
 1

Context-Sensitive Security in a Pervasive Environment

Research Report

Charles-Eric Pigeot, Yann Gripay, Jean-Marc Pierson, and Vasile-Marian Scuturici
INSA de Lyon

Laboratoire LIRIS
e-mail : { Charles-Eric.Pigeot, Yann Gripay, Jean-Marc.Pierson, Marian.Scuturici }@insa-lyon.fr

Abstract

Ubiquitous systems enable us to have an overview of what
digital environments will look like in the future. The
opportunities given by the pervasive systems, both in terms
of applications and services to the user are manifold and
very promising. From the user point of view, privacy and
security of his personal data is a real issue, which must be
addressed to make pervasive systems accepted. A wide
adoption of pervasive systems can not be possible without
an integrated approach to security. We propose a model of
security and privacy for ubiquitous environments,
integrated with an architecture, namely PerSE, in which
privacy is a main concern and in which it is at the core of
the conception.

1. Introduction

Security and privacy in pervasive environments are two
key factors to make the technologies of these environments
accepted by most of the users. The omnipresence of the
devices surrounding the user must bring him useful
services, depending on his needs, in a reactive way (after
the user has expressed his needs), or in a proactive way
(anticipating his needs). We believe that those two
characteristics are essential to pervasive environments, as
well as invisibility (the user must not be aware of the
interactions between the devices) and non-intrusiveness in
his personal life.

However, each user might want to control precisely how
he interacts with his environment, i.e. which services or
data he wants to share and in which context he wants this.
To this end, he must have the possibility to define different
context-aware access authorizations on his data: For
example, a user may want to give access to his data only if
he remains in a specific room of a building, and only to the
users who are located in his visually accessible
neighbourhood. This simple example may be much more
complicated, but this kind of scenario is very likely to
occur with the development of pervasive systems. A
security and privacy system for pervasive environments

must then enable the user to answer these 3 questions:
Which resources (data, services) I want to share? With who
I want to share these resources? And in which context
(we‘ll see later how we define the context) I want to share
these resources?

Therefore, security must be integrated between the
different devices, but also into the devices to control the
access to the data and services hosted locally. Moreover,
the security integration must not affect performances,
especially on mobile devices where resources are limited.

As we’ll see in the next section, some works propose
access control for pervasive environments, but most of
them do not take the context of the user into account in a
satisfying way, though it must be central in pervasive
environments, and do not address some pervasive-related
issues. Moreover, some studies have shown that the
perception of privacy in pervasive environments varies
greatly upon the users and that one of their main concern is
the context in which they remain. Thus, there is a real need
for proposing a user-centric privacy solution for ubiquitous
environments.

We propose a security model and infrastructure for
pervasive environments, based on two levels of security,
using context-aware policies. Our solution may be seen as a
step toward the non-intrusiveness of the environment in the
personal life. This article is organized as follows. Section 2
discusses the related works. In Section 3, we present our
theoretical framework on which we have designed our
solution. Section 4 presents our infrastructure, the rule-
based, context-aware policies, and summarizes the process.
In Section 5, we study a use case and its resolution with our
solution. Section 6 presents implementation and evaluation
aspects of our works, and Section 7 discusses the
contributions and future works and improvements.

2. Related Work

Discretionary Access Control (DAC) and Mandatory
Access Control (MAC) were amongst the first access
control solutions. They were quickly replaced by Role Base
Access Control (RBAC) [4],[5]. In RBAC, roles are

 2

assigned to users, and the roles have permissions on
objects. RBAC is particularly well adapted to organizations
like hospitals, enterprise, etc with a very precise and
predefined structure because it enables administrators to
define and specify security policies that maps exactly the
structure of the organization. Moreover, the concept of
associating permissions to roles instead of permissions to
users resulted in reducing administration costs. The authors
of RBAC defined 4 models [4],[5]:

• RBAC0: The basic model with users, roles and
permissions

• RBAC1: RBAC0 with role hierarchies
• RBAC2: RBAC0 with constraints on roles, users,

permissions
• RBAC3: RBAC1 + RBAC2

Although these 4 models have proven their efficiency
and simplified greatly the security management for
structured organizations, it is obvious that RBAC, and its
extensions developed to improve the model, like CBAC
[6], an access control mechanism in which general
associations between users and permissions are specified
by the rules (or constraints) governing the access rights of
each user, do not address all the issues related to pervasive
and ubiquitous environments: Dynamicity, lack of
structure, distribution, and one of the most important,
context-awareness.

For these reasons, other models have been proposed :
Bertino et al. presents Temporal-RBAC [7] which
addresses temporal needs on Role Based Access Control
with the support of periodic role enabling and disabling and
the introduction of time in RBAC model. This model was
generalized by Joshi et. al [8] with GTRBAC (Generalized
Temporal RBAC). The GTRBAC model includes a set of
language constructs for the specification of various
temporal constraints on roles, including constraints on their
activation as well as on their enabling time, user role
assignment and role permission assignment.

Time management and dynamicity is an important
feature for ubiquitous computing, but we believe that one
of the strongest requirement of a security and access
control system for pervasive architectures is the context-
awareness. It was introduced in access control by
Covington et al [12] with environment roles and GRBAC
(Generalized RBAC) [13]. The authors proposed a
generalization of the RBAC model that allows
administrators to specify environment and context
constraints through a new type of role, environment role.
Those roles are based on context conditions as constraints,
for their activation for instance. GRBAC also introduces
Subject Roles and Object Roles and context information is
used to make the access decision. While this model seems
interesting by the introduction of context-aware roles and
enable simple context-aware policies definition, the use of
the context data is very limited, and the formalization and
definition of the context are not satisfying, thus policies

based on context can not express more complex aspects of
context data.

Zhang and Parashar [9] present DRBAC, for Dynamic
RBAC, which tries to address the dynamic access control
needs for pervasive applications. Again, the authors add the
context to the RBAC model, and the context data are
collected by a “Context Agent”. In DRBAC, roles change
as the context changes, and each user has a context agent
which detects context change. These changes trigger
transitions between the roles. This model does not address
important issues about dynamic and distributed access
control, the main issue of this model being that a Central
Authority is needed to manage the role hierarchy and the
transitions between the roles. This centralization is not
adapted to very distributed environments, like pervasive
environments.

Another extension to RBAC was proposed to address
context issues, OrBAC [14] and later Multi-OrBAC [11].
OrBAC introduces context as a new entity to specify the
circumstances in which the organisation grants permissions
on objects. However the use of the context of the user in his
environment, is limited and unclear, whereas it should be a
central point, especially in pervasive environments. The
authors do not provide any information on how they gather
context information, which context information is used, and
they do provide a context model reusable. Furthermore, like
RBAC, this model is well adapted to organizations, hence
the application to pervasive environment is very limited.
That’s why the authors extended their model to Multi-
OrBAC, meant to address multi organization issues. In
Multi-OrBAC, each role and permission is valid in a
specific organization. This model is more adapted to
distributed and heterogeneous systems, although it still
does not provide a satisfying context-aware access control
model, since the context part is the same as in OrBAC.

An promising work for context aware access control for
distributed Healthcare applications is presented by Hu and
Weaver [21]. The authors provide good and useful
definitions and formalization of the context, but their model
is not far from DBAC or OrBAC: Rules consist of
permissions on objects to users in a specific context. The
implementation of their access policy use WS-Policy. Our
approach is quite similar, but we go further in the
definitions, formalization, and usability of the context,
which is the core of our approach.

Kumar et al. formally propose CS-RBAC [10], for
Context Sensitive RBAC, which enable RBAC to enforce
security policies dependent on the context of the operation
attempted, the user and the object. However, the authors do
not provide any satisfying context model, and the context is
used only as simple constraints. We believe that context
can be used much more efficiently to produce real context-
aware policies.

 3

All these approaches tend to address problems related to
the needs of access control for pervasive environments, but
most of them don’t solve all the problems. Other works
propose an integrated and secured architecture for
pervasive environments in which privacy is the main
requirement.

Langheinrich [1] describes a secured pervasive
architecture named pawS, in which devices of the
environment announce user data collection to a privacy
assistant carried by the user on his mobile device. If the two
devices can’t agree on the negotiation about the data
collection (the user preferences are described in a privacy
policy), the user declines the usage of the service. The
privacy policy of the user is described with P3P [20], a
labeling protocol from the Web. While this approach is
centred around privacy, access control is very limited, and
the description of the user privacy policy becomes very
hard if the number of entity increases.

An other approach is proposed by Hong and Landay
with their solution, Confab [2]. Confab is an infrastructure
for facilitating the development of privacy-sensitive
ubiquitous computing applications. The authors gathered
requirements for Confab through an analysis of privacy
needs for both end-users and application developers.
Confab provides several customizable privacy mechanisms
as well as a framework to extend privacy functionality.
levels and privacy needs. This infrastructure enables the
administrator to define metadata on the data to protect,
metadata related to the privacy: number of utilisation, time
of life etc. This approach deals only with the use of
personal data, but not the access control at all. Moreover,
context awareness is not addressed here.

The Daidalos approach [3] is based on virtual identities
of the user, each identity containing a subset of the user
data. Identities are changed and generated upon the context,
and when two entities (user and service for instance) want
to cooperate, they first need to agree on the data to
exchange, as in pawS [1]. If they agree, a new identity is
generated or a satisfying existing one is used. This
architecture handles context, but the privacy preferences
are defined in a static way, and can not be changed easily.

Our policies must be described in a standard language,
easily understandable and executable. Therefore, we chose
XML to represent and implement our security policies.
Numerous works have been realized in this domain, and
XML has become a standard in this field. There are some
XML-based policy language, such as XACML [18], WS-
Policy [17], and SAML [19]. SAML defines an XML
framework for exchanging authentication and authorization
information for securing Web services, and relies on third-
party authorities for provision of “assertions” containing
such information. However, SAML itself is not designed to
provide support for specifying authorization policies.
XACML is an XML framework for specifying context-

aware access control policies for Web-based resources..
WS-Policy is used to describe the security policies in terms
of their characteristics and supported features (such as
required “security tokens”, encryption algorithms, privacy
rules, etc.). In fact, WS-Policy is a meta-language which
can be used to create various policy languages for different
purposes, and can indeed be used to define an access
control policy.

Herzberg et al propose TPL [16], Trust Policy
Language, a XML-based language to define policies using
well formed XML document. The main purpose of the
Trust Policy Language (TPL) is to map entities to roles,
using well defined logical rules described in XML. Finally,
Netegrity [15] has proposed S2ML, a security services
markup language that provides mechanisms for describing
security models with XML and for sharing security
information about transactions and end users between
companies.

Those approach are promising and some of them tend to
become standards in security policy definition, in particular
XACML and WS-Policy. They enable standardization in
policies definition, and they are very powerful and
expressive.

We need a XML-based language to implement our
policies, but we chose to define a new, simple XML syntax
instead of using an existing language, mainly for simplicity
and lack of time reasons. Indeed, WS-Policy was too
complex and too expressive for our needs and for our
simple rule-based system, as it is first designed for Web
Services policies. We could have used XACML, which is
very close to our XML syntax and process, but the XML
files generated with XACML are much heavier than with
our XML files, because it is more powerful. As resources
are limited in pervasive environments, we chose to make
our XML syntax as simplest as possible. Anyway, the
translation of our rules to XACML rules is very easy and
can be done quickly if there is a strong need of
interoperability.

We decided to propose to the user a declarative language
to define his rules, because we do believe that even if XML
is really simple compared to other languages, it is far from
being natural to a basic user. Thus, we chose to define very
simple but powerful declarative languages to this end.
We’ll see in the following sections our security model, and
how we used this model to create a secured infrastructure
for pervasive architectures, infrastructure in which security
and privacy is handled at multiple levels and in which
access control is totally context-aware.

3. Theoretical Framework and Definitions

Here we present our definitions and framework for our
model.

 4

Pervasive Environment: A set of devices acting
together in order to satisfy a user with minimal intrusion.

Base: A meta-services running on a pervasive device,
enabling it to share his local services and resources (local-
context). Each base is in charge of communications with
the other bases, in order to run in a smart and optimized
way distributed services.

Resource: We define a resource as a data or a service. A
data can be a picture, a file etc. A service is hosted on a
base. A resource can belong to a user or to a base.

Entity: We define an entity as a generic term for either a
base, a resource, or a user, i.e. the 3 elements that can
interact with each other in our vision of a pervasive
environment.

Group of entities: We define a group of entities as a
gathering of entities, whatever their nature might be (base,
user, service).

ContextDomain

ContextSubDomain

ContextSubDomain

Figure 1 : Context Domain and Subdomains

Context Domain: The set of all possible context states
of the pervasive environment.

Context SubDomain: A set of states included in the
ContextDomain. (ContextSubDomain ⊆ ContextDomain)

Rule support: the context sub domain used to define the
rule.

Communication Rule: A communication rule is
defined as an action to realize on messages coming from a
sending entity or a group of entity, and sent to a recipient or
a group of recipient, and this action has to be realized in a
certain context. A communication rule can be represented
by the tuple:

Resource Access Rule: A resource access rule is

defined as a permission or a group of permissions given to
an entity or a group of entities on a resource or a group of

resources in a certain context. A resource access rule can be
represented by the tuple

Communication Profile: We define a communication

profile as the set of communication rules with the same
support, i.e. that are valid in the same context. If p is a
communication profile, ri a communication rule and Sr the
rule support of ri, then:

Resource Access Profile: We define a resource access

profile as the set of resource access rules with the same
support, i.e. that are valid in the same context. If p is a
resource access profile, ri a resource access rule and Sr the
rule support of ri, then:

PC is the set of all the communication profiles and PA is

the set of all the resource access profiles.
Security Policy: We define a security policy as the set

of every profile of communication and resource access rule
defined by a user to protect his base. The way we define the
policies can introduce conflicts between the rules. In order
to have a non-contradictory policy, we define relations of
priority.

For conflicts between the rules: Let Α be the set of all
the possible actions on a message. We define on this set a
relation of priority, noted >. Intuitively, if α1 has a higher
priority than α2 and if the 2 actions are applicable in the
mean time, then the action α1 will be applied.

For conflicts between the profiles: We define the
function Priority Φ:

The value of this function for a profile represent the

priority of this profile, defined by the user. If Φ(p1) >
Φ(p2), then the rules in p1 will be chosen in priority
compared to the rules of p2 if a conflict occurs.

 5

4. Privacy Architecture and Processes

4.1 Requirements for a secured pervasive
architecture

Based upon the model we described in the previous
section, we designed a security and privacy infrastructure
for pervasive environments. This architecture, composed of
3 modules, is integrated in an existing pervasive
environment named PerSE (Pervasive Service
Environment) [22] detailed in the next section.

The security infrastructure we propose is based on a
two-level filtering system: communication filtering and
resource access control. These two security levels use
security policies, composed of security rules defined by the
user, to derive the access decision. In our infrastructure,
two modules are dedicated to this filtering, and the third
module is the one which decides which policy to use,
depending on the context at the moment of the request.
Indeed, we believe that a strong requirement for a security
system for a pervasive environment is the context-
awareness. The context of the user is the basis for every
ubiquitous environment, and we can easily understand that
a user might want to change his privacy policy in different
contexts. That’s why we introduced in our model, and in
our policy, the concept of context. We’ll see later how
context is central in our infrastructure.

Moreover, we would like to create totally proactive
security policies, that is to say security policies that can be
defined by the system without any intervention of the user.
However, it is very difficult to design such policies, so we
designed context-aware policies, that, once defined by the
user, adapt themselves to the context, i.e. where context is
central and controls their applicability. By defining context-
aware policies, we then reduce the interaction with the user.

Invisibility, one of the most fundamental characteristics
of pervasive environments, makes difficult for user to
evaluate the concepts of privacy and security in these
environments.

Some works have tried to study the perception of the
user regarding security and privacy threats in ubiquitous
environments. Beckwith [24] concludes from his studies
that users have a very limited perception of potential threats
and risks of these technologies. For example, electronic
badges are not seen as a potential means to follow every
movement of a user, but only a means to get to certain
place and open doors. Beckwith makes another important
conclusion: The definition of security and privacy differs
greatly from one user to another, and every user assesses
privacy depending on different parameters and criterions.

Key et. al also studied this aspect of pervasive
environments [25], and their works clearly reveal the fact
that the quantity of personal information given in response

to a request depends both on the identity of the emitter of
the request and on the context in which the user stands.
Again, all the users do not define context in the same way,
and each user has his own parameters to define it: One will
prefer to use his location, another will use the temperature
of the room etc. The conclusions are nearly the same in
other similar studies [26], [27].

For these reasons, we decided to give the user the
opportunity to decide how the context is used in the
security policies, and in which context a security policy is
valid, that is to say which parameters he will use and which
constraints he will put on these parameters. We will see in
the next sections how we defined a language to help the
user to describe a context.

4.2 PerSE

PerSE represents our vision of a pervasive environment,
user-oriented and in which the user has access to services
on the different surrounding devices by expressing an
intention. Moreover, this platform has to be proactive and
non-intrusive, two main characteristics of pervasive
environments.

As a part of the PerSE environment, each device has to
run a meta-service, the Base, enabling it to share his local
services and resources (local context). The PerSE Base is in
charge of communications with other bases, in order to run
in a smart and optimized way distributed services.

A PerSE environment consists of many independent
Bases, able to discover, send and receive messages through
the different communication channels (LAN, Wifi,
Bluetooth) available on the devices.

In order to respond to user needs, a modelling of his
intention is necessary. The PsaQL language [22] enables
the user (or an application) to express his intention (action)
describing the services the user wants to use and their
possible location. The PerSE Base has then to interpret this
intention into a connected graph of services meant to be
executed.

The PerSE architecture (Figure 2) is composed of 3
layers, corresponding to the 3 main functionalities of the
Base : Communication, Environment and Action. Between
and within these layers, we integrated our security
infrastructure, composed of 3 modules.

4.2.1 The Communication Layer

The Communication layer is the lowest level layer and is
in charge of the communications of the PerSE base with its
environment, that is to say the other PerSE bases.

The Local Data Interface and Local Service Interface
modules handle the physical access to the local data and
services of the base. The Base Interface module is the local

 6

access point for the user who wants to interact with the
base, especially to start partial actions. The Messenger is in
charge of the communications between the bases,
communications based on specific messages.

Figure 2: The PerSE architecture

In this layer, the first security module, the Message
Filter, acts as a filter on incoming and outgoing messages.
In the PerSE environment, the communications between the
different bases rely on messages built with a specific
structure (Figure 3). It is composed of two main parts: the
header and the data. The header is divided in four layers,
each of them containing information on the sender and
receiver entity: base, service of the base, user etc.

By using these information stored in the message
structure, the Message Filter can decide to stop the message
or to let it pass. The decision is made by a communication
policy enforcement, and this communication policy,
composed of communication rules, is defined by the user.
The Message Filter is both a Policy Enforcement Point
(PEP) and a Policy Decision Point (PDP), since it renders
authorization decision, and performs access control. We’ll
see in the next sections how the user can define such
policies.

Figure 3: The PerSE Message structure

4.2.2 The Environment Layer

The Environment Layer manages the local knowledge of
the base on its environment. The Local Service Monitor is

the module which manages all the local services available.
The Context Manager handles both the access to the local
context and the distant access to other bases context
through context request. The Remote Service Discoverer
regularly sends requests to other PerSE bases to maintain a
local repository of the services available on distant bases.

This layer manages and has the access to local data and
services, so we decided to protect this access by a second
filter, the Resource Access Filter situated between the
Environment Layer, and the Action Layer. The Resource
Access Filter is an access controller: When a request from
the Action Layer occurs, the Resource Access Filter, by
enforcing a resource access policy defined by the user,
decides whether the request is legal or not. The Resource
Access Filter is a second PDP since it makes decision on
access control.

The last security component of the architecture is the
Profile Manager. Located between the two filters, it decides
which policy to use at the time of the request, depending on
the context of the user, and transmits this policy to the
filters. The context in which a policy is applicable is
specified by the user. The Profile Manager is the main
module of the security architecture we designed, as it
controls the two other components. The two filters
represent two different levels of security, but it is possible
to use only one of them. For example, if the administrator
decides that he doesn’t need communication filtering, the
Message Filter can be deactivated. However, the Profile
Manager as a Policy Administration Point (PAP) and
Policy Decision Point (it decides which policy to use) must
be present and active in the architecture and thus cannot be
optional.

4.2.3 The Action Layer

The Action Layer is intended to gather the request from
the users or applications, and to execute actions to answer
to these requests. The Query processor receives PerSE
messages, containing the requests, and answers to these
requests by obtaining the asked data in the Environment
Layer. He also receives partial actions, triggering a new
action. The Proactive Action Trigger watches over the
context and maintains an history of executed actions. It can
also produce partial actions proactively. The partial actions
are transmitted to the Action Resolver to be transformed,
depending on the context and the available services, in
complete actions, executable by the Action Processor. The
Service Monitor is used to monitor the execution of the
services.

 7

4.3 Rule-based Communication and Access
Control

The user is the key actor of our security system. He is to
define the security policies that will be applied on his base.
As we saw in the previous section, two types of policies,
enforced at different levels in the architecture, can be
defined, based on two types of rules: Communication
policies, composed of communication rules, and resource
access policies, composed of resource access rules. To this
end, we defined two declarative languages to make easier
the specification of the rules for the user. These languages
are interpreted by the system in a XML-based language
used to represent the rules and readable by the policies
enforcers. They can also be translated easily in a standard
language for privacy policies, like XACML [18] or WS-
Policy [17] for improved interoperability.

The Communication Rules syntax is described by the
following BNF grammar (Figure 4):

<communication_rule> ::= DO <action> <communication_part>
<action> ::= allow | deny | drop

<communication_part> ::= ON <communication> [USING
<protocol>]<sender_part>

<communication> ::= incoming perse_messages | outgoing
perse_messages

<protocol> ::= ip | tcp | udp | icmp
<sender_part> ::= FROM <sender> [<destination_part>] [<context_part>]
<sender> ::= all | <entity> | <group_of_entity>
<destination_part> ::= TO <destination>
<destination> ::= all | <entity> | <group_of_entity>
<group_of_entity> ::= ‘Group ’ {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<entity> ::= <base> | <service> | <user>
<base > ::= ‘Ba-’ {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<service> ::= ‘Se-’ {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<user> ::= ‘Us-’ {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<context_part> ::= <inclusion> CONTEXTS <contexts>
<inclusion> ::= IN | NOT IN
<contexts> ::= <context_name> [‘,’ <contexts>]
<context_name> ::= {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}

Figure 4: Communication Rule BNF grammar

Here are a few examples of Communication rules based
on this grammar (Figure 5):

DO deny ON incoming_perse_messages USING tcp FROM all IN
CONTEXT neighbourhood

DO allow ON incoming perse_messages FROM Us-12 IN CONTEXT
temp_high

DO drop ON outgoing_perse_messages FROM Us-12 TO Se-13

Figure 5: Examples of Communication Rules

The first rule specifies that every incoming message
using the protocol TCP should be blocked if the context
defined as “neighbourhood” is valid (see part. for context
definitions), whoever the user might be.

The second rule allows every incoming message from
the user identified as “Us-12” if the context defined as
“temp_high” is valid etc.

The action part of the rule describes which action to
execute on the incoming or outgoing message: Allow, to let
pass the message, deny, to stop the message and to notify
the sender of this failure, and drop, to delete the message
without notification.

The communication part tells on what type of
communication the rule is valid: incoming message,
outgoing message, or others. Our architecture uses PerSE
messages, as described in the examples, but we can assume
that evolutions of the PerSE environment could introduce
new types of communications.

An optional part of the rule is the protocol part. The user
can specify to do actions on communication using a certain
type of network protocol, like udp, tcp etc.

After the protocol part are the two sender and receiver
parts of the rule. The receiver and sender can be either a
user, a service or a base or a group of each of these entity
(the groups are defined by the user simply by gathering
entity). To each known entity(base, user, service) is
assigned a unique identifier. This identifier is used for
example by the user who wants to log in on a common
base, and each message sent during this user session will
have the user field filled in with the user identifier. The first
three fields are filled with the base, service or user sending
the message. The message is composed by the Messenger
module of the PerSE architecture, and the fields are filled
in just before the message is sent. In the communication
rule, the user specifies the sender and receiver identifier to
filter. We’ll see later how the incoming message is
analyzed to get those data stored in the fields of the
message. However, at the moment, we trust the incoming
message, i.e. we consider that the data stored in the fields
are right and have not been modified during the
communication. We discuss at the end of the article the
issues related to this hypothesis.

If the sender and receiver part specify a group instead of
a single entity, then the system has to determine to which
group the sender of the message belong before making his
decision.

These two parts offer the user the opportunity to filter
communications between two distinct entities, and then to
define a precise security policy.

The final part of the rule is the context part, which
describes in which context(s) the rule is applicable or not
applicable. We’ll see later in details how those contexts are
defined. If this part is absent from the rule, the rule is
applicable whatever the context may be. In this case, the
rule is very similar to an simple firewall rule, and the
Message Filter becomes nothing more than a firewall. If the

 8

context part is defined, then the Message Filter can be
compared to a context-aware firewall.

As we can see, these rules are expressive, and they
enable the administrator to express and to define easily a
precise context-aware filtering policy for the PerSE base.
Moreover, the language used to describe these rules is
similar to a natural language, which makes easier for the
administrator to express his preferences.

In the same way we defined a grammar to express
communication rules, we defined another one to describe
Resource Access Rules (Figure 6), which are higher level
rules used to control the access to local resources (data,
services...).

The Resource Access Rule defines permissions for
entities or group of entities on a resource or a group of
resources in certain contexts.

When a request from a user comes at the base, and after
the Message Filtered has decided whether the message is
allowed to pass or not, the Resource Access Filter,
depending on the resource access rules, provides the
response to the request or not.

resource_access_rule> ::= <subject> <permission_part>
<subject> ::= all | <entity> | <group_of_entity>
<permission_part> ::= <permission> DO <action_part>
<permission> ::= CAN
<action_part> ::= <group_of_action> ON <resource_part>
<group_of_action> ::= <action> { AND <group_of_action> }

<action> ::= everything | nothing | read | modify | delete | execute
| monitor | •••

<resource_part> ::= <resource> <context_part>
<resource> ::= all | {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<context_part> ::= <inclusion> CONTEXTS <contexts>
<inclusion> ::= IN | NOT IN
<contexts> ::= <context_name> [‘,’ <contexts>]
<context_name> ::= {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}

Figure 6: Resource Access Rule grammar

In the examples (Figure 7), the first rules specifies that
the service identified ad “Se-098” has the permission to
modify and delete the resource “img18.jpg” if the context
defined as “neighbourhood” is valid. We can see that this
language is high level and easy to understand, even for a
basic user.

Se-098 CAN DO write AND delete ON img18.jpg IN CONTEXT
neighbourhood

Ba-367 CAN DO execute AND monitor ON Se-13 IN CONTEXT
low_battery

Se-665 CAN DO everything ON Se-13 IN CONTEXT people_in_room
Figure 7: Example of Resource Access Rules

4.4 Context and Profiles

A strong requirement we had identified clearly before
the conception of our model was the context awareness. In
a pervasive environment, a security policy defined by the
user must depends on the context of the user, and on the
information of the context that seems important to him
among the huge quantities of contextual data a pervasive
environment can gather.

Since all the users don’t use the context in the same
way, we choose to let the user himself define the context in
which a rule is applicable, thus among all the rules defined,
only a subset will be applicable at the time of the request.
We saw that the last parameter of the rule is used to specify
the context of the rule.

To define a context, we created a simple declarative
language (Figure 8), similar to the ones we defined for the
rules, but more powerful and expressive. This
expressiveness enables the user to define precisely the
context, using every contextual parameter available he
might want to use. The need for such a language came
when we had to chose an interpretable language to express
the context functions. In the Section 6, we explain why we
chose perl to describe a context function executable by the
system to determine automatically the context. However, if
perl is a powerful language, and quite simple for advanced
users, it can become very hard for a basic user who wants
to describe a context with his own words but is not used to
languages such as perl. We decided to define a simple
language, similar to a natural language, to fill the gap
between “low-level” languages and contextual parameters,
and high-level languages and parameters (temperature,
location, are high-level expressions of contextual
parameters), more understandable for a basic user.

<context>::= CONTEXT <name> WITH PRIORITY <priority> USING
<parameters > IS DEFINED BY <definition_part>

<name>::= {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}
<priority>::= 0. {<’0’-‘9’>}
<parameters> ::= local_base | caller_base | local_and_caller_base
<definition_part> ::= <context_condition> [AND <context_condition>]

<context_condition> ::= <contextual_parameter> OF <base> IS
<relation>

<contextual_value>|<group_of_contextual_value>|<contextual_parameter
> OF <base> | <perl_expression>

<contextual_parameter> ::= temperature | lightning | location | ... | trust
<base> ::= localbase | callerbase
<relation> ::= equal to | superior to | inferior to | superior or equal to |

inferior or equal to | included in | ... | not in

<group_of_contextual_value> ::= contextual_value[‘,’
<group_of_contextual_value>]

<contextual_value> ::= {<’a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’>}

Figure 8: Context definition grammar

 9

A context has a name and a priority. The priority is a
number situated in the interval [0,1] and we’ll explain later
the role of this variable.

The definition of a context uses many parameters, called
contextual parameters, which correspond to a type of
information on the context. These parameters are taken
from the context of the 2 entities implied in the request:
The caller base and the local base. For instance, the
contextual parameters used to define a context can be the
temperature, the lightning, the location,... The user can
specify a relation that links the parameter to the value :
equal to, superior to, inferior to, etc...

CONTEXT trusty
 WITH PRIORITY 0.5
 USING caller_and_local_base
 IS DEFINED BY

 trust OF callerbase IS superior or equal to 0.7 AND
 location OF localbase IS equal to “room 203”

Figure 9: Example of a context definition

In the example (Figure 9), the user defined a context
named “trusty”, and the context will be “trusty” when the
location of the caller base is the room name “room 203”,
and when the trust mark (which we consider as a parameter
of the context we can calculate locally depending on an
history of the interaction with the entity), is superior or
equal to 0.7. The location is a parameter from the context
of the local base, and the trust mark is a parameter of the
caller base, that is what is specified in the definition. This is
only an example among the numerous contexts the user is
able to define with this syntax.

As we saw, a rule is valid in a context, or in a limited
number of contexts, as specified with the last parameter,
which correspond to the name of the context defined by the
user.

All the rules applicable in the same context are gathered
in profiles. Hence, a profile is a set of rules with the same
support, and corresponds to a precise context. In other
words, a profile is a contextual security policy.
A potential problem that can occur is that at the time of a
request, more than one context are valid, that is to say that
the contexts of the caller base and the local base correspond
to many contexts defined by the user. At this moment, more
than one security policies are applicable for the request, and
some conflicts can occur between the rules of the policies.
For this reason, we have introduced the context priority. If
two or more contexts are applicable at the time t, then the
system will choose the context, then the security policy,
with the highest priority. The priority guarantees that only
one policy is enforced at a time. If two contexts have the
same priority, then the system will choose the first defined.

If a conflict occurs between the rules in a security
policy, the conflict is resolved by the priority of action the
user defines. Indeed, some actions are more important than

others, and the user defines himself the importance of the
actions: For example, in a very secured environment, the
user will decide that the “deny” action on messages is more
important than the “allow” action. We forbid the definition
of two action with the same priority, to make easier and
more meaningful the decision made. Indeed, two actions
with the same priority would not be very coherent.

In the implementation section, we’ll see how and why
we used the perl language to implement those context
definition and make them efficient and usable by our
system.

Below is the algorithm (Figure 10) used to resolve
conflicts between communication rules and profiles:

// Pg : Set of applicable communication profiles at the moment of the
request

// Request: incoming message containing information about the sender of
the message and the // request

// decided_rule: rule that will be applied to the incoming request

CommunicationRule_choice (in : Pg, in : Request, out : decided_rule)
Begin

ApplicableRules tab; // structure to store for each profile the
 // most prioritary rule

Communication_rule decided_rule;

for each p in Pg

CommunicationRule priority_rule = p.firstRule // for the current
 // profile, the most prioritary rule.

 for each rc in p
 // we check if the rule is applicable depending on the request

 // sender and recipient

 if rc.σ = Request.sender and rc.δ =
Request.destination then

 // checking of the rule priority

 if rc. α > priority_rule. α then

 priority_rule = rc
 end if
 end if

 tab.add (rc, p.name) // adding of the rule and the profile
 // corresponding

 priority_profile = tab.firstElement
 // we run through the vector of profile and we determine which

 // profile is most prioritary with the Φ value for each profile. The
 // rule applied will be the one of the most prioritary profile

for each element in tab
 if Φ(element.p) > Φ (priority_profile) then

 priority_profile = element
 end if
 decided_rule = priority_profile.rc ;
 return decided_rule ;
end

Figure 10: Communication Rule choice algorithm

Let N be the number of profile applicable for a request,
and p the average number of rules per profile. Then the

 10

algorithm has a complexity of N*p + N. The memory
occupation of such an algorithm is about the size of the
profiles, which itself depends on the number of rules. The
other data structure we use do not cost much memory.

4.5 Internal Functioning

We describe here the internal functioning of our 3
security modules of our infrastructure.

The internal functioning of the Message Filter is quite
simple (Figure 11). When an incoming message arrives at
the Message Filter, from the Messenger or the Base
Interface, the encryption / decryption module deciphers the
message if it is coded. We discuss this aspect in our
discussion part. Then the message is transmitted to the
Header Decomposer, which decompose the header of the
message to extract the useful information about the sender
and the recipient: the base, the user or the service. These
information are then transmitted to the Profile Processor,
which is the main sub module of the Message Filter. It is
responsible for deciding whether the message must be
blocked or not. He asks the Profile Manager the security
policies that are applicable at the time of the request. With
the policy enforcement, it applies the algorithm to resolve
the different conflicts (if there is more than one policy, or if
there is more than one rule applicable in a policy), and then
decides, using the information of the header, to let pass the
message or not. If the communication is denied, the Deny
Notifyier is in charge of notifying the failure of the
communication to the sender.

For an outgoing message, the process is reversed but
similar.

Figure 11: Message Filter

3 kinds of request can arrive to the Resource Access
Filter from the Action Layer (Figure 12) :

• Context request, that is to say request asking for
local or distant data, or user data stored on the
base.

• Service listing request, when a distant module,
base, service or user needs to know which services
are available locally

• Service execution request, to ask for a service to
be launched

The different requests arrive at the Request Dispatcher,
and, depending on their nature, are redirected on the 3 sub
modules in charge of the request treatment: The Context
Provider, for the context requests, the Service Provider, for
the service execution requests, and the Service Listing, for
the service listing requests. Then, these 3 components call
the Profile Processor, which has the same role and the same
functioning as in the Message Filter. When the Profile
Processor knows which policies to enforce, it then decides
if the action demanded is authorized or not.

If the request is authorized, the 3 submodules ask to the
corresponding components of the Environment Layer to
gather the data requested or to execute the service
demanded.

Context events, which are a special type of
communication, are also filtered. They aims at keeping
informed the Proactivity module of the Action Layer, of
important events or changes in the context. The Context
Event Transmitter handles these alerts, and transmit them if
it is authorized.

Figure 12: Resource Access Filter

The Profile Manager (Figure 13) is the main component
of the security infrastructure, since it controls and provides
the security policies that can be applied at the time of a
request.

The Profile Communication handles all the
communications between the Profile Manager and the two
filters. It receives the requests asking for the policies to
apply, and send the references to the existing policies to
use, when the request has been treated. The contexts
defined by the user are implemented as perl functions, and
these functions are maintained by the Function Manager,

 11

which both registers the functions and knows the
descriptions of these functions (input parameters etc),
necessary to the perl interpreter situated in the Profile
Decider.

When the Profile Decider receives the request
notifications, it demands the existing perl functions, with
the meta data on these functions, to the Function Manager,
and the perl interpreter executes these functions. To do so,
contextual data are needed about the entities who take part
in the transaction. These contextual data are provided by
the Entities Context Manager, which aims at maintaining a
database of every contextual data available on the entities
around and on the user. To this end, it is in constant
communication with the Context Manager of the
Environment Layer of the PerSE architecture. The Profile
Decider is then able to tell which context, then which
profile of rules, is applicable. More than one context can be
valid at once, then all the valid profiles are transmitted and
the two filters will decide which context has the priority
using the algorithm described earlier. The Entities Manager
manages the different groups defined by the user, and
answers the request from the two filter to know in which
group is an entity.

 An history is updated for each request, containing
information on the request and its response. These data can
be used and analyzed with data mining algorithms, to find
some useful information to enhance the performances on
the response. This analysis has not been currently
implemented but the logging is.

Figure 13: Profile Manager

4.6 Summary

To make easier the understanding of our solution, we
propose an outline (Figure 14) that summarizes the process
of a request treatment by the security infrastructure.

When the request, encapsulated in a message, arrives on
a device (1) (a PerSE base for example), the first filter, the
Message Filter, analyzes the request and asks the Profile
Manager the profiles (the security policies) to enforce (2).

The Profile Manager asks his internal modules to gather
information on the context, and determines in which
predefined context the bases are, by executing the
corresponding perl functions (3). It then gives the profiles
corresponding to the valid contexts to the Message Filter
(4). The Message Filter decides what to do on the incoming
message, enforcing the given policies and applying the
conflicts resolution algorithms (5).

Figure 14: Request treatment process

If the message is not blocked (6 bis), then the message is
authorized to enter the base (6), and the Resource Access
Filter acts as the first filter: It asks the Profile Manager to
determine the security policies to use (7), and the Profile
Manager, with the contextual data it is able to gather,
executes the perl functions (8) and notifies the filter the
profiles of rules to use (9). The Resource Access Filter
enforces the policies (10) and gives the access to the
resource (if it is a resource request, or gives the services list
if it is a listing request, or executes the service if it a service
execution request) to the entity which sent the request (11)
or rejects the request (11 bis).

5. Use Case Study

In this section we study a use case very likely to occur in
pervasive environments: A user would want to protect his
resources and give access to some resources only if specific
conditions on the context are fulfilled.

The scenario is simple (Figure 15): A laptop E0, on
which a PerSE base is installed, can share a video sequence
with the service ShareVideo. The base E0 is situated in the
room 502 in a building.

Other users, each with a PerSE base named E1,...E7,
would like to watch the video on their device. But the
administrator of E0 wants to share his video only with the
users equipped with a PDA and situated in the same room,
since he doesn’t trust the other rooms of the building,

To this end, he has established a restriction on the use of
the service: Only the users with a PDA and situated in the
room 502 are authorized to execute it.

 12

Figure 15: Use Case Scenario

The administrator has defined two types of policies on
his base: communication policies, and resource access
policies. These policies consist of rules, gathered in profiles
(a set of rules for which the context of application is the
same).

Amongst all the communication rules defined, some do
concern the users E1,... E7 (Figure 16).

...
DO allow ON incoming perse_messages FROM Group1 TO ShareVideo
DO drop ON incoming perse_messages FROM Us-E6 TO ShareVideo
DO deny ON incoming perse_messages FROM Us-E7 TO ShareVideo
...

Figure 16 : Communication rules defined by the user

The group named “Group1” consists of E1, E2, E3, E4,
E5.

The user has chosen not to take into account any
contextual information in these rules.

However, in the resource access policies, some rules
(Figure 17) are defined to give authorizations on
ShareVideo to entities in a precise context.

...

Group1 CAN execute AND monitor ON ShareVideo IN CONTEXT
neighbourhood_PDA

...

Figure 17 : Resource Access rule defined by the user

With the definition of these rules, the user has defined
the context “neighbourhood_PDA” (Figure 18).

CONTEXT neighbourhood_PDA
 WITH PRIORITY 0.5
 USING caller_and_local_base
 IS DEFINED BY
 location OF callerbase IS equal to “room 502” AND
 device OF callerbase IS equal to “PDA”

Figure 18 : "neighbourhood_PDA" context definition

In the use case, when the requests from the different
users Ei arrive at the base E0, encapsulated in a message,
the Message Filter checks if some rules are defined without
the contextual parameter, that is to say if rules applicable
whatever the context would be are defined. If so, the
Message Filter can enforce this policy without asking the
Profile Manager which contextual policy to use. In the
communication rules defined by the user, the messages

from the entities E6 and E7 are blocked. So the Message
Filter blocks every communication from those users. The
other users are allowed to submit their execution request to
the service (Figure 19).

Figure 19: First filtering : Communication

The Resource Access Filter then receives each execution
request from the users Us-E1 to Us-E5. For each request,
the Resource Access Filter asks the Profile Manager to
determine the profile(s) to use, that is to say to determine
which context(s) is valid. For the users Us-E2, Us-E3, US-
E4, situated in the Room 502 and equipped with a PDA, the
context “neighbourhood_PDA” is true, so the rules of the
profile “neighbourhood_PDA” are enforced, and the users
are given the authorization to execute the service
ShareVideo. On the contrary, for the user Us-E1, the
context “neighbourhood_PDA” is not true, so the rules
defined in this profile are not enforced, and since no other
rule can give the authorization to Us-E1 to execute the
service, the request of Us-E1 is not allowed (Figure 20).

Figure 20: Second filtering: Resource access control

This is a simple example of the definition and
application of a context-aware security policy, that enables
the user to give access to his resources using contextual
data.

6. Implementation, Evaluation and Results

Resources in pervasive environments are limited, and
our two main priorities for this evaluation were the
efficiency in terms of response time and memory
occupation, and the scalability of the rule-based policy
definition and execution.

We implemented our infrastructure in C++. Our three
components (Message Filter, Resource Access Filter, and
Profile Manager) are composed of ten classes, and the
compiled code occupies no more than 100 KB. We used
our own XML based language to describe the interpreted
and executable rules. In order to interpret the rules
expressed with the defined grammar, we used a light XML
parser, called tinyXML.

 13

<communication_rule id="1">

 <action>deny</action>

 <communication>

incoming_perse_messages

 </communication>

 <protocol>tcp</protocol>

 <sender>all</sender>

 <receiver>localhost</receiver>

</communication_rule>

Figure 21: XML-translated communication rule

A profile of rules is a XML file (Figure 21), and its size
depends on the number of rules defined by the user.
Typically, a 100-rules file is about 20 KB. In our tests, we
will assume that a normal user will not define more than
1000 communication and resource access rules, divided
into less than ten profiles. Each profile is divided into two
files, one for communication rules, the other for resource
access rules. We use other XML files too to describe the
profiles with metadata, but they each take about 4 KB only.

The definitions of the context are interpreted in perl
language. We chose perl because we wanted an
interpretable language, simple but efficient. A context
definition is translated into a perl function, executed by a
perl interpreter situated in the Profile Manager. The perl
interpreter is a set of C functions, integrated and freely
available in every perl distribution. Among the other XML
files we mentioned earlier, is a description of the perl
function, needed by the system to gather the parameters
needed by the function, which are context data. This
description also contains the path of the perl file, the return
values etc.

The memory occupation of our system is not a real
issue, since it won’t exceed 400 KB in most of the cases.

The experiments have been done on a Powerbook 1,5
GHz Power PC G4, with 512 MB RAM.

To evaluate execution time, we divided our experiments
into two parts: The first part was about rule interpretation in
function of the number of rules involved, and the second
part was the evaluation of a request response time. In a real
environment, the first part, that is to say the rule and
context interpretation, would be realized once during the
initialisation of the base, whereas the second part, the
response to request, would occur at anytime.

The Figure 22 shows the results of the rule
interpretation, in function of the number of rules. The 4
curves corresponds to the number of profiles in which the
rules are distributed. Rule interpretation is time-consuming,
and depending on the number of profiles, it can evolve in
an polynomial way.

Figure 22: Rule interpretation time evaluation

We observe through these experimental results that, the
interpretation of 1000 rules can take more than a minute if
the rules belong to a single profile. But this time is greatly
reduced as the number of profiles increases, to reach a time
of about 20 seconds with 5 or 7 profiles. Hence, if the user
defines more than one context or profile, which is likely to
happen in a pervasive environment, the interpretation time
is very acceptable.

Anyway, we conducted the evaluation with a large
number of rules. In a real scenario, we can assume that a
simple user would not define more than 200 rules, with 3 or
5 contexts, since a policy with more than 200 rules would
quickly become hard to maintain and to understand for a
simple user. With these assumptions, the interpretation time
is very low, about 2 or 3 seconds. Moreover, as we said, the
loading of all the rules is meant to happen once at the
initialisation of the base. Once done, the files are stored in
the mobile device memory, so the interpretation times
given are very acceptable when done only once.

The second evaluation we made was on the response
time of a request (Figure 23). The response time depends
both on the number of rules and the number of profiles to
which the rules belong. Even with 1000 rules and one
profile, the worst case, the response time does not exceed
350 ms. For a nominal case, with 200 rules and 3 or 5
profiles, the response time is less than 50 ms, and even less
with a 100 rules policy. The response time depends also on
the position in the XML file of the resource access rule that
grants the permission to the entity of the request. The
response time will be lower if the rule is at the beginning of
the file, whereas the position of the communication rule
that allows the message or not does not influence our
performances because our algorithm runs through all the
communication rules.

 14

Figure 23: Request response time evaluation

These evaluations show that the interpretation and
response time of our infrastructure enable the scalability of
our system without a great loss of performances. We didn’t
optimize the algorithms or the code during the
implementation, and we believe that we could obtain better
results with more time on the development.

7. Contributions Summary, Discussion and
Future Works

We discuss here the main contributions and issues
brought by our approach. Our solution enables a user to
define precisely his privacy and security policy in a
pervasive environment.

The first main contribution is the infrastructure we
propose, based on modular components, and which can be
fully integrated in a broader pervasive architecture. This
infrastructure guarantees the security and the privacy at
different levels of the device: The first security level, the
Message Filter, acts as a firewall on the incoming and
outgoing communication of the device. The second security
level, the Resource Access Filter, controls the access to the
different resources present on the base. These two
components are controlled by the Profile Manager, that
decides which policy the two filters must enforce at the
moment of the request.

Another main contribution is the context-aware security
policies we introduced. Actually, two aspects of these
policies are innovative and interesting. The first one is the
context-awareness of the rules of the policies. This context-
awareness is essential for a security policy in a pervasive
environment, since the context is the base of those
environments. As we saw in the related works, context-
awareness in security and access-control is an issue rarely
addressed, and when the context is taken into account in the
policies, it is not satisfying and simple for the user. The
second important aspect is the languages and grammar we
introduced for the user to let him define his rules very

easily. Furthermore, we introduced an other simple
language to enable him to express what a context is, and
which parameters to take into account in the definition of a
context. The user is then able to express in which context a
rule is applicable, and then to define a simple context-
aware security policy.

Future works will integrate our security infrastructure in
a wide PerSE environment, with many bases interacting
and communicating with each other. Our model has been
implemented in a PerSE Base, but we will realize
evaluations with more bases to have a precise overview of
the real performances. This integration will enable us to
have a fully working and secured pervasive environment,
which we will continuously enhance by the introduction of
new services for the user.

One of the main issue in our evaluation is that we only
assess the request response time, provided the Profile
Manager has access very quickly to all the context data it
needs. However, in a real pervasive environment, these
data are not always available easily and costlessly.
Sometimes, a device has to ask another device, or sensors,
or servers, to obtain the data, and we couldn’t evaluate and
take this major aspect into account in our evaluation. The
evaluation times could be then strongly increased,
depending on the data needed, on the availability of these
data, and on the communication time between the requester
and the provider of those.

An issue we have to work on is the integration of
encryption/ deciphering algorithm in the Message Filter to
enable a user to encrypt his communication and the
message filter to decipher the incoming or outgoing
communication. To this end, we have to study the
encryption algorithm and mechanisms (public or private or
hybrid cryptography, session keys, static keys etc..) that fit
the best to the needs of pervasive environments, as we
know that resources are very limited are that most of the
encryption algorithm are costly.

To conclude with the technical issues, we did not used
and developed the History module in our implementation.
This module could be used to optimize the response time of
our system, as it would act as a cache, and would be
interrogated before trying to resolve the request, to know if
the results of the request are not already known. With
adequate and efficient algorithms, we could obtain
significantly reduced response time. This aspect will be
treated in future studies.

About the approach itself, our system focus on the
access control to the data and the protection of the user
data, but we do not propose any solution for the use of the
data, once the access has been granted. In future works, we
will experiment such approaches, like the use of metadata
in [2], to specify properties on the data itself, like its
number of use allowed, its lifetime, etc.

 15

Moreover, we have to explore means to gather data in
groups. Permissions would then be granted on groups of
data instead of a single data as we do on our rules. This
improvement would make the resource access policy
specification easier and faster. The criteria on which the
resources would be gathered are yet to define, and we will
study a means to gather the resources automatically instead
of manually by the user himself. A semantic gathering
would be promising, since it would help to formulate and
treat more complex and semantic requests.

As we saw in the presentation of the communication
rules, we trust the incoming message, that is to say we
consider that the fields of the message, which contains
information about the sender of the message, are true, i.e.
we do not make any authentication before an interaction
with an entity. This strong hypothesis can not be made in a
real environment, and it represents a real issue, since
authentication in pervasive environment is difficult. We
explore some ways to integrate authentication before the
communication is established, like those works on
authentication in pervasive environments [28], with digital
certificates and local certification authorities, and trust
propagation between these authorities.

8. Conclusion

We presented in this article a comprehensive framework
for security and privacy in a pervasive environment. We
first define a generic theoretical framework for context-
aware access control. Our approach is based on a two-level
control to the personal device of the user. Indeed, access to
the device, then to its resources, are enforced using access
rules defined by the user himself. This possible fastidious
task is simplified thanks to declarative languages with
which he expresses intuitively his wills. The originality of
our approach relies in these possibilities to define precisely
and easily security policies useful in a pervasive
environment, thanks to a strong theoretical background and
a large expressiveness of the rules definition languages.

The approach has been actually successfully integrated
in a pervasive environment and evaluated both in terms of
memory and computing consumption, proving its
competitiveness and usability in a real environment.

References

[1] Langheinrich M., Personal Privacy in Ubiquitous
Computing : Tools and System Support, Ph.D. thesis,
University of Bielefeld, 2005.

[2] Hong J., Landay J.A., An architecture for privacy-
sensitive ubiquitous computing. In Proceedings of
MobiSYS ’04 : pages 177–189. ACM Press, 2004.

[3] Clarke J., Neubauer M., Hauser C., Security and
privacy in a pervasive world – The Daidalos approach.
Eurescom Mess@ge magazine, Issue 2/2005, page 8,
2005

[4] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for
role-based access control. ACM Transactions on
Information and System Security (TISSEC), 4(3):224-
274, 2001

[5] R. S. Sandhu, et al. "Role-Based Access Control
Models", IEEE Computer 29(2): 38-47, IEEE Press,
1996

[6] Wee-Yeh Tan: Constraints-based Access Control.
DBSec 2001: 31-44

[7] Bertino, E., Bonatti, P. A., & Ferrari, E. (2001).
TRBAC: A Temporal Role-based Access Control
Model, ACM Transactions on Information and System
Security, 4(3), 191-233.

[8] J. B. D. Joshi, E. Bertino, U. Latif & A. Ghafoor,
Generalized temporal role based access control model
(GTRBAC) (Part I) - specification and modeling.
Technical report, CERIAS TR 2001-47, Purdue
University, USA, 2001.

[9] G. Zhang and M. Parashar. Context-aware dynamic
access control for pervasive computing. In 2004

[10] A. Kumar, N. Kamik, and G. Chafle. Context
Sensitivity in Role-based Access Control, ACM
SIGOPS Operating Systems Review, pp. 53-66, July,
2002.

[11] A. Abou El Kalam, Y. Deswarte "Multi-OrBAC: un
modèle de contrôle d’accès pour les systèmes multi-
organisationnels" 3rd Security of Information Systems
(SSI), Seignosse - Landes, France, 6-9 juin 2006.

[12] M. J. Covington, W. Long, S. Srinivasan, A. Dey, M.
Ahamad, and G. Abowd. Securing context-aware
applications using environment roles. In Proceedings
of the 6th ACM Symposium on Access Control
Models and Technologies, May 2001.

[13] M. J. Covington, M. J. Moyer, and M. Ahamad.
Generalized role-based access control for securing
future applications. In 23rd National Information
Systems Security Conference, Baltimore, MD, October
2000

[14] A. Abou El Kalam, R. Elbaida, P. Balbiani, S.
Benferhat, F. Cuppens, Y. Deswarte, A. Miège, C.
Saurel, G. Trouessin "ORBAC : un modèle de contrôle
d'accès basé sur les organisations", Cahiers
francophones de la recherche en sécurité de
l'information, Numéro II, 1er trimestre 2003, pp30-43

[15] Netegrity. S2ML : The XML standard for describing
and sharing security services on the internet. Technical
report, 2001.

 16

[16] A. Herzberg, J. Mihaeli, Y. Mass, D. Naor, and Y.
Ravid. Access Control Meets Public Key
Infrastructure, Or: Assigning Roles to Strangers. In
IEEE Symposium on Security and Privacy, Oakland,
CA, May 2000.

[17] WS-Policy,
http://specs.xmlsoap.org/ws/2004/09/policy/ws-
policy.pdf

[18] XACML (eXtensible Access Control Markup
Language), http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[19] SAML, (Security Assertion Markup Language),
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=securit
y

[20] Cranor L, Langheinrich M, Marchiori M, Presler-
Marshall M, Reagle J, The platform for privacy
preferences 1.0 (P3P1.0) specification. MIT/World
Wide Web Consortium, available at
http://www.w3.org/TR/P3P

[21] J. Hu, A. C. Weaver, “Dynamic, Context-aware
Security Infrastructure for Distributed Healthcare
Applications”, Proceedings of First Workshop on
Pervasive Security, Privacy and Trust (PSPT), August
26, 2004.

[22] Bihler P., Brunie L., Scuturici V.M.: Modelling User
Intention in Pervasive Service Environments, EUC

2005, Japan, Dec 2005, LNCS 3824 Springer, pp. 977-
986

[23] Gripay Y., Pierson J-M., Pigeot C-E., Scuturici V.M.:
Une architecture pervasive sécurisée: PerSE,

[24] R. Beckwith. Designing for ubiquity: The perception of
privacy. Pervasive Computing, 2(2):40--46, April-June
2003.

[25] A.K. Dey, S. Lederer, J. Mankoff, Who Wants to Know
What When? Privacy Preference Determinants in
Ubiquitous Computing , Privacy Preference
Determinants in Ubiquitous Computing. in Extended
Abstracts of CHI 2003, ACM Conference on Human
Factors in Computing Systems. 2003. Fort Lauderdale,
FL

[26] Jiang, Hong, Landay, Socially-Based Modeling of
Privacy in Ubiquitous Computing, UbiComp 2002,
Springer LNCS 2498, pp 176-193, 2002

[27] M. Langheinrich, Personal Privacy in Ubiquitous
Computing :Tools and System Support, Ph.D. thesis,
University of Bielefeld, 2005.

[28] R. Saadi, J-M. Pierson, L.Brunie, Distrust Certification
Model for Large Access In Pervasive Enviroment,
Journal of Pervasive Computing and Communications.
2005.

