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1. Introduction

Microarray technology provides biologists with the ability to measure the expression levels of thousands
of genes in a single experience. It is believed that genes of similar function yield similar expression
patterns in microarray experiences [30]. As data from such experiences accumulates, it is essential
to have accurate means for assigning functions to genes. Also, the interpretation of large-scale gene
expression data provides opportunities for developing novel mining methods for selecting for example
good drug candidates (all genes are potentially drug targets) from among tens of thousands of expression
patterns [15, 29].

However, one real challenge lies in inferring important functional relationships from gene expression
data. Beyond cluster analysis [13], a more ambitious purpose of genetic inference is to find out the
underlying regulatory interactions from the expression data, using efficient inference procedures.

Rules concerning genes are a promising knowledge representation to reveal regulatory interactions
from gene expression data. The conjecture that associationrules could be a model for the discovery of
gene regulatory networks has been partially validated in [4, 7, 5, 21, 11, 1, 10]. Nevertheless, we believe
that many different kinds of rules could be useful to cope with different biological objectives and the
restricted setting of association rules could not be enough.

Clearly, the notion ofrules is very popular and appears in different flavors, the two morefamous
examples being association rules in data mining and functional dependencies in databases. A simple
remark can be done on these rules: their syntax is the same buttheir semantics i.e. their meaning widely
differs.

In this paper, we propose a unifying framework in which any “well-formed” semantics for rules may
be integrated. The key features of our approach are the following:

1. Given a dataset, defining a semantics in collaboration with domain experts (e.g. biologists and
physicians).

2. Verifying if the semantics fits into our framework, i.e. ifArmstrong’s axiom system is sound and
complete for this semantics [3].

3. For a given semantics, discovering rules satisfied in the dataset: More precisely a cover for exact
rules [24, 12] and a cover for approximate rules [14, 22] haveto be generated.

4. Computing in a post-processing step, several quality measures for the obtained rules.

Note that we do not focus on the underlying data mining problems posed by the discovery of rules,
rather we prefer to emphasize the expressiveness of our contribution in a particular application domain:
the understanding of gene regulatory networks fromgene expression data.

We introduce in this paper three semantics devoted to gene expression data. The first one generates
rules between genes according to their expression levels, i.e. under- or over-expressed genes. The second
semantics analyzes the variations of gene expression levels and finally, the third semantics studies the
evolution of gene expression levels between two consecutive samples, being understood that an order has
to exist among samples.

Our proposition has been implemented in a friendly graphical user interface to make it useful by
biologists. We chose to integrate it as a module into a microarray data analysis open-source software:
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MeV. This tool is a part of an application suite, called TM4, developed by The Institute for Genomic
Research (TIGR) [28].

Moreover, we have integrated five existing quality measures(support, confidence, lift, leverage and
conviction). These measures have been defined for association rules but can be extended to these three
semantics without any problem.
An application has been performed on expression profiles of asub-sample of genes from breast cancer
tumors, some experimental results are also given.

Paper organization In Section 2, the framework of our approach is given. In Section 3, three rule
semantics are detailed and their compliances with the framework are shown in Section 4. Implementation
details are given in Section 5 and experiments are given in Section 6. Finally, we conclude and give some
perspectives in Section 7.

2. Framework of our approach

2.1. Preliminaries

In this paper, we consider rules to be defined on tabular datasets (or relations) over a setG of distin-
guished attributes (or columns). In the context of gene expression data, attributes correspond togenes
and tuples tosamples.

Let G be a finite set ofgenes. Each geneg ∈ G takes its possible values inR, the real numbers. A
tuple overG is a mappingt : G → R

n. A relation is a set of tuples. We say thatr is a relationover G,
i.e. a gene expression dataset. Letg ∈ G be a gene andt be a tuple; we denote byt[g] the restriction of
t to g.

Thesyntaxof a rule overG is an expressionX → Y i.e. “X implies Y” whereX,Y ⊆ G.

Thesemanticsof a ruleX → Y overG is themeaning, thesenseone wants to give to this rule: Given
a relationr, a ruleX → Y is said to besatisfiedin r with the semanticss, denoted byr |=s X → Y , if
the semanticss is true (or valid) inr.

The reader may refers to [25, 16, 9] for different points of view concerning the notion ofruleswhich
are referred to asimplications in discrete mathematics field or asfunctional dependenciesin database
field.

Example 2.1. Let us consider a running example made of a set of 6 tuples (or samples) (t1, t2, t3, t4, t5
andt6) over a set of 8 genes (g1, g2, g3, g4, g5, g6, g7 andg8) as depicted in Table 1.

Throughout this paper, we will illustrate our approach withthis example.

2.2. Justification of our framework

Our approach is based on the notion ofrule, also calledimplication. Let us recall that arule is an expres-
sion of the shapeX → Y i.e. “X implies Y” and thesemanticsof the rule is the signification one wants
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r g1 g2 g3 g4 g5 g6 g7 g8

t1 1.9 0.4 1.4 -1.5 0.3 1.8 0.8 -1.4

t2 1.7 1.5 1.2 -0.3 1.4 1.6 0.7 0.0

t3 1.8 -0.7 1.3 0.8 -0.1 1.7 0.9 0.6

t4 -1.8 0.4 1.7 1.8 0.6 -0.4 1.0 1.5

t5 -1.7 -1.4 0.9 0.5 -1.8 -0.2 1.2 0.2

t6 0.0 1.9 -1.9 1.7 1.6 -0.5 1.1 1.3

Table 1. A running example

to give to this implication. For example, association rulesin data mining or functional dependencies in
databases are two types of semantics.

In this paper, we focus on special kinds of rules, which exhibit nice properties, i.e. Armstrong’s
axiom system is sound and complete for the considered semantics. Such a semantics for rules is called
“well-formed” in the sequel. We have chosen to focus on Armstrong’s axioms since they obviously apply
for functional dependencies but also forimplicationsdefined on a closure system [16] and thus turn out
to have many practical applications (see examples given in [16]).

Practical interests of a well-formed semantics are twofold:

• Firstly, we can perform some kind ofreasoningon rules from the Armstrong’s axioms: From a set
of rulesF , it is possible to know if a rule isimpliedby this set of rules. This problem is known as
the implication problem and can be resolved in linear time [6]. Thus, if there is a relationr which
satisfiesF then all rules that can be deduced fromF thanks to the Armstrong’s axioms will be also
satisfied in this relation.

• We can also work on “small”coversof rules [23, 20] and propose a discovery process specific to
the considered cover, but applicable toall well-formed semantics. It is also possible to propose
covers for non-satisfied rules [17].

The theoretical framework that we propose to use for the generation of rules defined with well-
formed semantics, comes from the inference of functional dependencies [24, 12]. Basically, since by
definition the Armstrong’s axioms apply for any well-formedsemantics, the augmentation axiom im-
plies amonotone property: given an attributeA, X → A ⇒ ∀ Y ⊃ X,Y → A.
That is to say that the predicate “X implies A” is monotone with respect to set inclusion, thus the pred-
icate “X does not imply A” is anti-monotone. So well known characterization may be used to produce
the rules [26].
In other words, the largest left-hand sides not implyingA constitute thepositive borderof the predicate
“X does not imply A” and the smallest left-hand sides implying A constitute itsnegative border. Conse-
quently, this negative border gives a subset of the canonical cover (i.e. rules with minimal left-hand sides
andA as right-hand side) while the positive border gives a subsetof the Gottlob and Libkin cover [17]
(i.e. rules with maximal left-hand sides andA as right-hand side).

Details on the generation of rules are out of the scope of thispaper, interested readers are referred to
[24, 12, 26].
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Moreover, an important key point of our approach is to take into account characteristics of gene
expression data. Indeed, from the microarray analysis domain, two underlying “constraints” have to be
understood: firstly, the number of samples is small (a few hundreds at most) whereas the number of
genes is large (several thousands). Such a constraint differs widely from those usually held in databases
or data mining where the number of tuples can be huge whereas the number of attributes (i.e. genes
in the context of this paper) remains rather small. That is why for example our approach does not take
into account a minimum support threshold unlike association rules. Statistical measures are computeda
posteriorion the discovered rules.

Secondly, data pre-processing steps on gene expression data are not fully understood yet and there-
fore, we have to take into account noisy data. Thus microarray technology delivers numerical values
with a relatively small confidence on these values, biologists have to interpret the data, for example as
levels of expression, which implies a discretization step.In this setting, we propose to deal with noise in
data not as an explicit pre-processing step but implicitly within the semantics of the rules.

3. Example of semantics for rules

Our approach consists to interact with biologists in order to establish a rule semantics which fits into
their objectives and adapted to their data. In the sequel, wepresent three semantics for gene expression
data.

The first one, calleds1 (Gene expression levels), generates rules between genes according to their
expression levels. The second semantics, calleds2 (Gene expression level variations), generates rules
between genes according to thevariation of their expression levels. And finally, the third semantics,
calleds3 (Gene expression level evolution), generates rules between genes according to theevolution of
their expression levels between two consecutive samples.

3.1. Semantics 1: Gene expression levels

This first semantics consists in studying thelevelsof expression of genes. We shall call this semantics
s1 in the sequel. Let us note that the definition of this semantics is close to the definition of association
rules but is applied to quantitative data so that it does not require a discretization phase and no minimum
support threshold has to be set up.

Definition 3.1. (Semantics 1: Gene expression levels) LetX,Y ⊆ G, be two sets of genes andr a
relation overG. A rule X → Y is satisfied inr with the semanticss1 defined with two thresholds
ε1 and ε2, denoted byr |=s1

X → Y , if and only if ∀t ∈ r, if ∀g ∈ X, ε1 ≤ t[g] ≤ ε2 then
∀g ∈ Y, ε1 ≤ t[g] ≤ ε2.

In other words, thanks to the two thresholdsε1 andε2, the biologists have the opportunity to define
rules between over-expressed (or under-expressed) genes.

Example 3.1. Let us consider that biologists are interested in studying over-expressed genes. To do so,
assume that thresholds are set as follows:ε1 = 1.0 andε2 = 2.0, since they consider that a gene is over-
expressed if its expression level is between 1.0 and 2.0.
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In that case, the ruleg1 → g3 is satisfied in the relationr given in Table 1 (on the other hand the rule
g3 → g1 is not satisfied because of the tuplet4). The expression levels of the genesg1 andg3 are given
in the figure 1.

Figure 1. Expression levels of the genesg1 andg3

The ruleg1 → g3 is interpreted in the following way: for any sample, if the geneg1 is over-expressed
then the geneg3 is also over-expressed.

3.2. Semantics 2: Gene expression level variations

In many cases, it does make sense to compare samples in a pairwise fashion to find some regularities
between samples. Such kind of reasoning is well known in the database community through the notion
of functional dependencies. However, in our context, the FD satisfaction - its meaning -has to be relaxed
to take into account noise in gene expression data. Since a crisp FD X → Y can be rephrased as
“equal X-values correspond to equal Y-values”, we would like to obtain something like “close X-values
correspond to close Y-values”. Thus, instead of requiring strong equality between attribute values, we
admit an error less or equal to the absolute value of the difference (obviously, other norms should have
been taken). This leads to the following semantics:

Definition 3.2. (Semantics 2: Gene expression level variations) LetX,Y ⊆ G, be two sets of genes and
r a relation overG. A rule X → Y is satisfied inr with the semanticss2 defined with two thresholdsε1

andε2, denoted byr |=s2
X → Y , if and only if ∀t1, t2 ∈ r, if ∀g ∈ X, ε1 ≤ |t1[g] − t2[g]| ≤ ε2 then

∀g ∈ Y, ε1 ≤ |t1[g] − t2[g]| ≤ ε2.

Classical satisfaction of functional dependencies is achieved whenε1 = ε2 = 0.

Given any couple of samples,X → Y means that if the variation of the expression levels of each
geneg of X is betweenε1 andε2 then the variation of the expression levels of each geneg of Y is also
betweenε1 andε2.
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Example 3.2. Let us suppose that biologists are interested in small variations of expression levels be-
tween samples. Thresholds should be defined as follows:ε1 = 0.0 andε2 = 0.2. The hypothesis is that
a gene does not vary between any couple of samples if the difference of the expression levels is between
0.0 and0.2.

The expression levels of the genesg6 andg7 are plotted in Figure 2. In that case, the ruleg6 → g7

is satisfied in the relationr (on the other hand the ruleg7 → g6 is not satisfied because of the variation
between the samplest3 andt4).

Figure 2. Expression levels of the genesg6 andg7

The ruleg6 → g7 is interpreted in the following way: Given any couple of samples, if the expression
level of the geneg6 does not vary then the expression level of the geneg7 does not vary neither.

3.3. Semantics 3: Gene expression level evolution

This semantics generates rules between genes according to the evolutionof their expression levels be-
tween two consecutive moments. In that case, anorder on the samples is required in order to compare
the expression level of a gene ati+1 with respect to its expression level ati.

Definition 3.3. (Semantics 3: Gene expression level evolution) LetX,Y be two sets of genes,ε1 andε2

be two thresholds andr a relation.
A rule X → Y is satisfied inr with the third semantics, denoted byr |=s3

X → Y , if and only if
∀ti, ti+1 ∈ r, if ∀g ∈ X, ε1 ≤ ti+1[g] − ti[g] ≤ ε2 then∀g ∈ Y, ε1 ≤ ti+1[g] − ti[g] ≤ ε2.

We notice that we got rid of the absolute value because the order of samples is significant.

Example 3.3. The samples must be ordered. For example, the samplet1 can represent the state of a cell
at the momenti0, then after injection of a drug, the cell is analyzed six hours later to give samplet2 etc.
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until samplet6 30 hours later. This process allows to show the impact of a drug on gene expression of
the cell in the time.

Suppose that biologists are interested in genes whose expression levels grow in the time with the
following thresholds:ε1 = 1.0 andε2 = 4.0. That is, the expression of a gene grows betweeni andi+1 if
its expression level ati+1 is greater or equal to more than 1.0 point to its expression level at the moment
i.
In that case, the ruleg2 → g4 is satisfied in the relationr (on the other hand the ruleg4 → g2 is
contradicted by the evolution betweent2 andt3). The expression levels of the genesg2 andg4 are given
in the figure 3.

Figure 3. Expression levels of the genesg2 andg4

The ruleg2 → g4 is interpreted in the following way: between two consecutive samplesi andi+1,
if the expression level of the geneg2 grows then the expression level of the geneg4 grows.

4. Well-formed semantics

The second step of the process is to verify the well-formedness of the semantics defined by domain
experts, i.e. verify that this semantics can be used within our framework. This step is very important
since many semantics could be defined, some of them verifyingthese requirements, others not (see
Theorem 4.2).

To do that, we introduce the notion of well-formed semantics:

Definition 4.1. A semanticss is well-formedif Armstrong’s axiom system is sound and complete fors.

Let us recall the Armstrong’s axiom system for a set of rulesF defined over a set of attributes (i.e.
genes in our context)G:
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1. (reflexivity) if X ⊆ Y ⊆ G thenF ` Y → X

2. (augmentation) ifF ` X → Y andW ⊆ G, thenF ` XW → Y W

3. (transitivity) if F ` X → Y andF ` Y → Z thenF ` X → Z

The notationF ` X → Y means that a proof ofX → Y can be obtained using Armstrong’s axiom
system fromF . Moreover, given a semanticss, the notationF |=s X → Y means that for all relations
r overG, if r |=s F thenr |=s X → Y .

As expected, the three semantics previously introduced verify these requirements.

Theorem 4.1. The semanticss1, s2, s3 arewell-formed.

We show the result only fors1, the proof fors2 ands3 being quite similar. We need to show that
Armstrong’s axiom system is sound and complete fors1.

Lemma 4.1. Armstrong’s axiom system is sound fors1.

Proof:
Let F be a set of rules. We need to show that ifF ` X → Y thenF |=s1

X → Y .
Let r be a relation over a set of genesG.

1. (reflexivity) evident.

2. (augmentation) Lett ∈ r such that∀g ∈ X ∪ W, ε1 ≤ t[g] ≤ ε2. We need to show that∀g ∈
Y ∪ W, ε1 ≤ t[g] ≤ ε2, which implies thatr |=s1

XW → Y W . By assumptionF ` X → Y ,
then we have∀g ∈ Y, ε1 ≤ t[g] ≤ ε2. The result follows.

3. (transitivity) Lett ∈ r such that∀g ∈ X, ε1 ≤ t[g] ≤ ε2. We need to show that∀g ∈ Z, ε1 ≤
t[g] ≤ ε2, which implies thatr |=s1

X → Z. By assumption,F ` X → Y andF ` Y → Z, then
∀g ∈ Y, ε1 ≤ t[g] ≤ ε2 and∀g ∈ Z, ε1 ≤ t[g] ≤ ε2 respectively. The result follows.

ut

Lemma 4.2. Armstrong’s axiom system is complete fors1.

Proof:
We need to show that ifF |=s1

X → Y thenF ` X → Y or equivalently, ifF 6` X → Y then
F 6|=s1

X → Y . As a consequence, assuming thatF 6` X → Y , it is enough to give a counter-example
relationr such thatr |=s1

F but r 6|=s1
X → Y .

Let r overG be the relation shown in Table 2, withε1 = 1.0 andε2 = 2.0.

X+
G − X+

1.5 ... 1.5 0.5 ... 0.5

Table 2. Counter-example
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Firstly, we have to show thatr |=s1
F . We suppose the contrary thatr 6|=s1

F and thus,∃V → W ∈
F such thatr 6|=s1

V → W . It follows by the construction ofr thatV ⊆ X+ and∃A ∈ W such that
A ∈ G − X+. SinceV ∈ X+, we haveF ` X → V and sinceF ` V → W , we haveF ` V → A.
Thus, by the transitivity rule,F ` X → A and thusA ∈ X+. This leads to a contradiction sinceA ∈ W ,
and thusr |=s1

F .
Secondly, we have to show thatr 6|=s1

X → Y . We suppose the contrary thatr |=s1
X → Y . It

follows by the construction ofr thatY ⊆ X+ and thusF ` X → Y . It leads to a contradiction since
F 6` X → Y was assumed, and thusr 6|=s1

X → Y . ut

As an example of semantics which does not fit into our framework, let us consider the following
semantics, noteds′2, which extends the semanticss2 with an additional constraint:

Definition 4.2. Let X,Y ⊆ G, be two sets of genes andr a relation overG. A rule X → Y is satisfied
in r with the semanticss′2 defined with two thresholdsε1 andε2, denoted byr |=s′

2
X → Y , if and only

if ∀t1, t2 ∈ r, if ∀g ∈ X, ε1 ≤ |t1[g]−t2[g]| ≤ ε2 then∀g ∈ Y, ε1 ≤ |t1[g]−t2[g]| ≤ ε2 AND ∃t1, t2 ∈ r
such that∀g ∈ X, ε1 ≤ |t1[g] − t2[g]| ≤ ε2.

We have the following result:

Theorem 4.2. The semanticss′2 is notwell-formed.

Proof:
Let F be a set of rules andX ⊆ G, we haveF ` X → X by the reflexivity axiom. Nevertheless,
F 6|=s′

2
X → X. Let us consider the following counter-example made of 4 tuples (t1, t2, t3 andt4) over

a set of 2 genes (g1 andg2) as depicted in Table 3.

r g1 g2

t1 -1.8 1.8

t2 -1.7 0.2

t3 0.2 -1.4

t4 0.3 -1.8

Table 3. Counter-example fors′
2

Let us consider the thresholdsε1 = 0.0 andε2 = 0.2. We can see thatr 6|=s′
2

g2 → g2 because6 ∃
t1, t2 ∈ r such that0.0 ≤ |t1[g2] − t2[g2]| ≤ 0.2. By the way, the result is proved since the reflexivity
axiom is not sound. ut

5. Implementation

We have implemented the generation of rules as a C++/STL modules integrated into an open-source
freeware devoted to microarray data analysis: MeV (MultiExperimentViewer) [28]. This tool is a part
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of an application suite, called TM4, developed by The Institute for Genomic Research (TIGR). These
tools devoted to microarray data propose various functionssuch as storing the data, image analysis,
normalization, interpretation of the results.

MeV is the application devoted to the analysis of gene expression data. Furthermore, MeV takes in
input several file formats resulting from various image analysis software, has an important number of
functionalities already integrated and is based on a GUI easy to use for biologists.

5.1. Interface for the biologists

For the interface, we chose to limit as much as possible the options proposed to the users to make it
easier. An example of the graphical user interface developed on top of MeV is presented in Figure 4.

Figure 4. Graphical user interface of the software

At first biologists have to specify the genes they want to see in right hand sides of their rules. This step
allows to concentrate on interesting genes. Then, the user chooses one semantics out of three depending
on its objectives and its data.

A choice of relevant thresholds is then proposed according to either the distribution of thelevels
of expression for the first semantics, or the distribution ofthevariationsof the levels of expression for
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second, or the distribution of theevolutionof the levels of expression for the last one. Nevertheless,
biologists can set up manually the thresholds which best fit into their requirements. Note also that
different thresholds could be defined for each gene.

5.2. Post-processing of rules

The software was tested on several datasets and we were naturally interested in the post-processing of
rules. Without being exhaustive, five quality measures (support, confidence, lift, leverage and conviction)
are computed to be able to sort the rules (see Figure 5).

Figure 5. Graphical user interface of the software

These interestingness measures were introduced for association rules [2, 8, 27] but here the compu-
tation of these measures is adapted to the three semantics.

All the measures for a ruleX → Y are computed from four initial values, depending on the chosen
semantics:

For the semanticss1, these parameters are computed as follows:
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• n: number of tuplest in the relation.

• nX : number of tuplest such that∀g ∈ X, ε1 ≤ t[g] ≤ ε2.

• nY : number of tuplest such that∀g ∈ Y, ε1 ≤ t[g] ≤ ε2.

• nXY : number of tuplest such that∀g ∈ X, ε1 ≤ t[g] ≤ ε2 and∀g ∈ Y, ε1 ≤ t[g] ≤ ε2.

For the semanticss2, the computation is different since couples of samples are considered:

• n: number of couples of tuplest1, t2 in the relation.

• nX : number of couples of tuplest1, t2 such that∀g ∈ X, ε1 ≤ |t1[g] − t2[g]| ≤ ε2.

• nY : number of couples of tuplest1, t2 such that∀g ∈ Y, ε1 ≤ |t1[g] − t2[g]| ≤ ε2.

• nXY : number of couples of tuplest1, t2 such that∀g ∈ X, ε1 ≤ |t1[g] − t2[g]| ≤ ε2 and∀g ∈
Y, ε1 ≤ |t1[g] − t2[g]| ≤ ε2.

For the semanticss3, we consider couples of consecutive samples:

• n: number of couples of consecutive tuplesti, ti+1 in the relation.

• nX : number of couples of tuplesti, ti+1 such that∀g ∈ X, ε1 ≤ ti+1[g] − ti[g] ≤ ε2.

• nY : number of couples of tuplesti, ti+1 such that∀g ∈ Y, ε1 ≤ ti+1[g] − ti[g] ≤ ε2.

• nXY : number of couples of tuplesti, ti+1 such that∀g ∈ X, ε1 ≤ ti+1[g] − ti[g] ≤ ε2 and
∀g ∈ Y, ε1 ≤ ti+1[g] − ti[g] ≤ ε2.

From these parameters, we can define for the ruleX → Y , five quality measures in the following
way:

Support (X → Y ) = Support (Y → X) = P (XY ) = nXY /n. It corresponds to the probability that X
and Y are simultaneously satisfied [2].

Confidence (X → Y ) = P (XY |X) = nXY /nX . It corresponds to the probability that Y is satisfied
knowing that X is satisfied. When the confidence equals to 1, wesay that the rule isexact, other-
wise it is saidapproximate[2].

Lift ( X → Y ) = Lift (Y → X) = P(XY) / P(X)P(Y) =(nXY ∗n)/(nX ∗nY ). This indication measures
the dependence between X and Y. It corresponds to the quotient between the actual probability
to have X and Y satisfied and the expected probability which wewould obtain if X and Y were
independent [8]. A lift of 1 means that both variables are totally independent.

Leverage (X → Y ) = Leverage (Y → X) = P(XY) - P(X)*P(Y) = (nXY /n)−((nX/n)∗(nY /n)). The
leverage also measures the dependence between X and Y. It measures the difference between the
actual probability to have X and Y satisfied and the expected probability which we would obtain
if X and Y were independent [27]. A leverage equals to 0 means that X and Y are independent.
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Conviction (X → Y ) = (P(X)*P(notY)) / P(X and notY) =(nX ∗ (n − nY ))/(n ∗ (nX − nXY )). The
conviction compares the probability to have X satisfied and Ynot satisfied if they were independent
with the actual probability to have X satisfied and Y not satisfied [8]. A conviction equals to 1
means that X and Y are independent. Note that for exact rules,the conviction can not be computed
since P(X and notY) equals to 0.

The user looks at only the rules s/he considers interesting according to these various indications.
Other quality measures of rules, like those defined in [31] can be integrated without any overhead.

6. Application from breast cancer tumors

An application has been performed on expression profiles of asub-sample of genes from breast can-
cer tumors [1]. Publicly available DNA microarray data for 34 young patients, who developed dis-
tant metastases within 5 years, and 5 000 genes, were selected by the domain experts (biologists and
physicians)[32]. The biologists were interested in studying both over- and under-expressed genes.

We present only results obtained on under-expressed genes for which the generated rules were more
interesting. To do so, the first semantics was chosen with thefollowing thresholds:ε1 = −2.00, ε2 =
−1.18, that means that a gene is considered as under-expressed if its expression level is between−2.00
and−1.18. Moreover, the number of studied genes was set up to 24.

For this semantics, 60 rules were generated (46 with a 100% confidence). We have then selected the
more interesting rules according to the different quality measures. They are given in Table 4.

Rule Support Confidence Lift Leverage Conviction

ESR1 → TFF1 0.41 1.00 1.36 10.9 ∞

MY B → TFF1 0.38 1.00 1.36 10.12 ∞

ERBB4, TFF1 → MY B 0.21 1.00 2.62 12.72 ∞

ERBB4, ESR1 → MY B 0.21 1.00 2.62 12.72 ∞

KRT18 → ESR1 0.21 1.00 2.43 12.11 ∞

ERBB4, TFF1 → ESR1 0.21 1.00 2.43 12.11 ∞

ERBB4,MY B → ESR1 0.21 1.00 2.43 12.11 ∞

BCL2, ESR1 → MY B 0.18 1.00 2.62 10.9 ∞

BCL2,MY B → ESR1 0.18 1.00 2.43 10.38 ∞

ERBB4,KRT18 → MY B 0.15 1.00 2.62 9.08 ∞

Table 4. Rules from breast cancer tumors

Results obtained so far to reveal interactions between over-expressed and under-expressed genes are
promising. We demonstrated the rule ESR1 under-expressed implies TFF1 under-expressed, an already
well-known interaction for this kind of tumor [18]: ESR1 encodes a nuclear receptor, a super-family of
ligand activated transcription factors that modulate specific gene expression. Estrogen exerts its effects
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only through interaction with estrogen receptor. TFF1 (pS2) is an estrogen-inducible gene involved in
various biological processes. In the absence of ESR1 expression, estrogen cannot regulate the mRNA
level of this gene. The other rules have similar biological interpretations [19].

At present, supplementary experiments need to be done to obtain new gene expression data of mam-
mary tumors. Indeed, it is worth verifying whether rules discovered in a dataset remain valid in another
dataset.

7. Conclusion

In order to attempt a reverse engineering of gene regulatorynetworks from gene expression data, we
have proposed an on-going work aiming at defining different semantics of rules between genes, fitting in
the same theoretical framework. Such rules form a complementary and hopefully new knowledge with
respect to classical unsupervised techniques used so far [13].

The framework proposed in this paper, based on Armstrong’s axiom system, is able to deal with
different kinds of semantics in a unified manner. The semantics proposed for gene expression data have
been implemented as an extension of a open-source software dedicated to the analysis of microarray data
(MeV of TIGR Institute).

We believe that an interesting open issue remains to define new semantics devoted to gene expression
data. Moreover, soundness and completeness of the Armstrong’s axiom system have to be proved for
each new semantics. We are currently working on a generic definition of a semantics which ensures
that a semantics is well-formed if and only if it complies with this definition. To end up, this work may
also suggest a more interactive process of discovery of rules, which would consist in requiring to the
biologists some “templates” for the rules they are interested in, and then determining the semantics for
which these rules are satisfied.
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