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1. Introduction

Microarray technology provides biologists with the alilib measure the expression levels of thousands
of genes in a single experience. It is believed that genedfas function yield similar expression
patterns in microarray experiences [30]. As data from sugdegences accumulates, it is essential
to have accurate means for assigning functions to genes, &ie interpretation of large-scale gene
expression data provides opportunities for developingehmining methods for selecting for example
good drug candidates (all genes are potentially drug s)rgetm among tens of thousands of expression
patterns [15, 29].

However, one real challenge lies in inferring importantdiional relationships from gene expression
data. Beyond cluster analysis [13], a more ambitious p@rpmisgenetic inference is to find out the
underlying regulatory interactions from the expressiotagasing efficient inference procedures.

Rules concerning genes are a promising knowledge repedgento reveal regulatory interactions
from gene expression data. The conjecture that associaties could be a model for the discovery of
gene regulatory networks has been partially validated,i@ [8, 21, 11, 1, 10]. Nevertheless, we believe
that many different kinds of rules could be useful to copéehwdifferent biological objectives and the
restricted setting of association rules could not be enough

Clearly, the notion ofulesis very popular and appears in different flavors, the two nianeous
examples being association rules in data mining and fumatidependencies in databases. A simple
remark can be done on these rules: their syntax is the santlkeddusemantics i.e. their meaning widely
differs.

In this paper, we propose a unifying framework in which angliwormed” semantics for rules may
be integrated. The key features of our approach are thenfioi¢p

1. Given a dataset, defining a semantics in collaboratioh ddmain experts (e.g. biologists and
physicians).

2. Verifying if the semantics fits into our framework, i.e Afmstrong’s axiom system is sound and
complete for this semantics [3].

3. For a given semantics, discovering rules satisfied in #tasgt: More precisely a cover for exact
rules [24, 12] and a cover for approximate rules [14, 22] havse generated.

4. Computing in a post-processing step, several qualitysorea for the obtained rules.

Note that we do not focus on the underlying data mining prokl@osed by the discovery of rules,
rather we prefer to emphasize the expressiveness of outtmdign in a particular application domain:
the understanding of gene regulatory networks fgeme expression data

We introduce in this paper three semantics devoted to ggmession data. The first one generates
rules between genes according to their expression lewelsjnder- or over-expressed genes. The second
semantics analyzes the variations of gene expressiorslavel finally, the third semantics studies the
evolution of gene expression levels between two consexatimples, being understood that an order has
to exist among samples.

Our proposition has been implemented in a friendly graphisar interface to make it useful by
biologists. We chose to integrate it as a module into a micagadata analysis open-source software:
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MeV. This tool is a part of an application suite, called TM4yvdloped by The Institute for Genomic
Research (TIGR) [28].

Moreover, we have integrated five existing quality meas(sapport, confidence, lift, leverage and
conviction). These measures have been defined for assocrales but can be extended to these three
semantics without any problem.

An application has been performed on expression profilessobasample of genes from breast cancer
tumors, some experimental results are also given.

Paper organization In Section 2, the framework of our approach is given. In ®e&c8, three rule
semantics are detailed and their compliances with the fraorieare shown in Section 4. Implementation
details are given in Section 5 and experiments are givendtid®e6. Finally, we conclude and give some
perspectives in Section 7.

2. Framework of our approach

2.1. Preliminaries

In this paper, we consider rules to be defined on tabular elstdsr relations) over a sét of distin-
guished attributes (or columns). In the context of geneasgion data, attributes correspondyemes
and tuples t@amples

Let G be a finite set ofenes Each geng € G takes its possible values B, the real numbers. A
tuple overG is a mapping : G — R™. A relationis a set of tuples. We say thais a relationover G,
i.e. a gene expression dataset. §et G be a gene andbe a tuple; we denote hyy| the restriction of
ttog.

Thesyntaxof arule overG is an expressioX — Y i.e. “Ximplies Y”" whereX,Y C G.

Thesemantic®f arule X — Y overG is themeaning thesensene wants to give to this rule: Given
arelationr, aruleX — Y is said to besatisfiedin r with the semantics, denoted by =, X — Y/, if
the semantics is true (or valid) inr.

The reader may refers to [25, 16, 9] for different points @iwiconcerning the notion efileswhich
are referred to asnplicationsin discrete mathematics field or &mctional dependencida database
field.

Example 2.1. Let us consider a running example made of a set of 6 tuplesafopes) {4, to, t3, t4, t5
andtg) over a set of 8 genegy(, g2, 93, 94, g5, g6, g7 andgs) as depicted in Table 1.

Throughout this paper, we will illustrate our approach witls example.

2.2. Justification of our framework

Our approach is based on the notiomrule, also calledmplication Let us recall that aule is an expres-
sion of the shap&X — Y i.e. “X implies Y” and thesemanticof the rule is the signification one wants
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r 91 92 93 94 95 96 g7 98

t1 | 1.9 0.4 1.4 -15 03 1.8 08 -14
to | 1.7 1.5 1.2 -03 14 1.6 0.7 0.0
t3 1.8 -0.7 1.3 0.8 -0.1 1.7 0.9 0.6
ty | -1.8 0.4 1.7 1.8 0.6 -04 1.0 1.5
ts | -1.7 -1.4 0.9 05 -18 -02 12 0.2
t¢ | 0.0 19 -19 17 16 -05 11 13

Table 1. A running example

to give to this implication. For example, association rutedata mining or functional dependencies in
databases are two types of semantics.

In this paper, we focus on special kinds of rules, which ekhilce properties, i.e. Armstrong’s
axiom system is sound and complete for the considered sesafuch a semantics for rules is called
“well-formed” in the sequel. We have chosen to focus on Arorg’'s axioms since they obviously apply
for functional dependencies but also forplicationsdefined on a closure system [16] and thus turn out
to have many practical applications (see examples givebg]).[

Practical interests of a well-formed semantics are twofold

e Firstly, we can perform some kind afasoningon rules from the Armstrong’s axioms: From a set
of rulesF, it is possible to know if a rule isnplied by this set of rules. This problem is known as
the implication problem and can be resolved in linear tinje TBus, if there is a relation which
satisfiest’ then all rules that can be deduced fréithanks to the Armstrong’s axioms will be also
satisfied in this relation.

e We can also work on “smalltoversof rules [23, 20] and propose a discovery process specific to
the considered cover, but applicableaib well-formed semantics. It is also possible to propose
covers for non-satisfied rules [17].

The theoretical framework that we propose to use for the rg¢ina of rules defined with well-
formed semantics, comes from the inference of functionpeddencies [24, 12]. Basically, since by
definition the Armstrong’s axioms apply for any well-formedmantics, the augmentation axiom im-
plies amonotone propertygiven an attributed, X - A=VY D XY — A.

That is to say that the predicate “X implies A’ is monotonehaiiéspect to set inclusion, thus the pred-
icate “X does not imply A’ is anti-monotone. So well known cheterization may be used to produce
the rules [26].

In other words, the largest left-hand sides not implyihgonstitute theositive borderof the predicate
“X does not imply A’ and the smallest left-hand sides imptyiA constitute itsnegative borderConse-
guently, this negative border gives a subset of the canbeiear (i.e. rules with minimal left-hand sides
and A as right-hand side) while the positive border gives a subktiie Gottlob and Libkin cover [17]
(i.e. rules with maximal left-hand sides ardas right-hand side).

Details on the generation of rules are out of the scope ofpidgier, interested readers are referred to
[24, 12, 26].
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Moreover, an important key point of our approach is to take #xccount characteristics of gene
expression data. Indeed, from the microarray analysis dgrvao underlying “constraints” have to be
understood: firstly, the number of samples is small (a fewdheais at most) whereas the number of
genes is large (several thousands). Such a constraintsdifidely from those usually held in databases
or data mining where the number of tuples can be huge wheheasumber of attributes (i.e. genes
in the context of this paper) remains rather small. That ig fein example our approach does not take
into account a minimum support threshold unlike associatides. Statistical measures are compued
posteriorion the discovered rules.

Secondly, data pre-processing steps on gene expressiargatot fully understood yet and there-
fore, we have to take into account noisy data. Thus micrgagehnology delivers numerical values
with a relatively small confidence on these values, biolsdgigve to interpret the data, for example as
levels of expression, which implies a discretization staghis setting, we propose to deal with noise in
data not as an explicit pre-processing step but implicitiyiw the semantics of the rules.

3. Example of semantics for rules

Our approach consists to interact with biologists in ordeedtablish a rule semantics which fits into
their objectives and adapted to their data. In the sequepresent three semantics for gene expression
data.

The first one, called; (Gene expression levels), generates rules between gecasliag to their
expression levels The second semantics, callegl(Gene expression level variations), generates rules
between genes according to thariation of their expression levels. And finally, the third semantics
calledss (Gene expression level evolution), generates rules betgeres according to thevolution of
their expression levels between two consecutive samples.

3.1. Semantics 1: Gene expression levels

This first semantics consists in studying teeelsof expression of genes. We shall call this semantics
s1 in the sequel. Let us note that the definition of this seman¢iclose to the definition of association
rules but is applied to quantitative data so that it doesemquire a discretization phase and no minimum
support threshold has to be set up.

Definition 3.1. (Semantics 1. Gene expression levels) Kety” C G, be two sets of genes anda
relation overG. A rule X — Y is satisfied inr with the semantics; defined with two thresholds
e1 ande,, denoted byr =, X — Y, ifand only if V¢ € r, if Vg € X,e1 < t[g] < e, then
Vg e Y, e1 <tlg] <eo.

In other words, thanks to the two threshokdsande,, the biologists have the opportunity to define
rules between over-expressed (or under-expressed) genes.

Example 3.1. Let us consider that biologists are interested in studywvay-expressed genes. To do so,
assume that thresholds are set as followys= 1.0 ande, = 2.0, since they consider that a gene is over-
expressed if its expression level is between 1.0 and 2.0.
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In that case, the rulg, — g3 is satisfied in the relation given in Table 1 (on the other hand the rule
g3 — ¢1 is not satisfied because of the tuplg¢. The expression levels of the gengsandgs are given
in the figure 1.

g1=>93

Gene expression levels
(o)
S

Samples

Figure 1. Expression levels of the gegsandgs

Theruleg; — g3 is interpreted in the following way: for any sample, if thengg, is over-expressed
then the genegs is also over-expressed.

3.2. Semantics 2: Gene expression level variations

In many cases, it does make sense to compare samples in aspdiashion to find some regularities
between samples. Such kind of reasoning is well known in #telthse community through the notion
of functional dependenciesiowever, in our context, the FD satisfaction - its meanihgs to be relaxed
to take into account noise in gene expression data. SincesmgED X — Y can be rephrased as
“equal X-values correspond to equal Y-values”, we woule li& obtain something like “close X-values
correspond to close Y-values”. Thus, instead of requiriingng equality between attribute values, we
admit an error less or equal to the absolute value of therdiffee (obviously, other norms should have
been taken). This leads to the following semantics:

Definition 3.2. (Semantics 2: Gene expression level variations)Xgt” C G, be two sets of genes and
r arelation ovefG. Arule X — Y is satisfied in- with the semantics, defined with two thresholds;
andeq, denoted by |=,, X — Y, ifand only if Vi, ts € r, if Vg € X, 1 < |t1]g] — t2[g]] < &2 then
Vg € Y,er < [ta[g] — talg]] < ea.

Classical satisfaction of functional dependencies iseagt where; = g5 = 0.

Given any couple of sampleX — Y means that if the variation of the expression levels of each
geneg of X is betweere; andes then the variation of the expression levels of each geogY is also
betweenrs; andes.
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Example 3.2. Let us suppose that biologists are interested in small tiamnis of expression levels be-
tween samples. Thresholds should be defined as folleyws: 0.0 andey = 0.2. The hypothesis is that
a gene does not vary between any couple of samples if theatiffe of the expression levels is between
0.0 and0.2.

The expression levels of the gengsandg; are plotted in Figure 2. In that case, the rgje— g~
is satisfied in the relation (on the other hand the rule — g4 is not satisfied because of the variation
between the sampleg andi,).

ge = g7
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Figure 2. Expression levels of the gengsandg-

The rulegs — g7 is interpreted in the following way: Given any couple of saaspif the expression
level of the gengyg does not vary then the expression level of the ggndoes not vary neither.

3.3. Semantics 3: Gene expression level evolution

This semantics generates rules between genes accordihg égdlutionof their expression levels be-
tween two consecutive moments. In that casegraer on the samples is required in order to compare
the expression level of a geneiatl with respect to its expression leveliat

Definition 3.3. (Semantics 3: Gene expression level evolution) Xet” be two sets of genes; ande,
be two thresholds anda relation.

Arule X — Y is satisfied in- with the third semantics, denoted by=,;, X — Y, if and only if
Vtz‘,tﬂ_l er, if Vge X,e1 < ti+1[g] — ti[g] < &9 thean €Y, e < ti+1[g] — ti[g] < 9.

We notice that we got rid of the absolute value because ther afdsamples is significant.

Example 3.3. The samples must be ordered. For example, the sampbmn represent the state of a cell
at the momenty, then after injection of a drug, the cell is analyzed six lsdater to give samplg, etc.
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until sampletg 30 hours later. This process allows to show the impact of g drugene expression of
the cell in the time.

Suppose that biologists are interested in genes whosessipmelevels grow in the time with the
following thresholdsz, = 1.0 andk; = 4.0. That is, the expression of a gene grows betweamli+1 if
its expression level dt+-1 is greater or equal to more than 1.0 point to its expressioel & the moment
1.

In that case, the rulg; — g4 is satisfied in the relatiom (on the other hand the rulg, — g¢- is
contradicted by the evolution betwegnandts). The expression levels of the gengsandg, are given
in the figure 3.

g2= g4
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Figure 3. Expression levels of the gegsandg,

The rulegs — g4 is interpreted in the following way: between two conseaisamples andi+1,
if the expression level of the geme grows then the expression level of the genegrows.

4. Well-formed semantics

The second step of the process is to verify the well-formsslrad the semantics defined by domain
experts, i.e. verify that this semantics can be used withinfamamework. This step is very important
since many semantics could be defined, some of them verifyiage requirements, others not (see
Theorem 4.2).

To do that, we introduce the notion of well-formed semantics

Definition 4.1. A semanticss is well-formedif Armstrong’s axiom system is sound and completedor

Let us recall the Armstrong’s axiom system for a set of ruledefined over a set of attributes (i.e.
genes in our contexty:
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1. (reflexivity) if X CY C GthenFFY — X
2. (augmentation) i - X — Y andW C G, thenF - XW — YW
3. (transitivity) if FF X - YandF+Y — ZthenF+ X — Z

The notationF' - X — Y means that a proof ok — Y can be obtained using Armstrong’s axiom
system fromF'. Moreover, given a semantics the notation?’ =; X — Y means that for all relations
roverG, if r =5 F'thenr =3 X — Y.

As expected, the three semantics previously introduceifitbese requirements.

Theorem 4.1. The semanticss, s, s3 arewell-formed

We show the result only fog, the proof fors, and sz being quite similar. We need to show that
Armstrong’s axiom system is sound and completesfor

Lemma 4.1. Armstrong’s axiom system is sound fey.

Proof:
Let F' be a set of rules. We need to show thak'if- X — Y thenF |=;, X — Y.
Letr be a relation over a set of gen@s

1. (reflexivity) evident.

2. (augmentation) Let € r such thatvg € X U W,e; < t[g] < e2. We need to show thatg e
Y UW,e; < tlg] < e9, which implies that =5, XW — YW. By assumptiont’ - X — Y/,
then we havé/g € Y, &1 < t[g] < 2. The result follows.

3. (transitivity) Lett € r such thatvg € X, &1 < t[g] < e2. We need to show thaty € Z,e; <
t[g] < €2, which implies that =, X — Z. By assumptionf'+ X — Y andF Y — Z, then
Vg e Y,e1 <tlg] <egandVg € Z, &1 < t[g] < e, respectively. The result follows.

O

Lemma 4.2. Armstrong’s axiom system is complete for.

Proof:
We need to show that if' =, X — Y thenF + X — Y or equivalently, ifF I/ X — Y then
F }£s, X — Y. As a consequence, assuming tha# X — Y/, it is enough to give a counter-example
relationr such that- =,, F butr (£, X — Y.

Letr overG be the relation shown in Table 2, with = 1.0 andey = 2.0.

X+ | G-x+
15 .. 1.5\ 05 .. 05

Table 2. Counter-example
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Firstly, we have to show that|=,, F'. We suppose the contrary that~,, F and thusdV — W &
F such that (£, V' — W. It follows by the construction of thatV C X+ and3A € W such that
Ae G- XT.SinceV € Xt,wehaveF F X — V and sinceF -V — W, we haveF -V — A.
Thus, by the transitivity rulef” = X — A and thusA € X . This leads to a contradiction singec W,
and thus- =4, F.

Secondly, we have to show that~;, X — Y. We suppose the contrary that=,, X — Y. It
follows by the construction of thatY C X and thusF - X — Y. It leads to a contradiction since
F i/ X — Y was assumed, and thug%,, X — Y. 0

As an example of semantics which does not fit into our framkwiet us consider the following
semantics, noted,, which extends the semantigs with an additional constraint:

Definition 4.2. Let X, Y C G, be two sets of genes amda relation overz. A rule X — Y is satisfied
in 7 with the semantics/, defined with two thresholds, ande,, denoted by ):8/2 X — Y, ifand only
if Vii,t0 € r,if Vge X,e1 < \tl[g] —tg[g” < g9 thean €Y, g1 < ]tl[g] —tg[g” < &9 AND dty,t9 €1

such that\fg € X,e1 < |t1[g] — tz[g” < eo.

We have the following result:
Theorem 4.2. The semantics, is notwell-formed

Proof:

Let F' be a set of rules and C G, we haveF - X — X by the reflexivity axiom. Nevertheless,
F %sg X — X. Letus consider the following counter-example made of detuif1, 2, t3 and¢y) over
a set of 2 genegy( andgs) as depicted in Table 3.

r g1 92

t1 -1.8 1.8
to -1.7 0.2
ts | 02 -1.4
ta 0.3 -1.8

Table 3. Counter-example fof

Let us consider the thresholds = 0.0 andey = 0.2. We can see that [755/2 go — go becauseA
t1,ty € rsuch thaD.0 < |t1]g2] — t2]g2]| < 0.2. By the way, the result is proved since the reflexivity
axiom is not sound. O

5. Implementation

We have implemented the generation of rules as a C++/STL lesdntegrated into an open-source
freeware devoted to microarray data analysis: MeV (Muli&xmentViewer) [28]. This tool is a part



M. Agier et al./Unifying Framework for Rule Semantics 11

of an application suite, called TM4, developed by The logtitfor Genomic Research (TIGR). These
tools devoted to microarray data propose various functeueh as storing the data, image analysis,
normalization, interpretation of the results.

MeV is the application devoted to the analysis of gene eswasdata. Furthermore, MeV takes in
input several file formats resulting from various image gsial software, has an important number of
functionalities already integrated and is based on a GUJ &asse for biologists.

5.1. Interface for the biologists

For the interface, we chose to limit as much as possible thierngpproposed to the users to make it
easier. An example of the graphical user interface developetop of MeV is presented in Figure 4.
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Figure 4. Graphical user interface of the software

At first biologists have to specify the genes they want to seight hand sides of their rules. This step
allows to concentrate on interesting genes. Then, the he@ses one semantics out of three depending
on its objectives and its data.

A choice of relevant thresholds is then proposed accordingither the distribution of théevels
of expression for the first semantics, or the distributionthefvariations of the levels of expression for
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second, or the distribution of thevolutionof the levels of expression for the last one. Nevertheless,
biologists can set up manually the thresholds which bestfit their requirements. Note also that
different thresholds could be defined for each gene.

5.2. Post-processing of rules

The software was tested on several datasets and we werallyaiaterested in the post-processing of
rules. Without being exhaustive, five quality measuresgsttpconfidence, lift, leverage and conviction)
are computed to be able to sort the rules (see Figure 5).
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Figure 5. Graphical user interface of the software
These interestingness measures were introduced for agendiules [2, 8, 27] but here the compu-
tation of these measures is adapted to the three semantics.

All the measures for a ruld — Y are computed from four initial values, depending on the ehos
semantics:

For the semantics;, these parameters are computed as follows:
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n: number of tuples in the relation.

nx: number of tuples such thatVg € X,e; < t[g] < 2.

ny: number of tuples such thatvg € Y, &1 < t[g] < 3.

nxy: number of tuples such that/g € X, 1 < t[g] < e; andVyg € Y, &1 < t[g] < eo.

For the semantics,, the computation is different since couples of samples ansidered:

e n: number of couples of tuplds, ¢, in the relation.

e nxy: number of couples of tuples, t; such thatvg € X, g1 < |t1]g] — t2g]| < 2 andVyg €
Y.e1 < |tilg] —t2lgl| < e2.

For the semanticss, we consider couples of consecutive samples:

e n: number of couples of consecutive tuptes; ;1 in the relation.

e nx: number of couples of tuples, ¢;1 such thatvg € X, &1 < t;11[g] — ti[g] < 2.

ny: number of couples of tuples, ¢;,1 such thatVg € Y, e < t;11[g] — ti[g] < 2.

nxy: number of couples of tuples, t;11 such thatvg € X,e1 < ti11]g] — ti[g] < 2 and
Vg €Y, e1 < tiy1lg] — tilg] < ea.

From these parameters, we can define for the Kile» Y, five quality measures in the following
way:

Support X — Y) = Support ¥ — X) = P(XY) = nxy /n. It corresponds to the probability that X
and Y are simultaneously satisfied [2].

Confidence ¥ — Y) = P(XY|X) =nxy/nx. It corresponds to the probability that Y is satisfied
knowing that X is satisfied. When the confidence equals to lsayehat the rule isxact other-
wise it is saidapproximat§?].

Lift (X — Y) =Lift (Y — X) = P(XY)/P(X)P(Y) =(nxy *n)/(nx *ny). This indication measures
the dependence between X and V. It corresponds to the qudmween the actual probability
to have X and Y satisfied and the expected probability whichmeald obtain if X and Y were
independent [8]. A lift of 1 means that both variables araltpindependent.

Leverage X — Y) =LeverageY — X)=P(XY)-PX)*P(Y)=(nxy/n)—((nx/n)*(ny/n)). The
leverage also measures the dependence between X and Y.dtreehe difference between the
actual probability to have X and Y satisfied and the expectebability which we would obtain
if X and Y were independent [27]. A leverage equals to O mehasX and Y are independent.
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Conviction (X — Y) = (P(X)*P(notY)) / P(X and notY) H{nx * (n — ny))/(n * (nx — nxy)). The
conviction compares the probability to have X satisfied amobisatisfied if they were independent
with the actual probability to have X satisfied and Y not $&tik[8]. A conviction equals to 1
means that X and Y are independent. Note that for exact nllesonviction can not be computed
since P(X and notY) equals to 0.

The user looks at only the rules s/he considers interestiogrding to these various indications.
Other quality measures of rules, like those defined in [3fh]m&aintegrated without any overhead.

6. Application from breast cancer tumors

An application has been performed on expression profiles safbasample of genes from breast can-
cer tumors [1]. Publicly available DNA microarray data fof goung patients, who developed dis-
tant metastases within 5 years, and 5 000 genes, were selactihe domain experts (biologists and
physicians)[32]. The biologists were interested in stngyhoth over- and under-expressed genes.

We present only results obtained on under-expressed genesiich the generated rules were more
interesting. To do so, the first semantics was chosen witffiall@ving thresholds:e; = —2.00, g2 =
—1.18, that means that a gene is considered as under-exprestedxpression level is betweef2.00
and—1.18. Moreover, the number of studied genes was set up to 24.

For this semantics, 60 rules were generated (46 with a 100#tdemce). We have then selected the
more interesting rules according to the different qualigasures. They are given in Table 4.

Rule Support  Confidence  Lift Leverage  Conviction
ESR1 — TFF1 0.41 1.00 1.36 109 00
MYB — TFF1 0.38 1.00 1.36 10.12 00
FERBB4,TFF1 — MYB 0.21 1.00 2.62 12.72 o0
ERBB4,ESR1 — MY B 0.21 1.00 2.62 12.72 o0
KRT18 — ESRI1 0.21 1.00 243 1211 00
ERBB4,TFF1 — ESR1 0.21 1.00 243 1211 00
ERBB4, MY B — ESR1 0.21 1.00 2.43 12.11 o0
BCL2, ESR1 — MY B 0.18 1.00 2.62 10.9 o0
BCL2, MY B — ESRI1 0.18 1.00 2.43 10.38 00
FERBB4, KRT18 — MY B 0.15 1.00 2.62 9.08 o0

Table 4. Rules from breast cancer tumors

Results obtained so far to reveal interactions betweenexmessed and under-expressed genes are
promising. We demonstrated the rule ESR1 under-expressglies TFF1 under-expressed, an already
well-known interaction for this kind of tumor [18]: ESR1 extes a nuclear receptor, a super-family of
ligand activated transcription factors that modulate Bjgegene expression. Estrogen exerts its effects
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only through interaction with estrogen receptor. TFF1 (jpiS2n estrogen-inducible gene involved in
various biological processes. In the absence of ESR1 eiprgsestrogen cannot regulate the mRNA
level of this gene. The other rules have similar biologio#ipretations [19].

At present, supplementary experiments need to be doneamoi#w gene expression data of mam-
mary tumors. Indeed, it is worth verifying whether rulescdigered in a dataset remain valid in another
dataset.

7. Conclusion

In order to attempt a reverse engineering of gene regulatetyworks from gene expression data, we
have proposed an on-going work aiming at defining differemantics of rules between genes, fitting in
the same theoretical framework. Such rules form a compléaneand hopefully new knowledge with
respect to classical unsupervised techniques used sd3far [1

The framework proposed in this paper, based on Armstrondg@rasystem, is able to deal with
different kinds of semantics in a unified manner. The seroanioposed for gene expression data have
been implemented as an extension of a open-source softedieated to the analysis of microarray data
(MeV of TIGR Institute).

We believe that an interesting open issue remains to definsemantics devoted to gene expression
data. Moreover, soundness and completeness of the Arrg&traxiom system have to be proved for
each new semantics. We are currently working on a generiaitiefi of a semantics which ensures
that a semantics is well-formed if and only if it complies lwihis definition. To end up, this work may
also suggest a more interactive process of discovery o$,rwdich would consist in requiring to the
biologists some “templates” for the rules they are inte@$h, and then determining the semantics for
which these rules are satisfied.
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