environment roles. In SACMAT ’01: Pro-

ceedings of the sixth ACM symposium on Access control

models and technologies, pages 10–20, 2001.
[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based

access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274,

2001.
[8] Y. Gripay, J.-M. Pierson, C.-E. Pigeot, and V.-M. Scuturici.

Une Architecture Pervasive Sécurisée : PerSE. In Pro-

ceedings of 3e Journées Francophones Mobilité et Ubiquité

(UbiMob’06), pages 147–150, 2006.
[9] J. I. Hong and J. A. Landay. An architecture for privacy-

sensitive ubiquitous computing. In MobiSys ’04: Proceed-

ings of the 2nd international conference on Mobile systems,

applications, and services, pages 177–189, New York, NY,

USA, 2004. ACM Press.
[10] J. Hu and A. C. Weaver. Dynamic, Context-Aware Security

Infrastructure for Distributed Healthcare Applications. In

Proceedings of the First Workshop on Pervasive Security,

Privacy and Trust (PSPT), 2004.
[11] X. Jiang, J. Hong, and J. Landay. Socially-based modeling

of privacy in ubiquitous computing. In Proceedings of Ubi-

comp 2002, pages 176–193, 2002.
[12] A. Kumar, N. Karnik, and G. Chafle. Context sensitiv-

ity in role-based access control. SIGOPS Oper. Syst. Rev.,

36(3):53–66, 2002.
[13] M. Langheinrich. Personal Privacy in Ubiquitous Comput-

ing – Tools and System Support. PhD thesis, ETH Zurich,

Zurich, Switzerland, May 2005.
[14] U. Latif, J. B. D. Joshi, E. Bertino, and A. Ghafoor. A Gen-

eralized Temporal Role-Based Access Control Model. IEEE

Transactions on Knowledge and Data Engineering, 17(1):4–

23, 2005.
[15] S. Lederer, J. Mankoff, and A. K. Dey. Who wants to know

what when? privacy preference determinants in ubiquitous

computing. In CHI ’03: ACM Conference on Human Fac-

tors in Computing Systems, pages 724–725, 2003.
[16] R. Saadi, J.-M. Pierson, and L. Brunie. Distrust certification

model for large access in pervasive environment. Journal of

Pervasive Computing and Communications, 2005.
[17] SAML. Security Assertion Markup Language.

http://www.oasis-open.org/committees/security.
[18] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman. Role-based access control models. Computer,

29(2):38–47, 1996.
[19] WS-Policy. Web Services Policy Framework.

http://specs.xmlsoap.org/ws/2004/09/policy/.
[20] XACML. eXtensible Access Control Markup Language.

http://www.oasis-open.org/committees/xacml.
[21] G. Zhang and M. Parashar. Context-Aware Dynamic Access

Control for Pervasive Applications. In Proceedings of the

Communication Networks and Distributed Systems Model-

ing and Simulation Conference (CNDS 2004), 2004.

